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Abstract

Background—Bayesian predictive probabilities can be used for interim monitoring of clinical 

trials to estimate the probability of observing a statistically significant treatment effect if the trial 

were to continue to its predefined maximum sample size.

Purpose—We explore settings in which Bayesian predictive probabilities are advantageous for 

interim monitoring compared to Bayesian posterior probabilities, p-values, conditional power, or 

group sequential methods.

Results—For interim analyses that address prediction hypotheses, such as futility monitoring and 

efficacy monitoring with lagged outcomes, only predictive probabilities properly account for the 

amount of data remaining to be observed in a clinical trial and have the flexibility to incorporate 

additional information via auxiliary variables.

Limitations—Computational burdens limit the feasibility of predictive probabilities in many 

clinical trial settings. The specification of prior distributions brings additional challenges for 

regulatory approval.

Conclusions—The use of Bayesian predictive probabilities enables the choice of logical interim 

stopping rules that closely align with the clinical decision making process.
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1 Introduction

Interim monitoring is an important component of most randomized clinical trials. Phase II 

clinical trials often use multi-stage designs such as Simon’s two-stage design [1, 2]. Phase 

III designs typically use group sequential designs with alpha and beta-spending functions, 

such as O’Brien and Fleming [3] and Pocock [4]; see DeMets [5], and Thall and Simon [6] 
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for more comprehensive reviews. Bayesian methods can also be useful for interim 

monitoring, often basing decisions of stopping on whether the posterior probability of a 

parameter exceeds a pre-specified threshold. Examples include Thall and Simon [7, 8], 

Sylvester [9], Heitjan [10], and Tan and Machin [11]. For discussions comparing Bayesian 

to frequentist designs in the context of clinical trials, see Spiegelhalter et al. [12], Berry 

[13-16], Stangl and Berry [17], and Lee and Chu [18].

These methods employ various metrics for assessing evidence at an interim analysis. Such 

metrics include (but are not limited to) the p-value, the probability of observing a result as 

extreme or more extreme than the observed result under the null hypothesis; a Bayesian 

posterior probability, typically expressed as the probability the parameter is contained within 

a meaningful region; conditional power, the frequentist probability of obtaining statistical 

significance at some future sample size given the current data and assumed parameter 

value(s); and Bayesian predictive probability, the probability of obtaining statistical 

significance at some future sample size given the current data and assumed prior 

distribution(s). The choice of metric is ideally a function of the purpose of the interim 

analysis.

Two common types of questions addressed by interim analyses include 1) Is there 

convincing evidence in favor of the null or alternative hypotheses? and 2) Is the trial likely to 

show convincing evidence in favor of the alternative hypothesis if additional data are 

collected? The first question pertains to the evidence presently shown by the data, and is best 

addressed using estimation, p-values, or Bayesian posterior probabilities. The second deals 

with prediction of what evidence will be available at later stages in the study, and is best 

addressed using stochastic curtailment methods such as conditional power or predictive 

probability.

Conditional power [19, 20] is often criticized for assuming the unknown parameters are 

fixed at specific values [21, 18, 22]. In contrast, Bayesian predictive probabilities average the 

probability of trial success over the variability in the parameter estimates, and can be used 

whether the trial’s primary analysis is frequentist [23-26] or Bayesian [27-32]. They are 

most often used to predict trial success at a final pre-determined sample size, but can also be 

used to predict trial success based on an interim sample size with extended follow-up 

[33-35]. Predictive probabilities have been widely discussed in the literature [21]. However, 

the literature lacks a general discussion of the advantages of predictive probabilities for 

interim monitoring. This article contrasts predictive probabilities versus traditional methods 

for interim monitoring of clinical trials. We illustrate settings in which predictive 

probabilities have advantages over more traditional methods of interim monitoring, 

particularly in the context of futility monitoring and efficacy monitoring with lagged 

outcomes (Sections 2-4). We also explore the relationship between the predictive probability 

and posterior probability (Section 5) and conclude with a discussion.

2 Monitoring for futility

There are many reasons for interim monitoring of clinical trials. Perhaps the greatest reason 

is the ethical imperative to avoid treating patients with ineffective or inferior therapies. 
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However, oftentimes there are not sufficient data at an interim analysis to make a definitive 

conclusion about treatment benefit. In such cases, a more relevant question may be whether 

a trial is likely to reach a definitive conclusion by the end of the study. If not, many would 

argue that it is unethical to continue enrolling patients and that accrual should be stopped 

due to trial futility so that resources (monetary, personnel and available trial patients) can be 

allocated to other investigational therapies. If futility is defined as a trial being unlikely to 

achieve its objective [36], then futility is inherently a prediction problem, and is best 

addressed using predictive probabilities and not posterior probabilities or p-values. The main 

reason is that the amount of time and statistical information remaining to be collected are 

key determinants in the probability of obtaining a statistically significant result (i.e. trial 

success).

For example, consider a single-arm study with a maximum of 100 patients measuring a 

binary outcome response, in which the proportion of successes is compared to a gold 

standard with a 50% response. The outcome observed is the number of responses x, which is 

assumed to follow a binomial distribution with probability of response p and total number of 

patients N = 100. The trial will be considered a success if the Bayesian posterior probability 

that the proportion exceeds the gold standard (p0 = 0.5) is greater than η = 0.95 as given by 

(1).

(1)

If a uniform prior p ~ Beta(α0 = 1, β0 = 1) is specified, the trial will be considered a success 

if 59 or more of 100 patients observe a response, where Pr(p > 0.50∣x = 59, n = 100) = 

0.963. Furthermore, this non-informative prior and cut-off conserves Type I error: the 

probability of erroneously rejecting the null hypothesis if p = 0.5 is 0.044. A frequentist 

exact binomial test also requires 59 or more successes to achieve statistical significance at 

the one-sided 0.05 level.

2.1 Predictive probabilities compared to p-values and posterior probabilities

Suppose the trial is designed with four planned interim analyses for futility which are 

conducted when data are available for 20, 50, 75, and 90 patients, respectively. Suppose at 

the first interim analysis 12 responses out of 20 patients (60%) are observed (exact one-sided 

p-value = 0.25), such that 47 or more responses are needed in the remaining 80 patients in 

order for the trial to be a success. Under a uniform prior, the Bayesian posterior probability 

of interest is Pr(p > 0.50∣x1 = 12, n1 = 20) = 0.81. The Bayesian posterior predictive 

distribution of future observations y1 follows a beta-binomial distribution, i.e. y1 ~Beta-

binomial(50, α = α0+12, β = β0+8), and the predictive probability of success equals 0.54, 

which is the probability of observing 47 or more responses in the remaining 80 patients 

given the observed data.

Suppose the second, third, and fourth interim analyses yield 28 successes/50 (56%), 41/75 

(55%), and 49/90 (54%), with posterior probabilities of 0.81, 0.79, 0.80 and p-values of 

0.24, 0.24, and 0.23, respectively. Given these nearly identical summaries of evidence for 

treatment benefit, it is not obvious whether the trial should be stopped or continued at each 
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of the interim analyses. Note the posterior distribution at n = 20 observations has a much 

larger variance than the posterior distribution at n = 75 (Figure 1), but one cannot easily 

distinguish between the different probabilities of trial success by examining the posterior 

distributions or posterior probabilities alone.

In contrast, the predictive probabilities vary dramatically across the interim looks, with 

values of 0.54, 0.30, 0.086, and 0.003 at 25, 50, 75, and 90 patients, respectively (Table 1). 

Many would agree that this trial should be stopped at 75 patients due to a 0.086 probability 

of trial success. The specific stopping criteria are typically unique to each trial, and include 

ethical and business considerations, such as risk/benefit considerations of patients, available 

resources, opportunity cost, and overall statistical power. For clarity, Table (2) gives explicit 

definitions of predictive probability and other measures being discussed within this 

illustrative example. In the context of interim monitoring for futility, predictive probabilities 

are naturally appealing because they directly address the relevant question, that is, whether a 

trial is likely to reach its objective if continued to the planned maximum sample size. 

Because of their natural interpretation, predictive probabilities have been used frequently for 

futility analyses in Bayesian adaptive trials. Examples include a three-arm Bayesian adaptive 

comparative effectiveness trial in refractory status epilepticus [37], a trial evaluating a rapid 

molecular test of early-stage breast cancer [38], and a cardiovascular safety study of a 

testosterone gel in postmenopausal women with hypoactive sexual desire disorder [34].

2.2 Frequentist strategies of monitoring futility

Group sequential trials and their funnel shaped boundaries acknowledge the reality that 

decisions based on interim p-values depend on the amount of information yet to be 

observed. This implies that p-values (and posteriors) require additional information for 

decision making regarding futility, and thus their boundaries necessarily change at each 

interim analysis. DeMets [39] provides a brief summary of different types of methods 

available for monitoring trials for futility. Group sequential methods are designed with the 

goal of optimizing allocation of Type I or Type II error, and are not designed to monitor the 

probability of trial success. Despite this fact, they are often used for monitoring futility, even 

when futility is defined as a trial being unlikely to achieve its objective. One such example is 

the Emerson & Fleming symmetric boundary [40], which is a special case of the more 

general Unifying Family proposed by Kittelson and Emerson [41]. Consider the use of the 

Emerson & Fleming lower boundary in the above example, in which the trial is monitored 

for futility at 20, 50, and 75 patients, with a final analysis for efficacy at 100 patients. The 

test of interest is a one-sided test of H0 : p ≤ 0.5 vs. H1 : p > 0.5, with a Type I error of 0.05. 

The trial will stop for futility if less than 5 successes/20 (25%), 25/50 (50%), 42/75 (56%), 

or 59/100 (59%) are observed. The power of the above design for an alternative of p1 = 0.65 

is 0.93. Using our Bayesian model with uniform priors, the predictive probabilities of 

success at 5, 25, and 42 successes at the first three interim looks (which would not meet the 

above stopping rules) are 0.0004, 0.041, and 0.188. In the context of monitoring futility as 

defined above, the decision rules for futility produced by the Emerson and Fleming 

boundaries are suspect, as trials with very low probabilities of success would be allowed to 

continue.
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A related but distinct strategy is given by Fleming et al. [42] and Anderson and High [43], 

where one repeatedly tests the alternative hypothesis at some significance level (typically 

0.005), and rejects the alternative hypothesis if the data are inconsistent with the assumed 

alternative. Because such methods are appropriately using estimation methods to evaluate 

evidence against a specific hypothesis, they may have more intuitive appeal than the beta-

spending group sequential methods. However, assessing evidence against the alternative 

hypothesis does not directly assess whether the trial will meet its objective. If we apply this 

approach to our illustrative example using the 0.005 significance level and include the extra 

look at 90 patients, we will stop for futility if less than 8 responses/20 (40%), 24/50 (48%), 

38/75 (51%), or 47/90 (52%) are observed. The corresponding predictive probabilities of 

success at 8, 24, 38, and 47 responses (which would allow the trial to continue) are 0.031, 

0.016, 0.002, and 0.0, respectively. The above rules will allow trials to continue even despite 

having very small (or even zero) probabilities of success. Such futility designs can be made 

more aggressive or conservative by varying the significance levels or Type II error 

probabilities (e.g. using 0.02 instead of 0.005 [44]), but it’s not obvious whether such rules 

reflect good judgment from a futility decision-rule standpoint. Such methods do have some 

appeal if futility is defined as a trial being unlikely to observe the effect it was designed to 

detect, but such a definition requires the specification of a subjective alternative hypothesis 

(e.g. p1 = 0.65) which raises numerous issues [36].

Additionally, frequentist approaches such as Simon’s two-stage design [1, 2], that minimize 

expected sample size for single-arm studies with a single interim analysis, are difficult to use 

when the number of patients accrued is not fixed [44]. Strategies halting accrual if a positive 

effect is not observed at 50% information [45, 46] do not accommodate multiple interim 

analyses.

2.3 Conditional Power

In contrast to the above frequentist strategies, interim analyses for futility based on 

conditional power attempt to account for how many data remain to be observed via 

stochastic curtailment. In order to calculate conditional power, one must assume that some 

value of a parameter is the truth, which of course is unknown in a real trial. Consider the 

working example. Under an initial assumption of a 65% response rate, 100 patients provide 

about 90% power for a one-sided exact binomial test, with a type I error rate of 0.05. Table 1 

shows the conditional power based upon the initial effect size estimate CPHa and upon the 

observed interim maximum likelihood estimate CPMLE. During the course of the above trial, 

the probability that 65% is the true success rate continually decreases, but CPHa continues to 

use the hypothesized rate of 0.65 despite this shrinking reality. CPMLE uses the maximum 

likelihood estimate at each analysis but fails to incorporate the variability of that estimate.

The variability is particularly important because the relationship between power and effect 

size is concave down for higher powers, concave up for lower powers, and is not symmetric 

about the MLE. This is evident in Figure 2, which shows the conditional probability of 

achieving 59 or more successes at N = 100 given 12 success in 20 subjects (solid line) as a 

function of the true (but unknown) success rate. For example, assuming p = 0.65 (the 

original design assumption) or 0.60 (current MLE), the graph shows a 0.90 or 0.64 
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probability of a successful trial, respectively. The use of the MLE (0.60) or original 

assumption of 0.65 can be misleading because the power curve flattens out more quickly to 

the right of those values than it does to the left.

A typical strategy for trials that incorporate conditional power is to provide estimates under 

various alternatives, e.g. under the null hypothesis, the original Ha, and the interim MLE. 

This is essentially an informal attempt to average the conditional power over various 

alternatives, reffecting the uncertainty in the choice of the true alternative. In contrast, 

predictive probabilities explicitly integrate the conditional power over the current posterior, 

shown in black at the bottom of Figure 2. Of course the predictive probability is dependent 

on the chosen prior, which may have a large influence for small sample sizes such as 20 

enrolled patients (see Discussion for further discussion of priors).

3 Monitoring for efficacy

A decision of stopping early for efficacy is typically based on whether there is convincing 

evidence at an interim analysis in favor of the alternative hypothesis, which is best addressed 

using estimation, p-values, or posterior probabilities. However, prediction methods can be 

advantageous for monitoring efficacy and stopping accrual when there is a time lag between 

enrollment and the observed outcomes (e.g. see [33, 34, 35]). This time lag is present in 

nearly all clinical trials. For example, suppose the outcome is response to treatment in the 

first 90 days. Rather than base efficacy decisions on the interim posterior probability with 

incomplete data for enrolled patients, one can estimate the predictive probability of success 

if all enrolled patients with unobserved outcomes were followed the full 90 days. If this 

probability is sufficiently large, one can stop enrollment (permanently) and wait 90 days 

before conducting a superiority analysis. Numerous Bayesian adaptive trials with lagged 

primary outcomes use this methodology, e.g. trials described in Skrivanek et al. [47] and 

White et al. [34] both stopped accrual early for predicted success.

In frequentist settings, it is common practice to use group sequential methods at an interim 

analysis using only patients with complete data. If the trial is stopped due to a stopping 

boundary being met, sometimes a final analysis is done after all lagged outcomes are 

collected on the current set of patients. In such settings, trial success is determined by the 

interim analysis and not the subsequent final analysis, although the data monitoring 

committee (DMC) may have reservations for stopping a trial early if a few lagged outcomes 

can affect the p-value such that it no longer meets the group sequential boundary. Bayesian 

predictive probabilities formalize the decision to stop accrual in a manner consistent with the 

decision process of the DMC, i.e. only stopping trials for efficacy if they currently show 

superiority and will likely maintain superiority after the remaining data are collected.

4 Prediction via auxiliary variables

Another advantage of using predictive probabilities for monitoring efficacy is the ability to 

model a final primary outcome using earlier information that is informative about the final 

outcome [48]. For example, if the primary outcome is success at 24 months, many of the 

accrued patients at a given interim analysis will not have 24 months of observation. 
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However, one may have access to a measure of success at 3, 6, or 12 months that correlates 

with the outcome at 24 months. Such auxiliary variables [48] may not be valid endpoints 

from a regulatory perspective, but the correlation between the auxiliary variables and the 

final outcome can be incorporated into the predictive distribution of the final outcome to 

provide a more informative predictive probability of trial success.

If the predictive probability of success at the maximum sample size is sufficiently small, the 

trial can be stopped for futility immediately. If the predictive probability of success at 

complete information for currently accrued patients is sufficiently large, one can stop accrual 

and wait until the primary outcome is observed for all currently enrolled patients (or wait a 

specified time for time-to-event outcomes), at which point trial success is evaluated. In this 

setting, the auxiliary variables do not contribute to the final analysis; rather they are used to 

inform the predictive probability that would either stop the trial for futility or stop trial 

accrual in anticipation of success. This is a great advantage of predictive probabilities over 

competing methods for interim monitoring (group sequential, conditional power, p-values, 

posterior probabilities, etc.), where properly accounting for auxiliary variables or time lags 

between enrollment and observed outcomes is much more difficult.

5 Relationship between predictive probability of success and posterior 

probability of efficacy

When an infinite amount of data remain to be collected at an interim analysis, the predictive 

probability of success of the trial equals the current posterior estimate of efficacy, Pr(p > 

p0∣x, n), regardless of the posterior cutoff η (equation 1) required for a trial to be a success. 

In our illustrative example, the rate of convergence is a function of the number of responses 

observed, the null value p0, and the posterior cutoff η. Larger values of η, e.g. 0.90, have a 

slower rate of convergence to the posterior estimate than smaller values, e.g. 0.70 (see 

Figure 3). However, for a trial with a fixed sample size N, the estimated predictive 

probabilities will typically be closer to the posterior estimates at the beginning of a trial, and 

move toward either 0 or 1 as the trial nears completion (see Figure 4).

As noted by Emerson et al. [22], there is a 1:1 correspondence between various boundary 

stopping scales. For example, consider a trial with three interim analyses at 10, 50, and 75 

patients, in which the maximum N = 100 and posterior cutoff η = 0.95, and the trial is 

stopped early if the predictive probability of success is less than 0.20 at any of the interim 

analyses. An identical design based on posterior probabilities will stop the trial if the 

posterior estimate of efficacy is less than 0.577 (12/20 or less), 0.799 (28/50 or less), or 

0.897 (42/75 or less) for the three interim looks, respectively. Hence, the posterior rule must 

vary across the interim analyses to produce identical decisions as the predictive probability 

approach with a fixed cut-off. Although such a 1:1 correspondence was evident in this 

example, it is often difficult to align the posterior and predictive probability rules. Note it 

would also be straightforward to define meaningful efficacy and futility bounds with varying 

predictive probability boundaries (with ethical or efficiency based justifications).
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6 Discussion

As discussed by Berry [16], one can design a Bayesian approach that delivers pre-

determined frequentist operating characteristics, such as 90% power with a false positive 

rate of 5%, to comply with regulatory agencies such as the FDA. Such Bayesian strategies 

for building frequentist designs can still deliver benefits compared to traditional frequentist 

methods, especially through the use of predictive probabilities. For example, a DMC could 

use a predictive probability of success to help inform decisions for a frequentist trial with no 

planned interim monitoring [16]. In addition, Bayesian predictive probabilities can be used 

for monitoring purely frequentist trials, and for conducting seamless phase II/III studies in 

which the predictive probability of phase III efficacy is calculated within the phase II study 

before transitioning to the phase III [47]. Berry [15] states that the concept of “predictive 

probability is an enormously important contribution of the Bayesian approach. Without it, 

the Bayesian approach would be much less compelling.”

The design of trials with interim monitoring via Bayesian predictive probabilities often 

requires intensive computer simulations [49], which involves repeated sampling of future 

observations from the posterior predictive distribution. The computational burden is 

magnified when assessing operating characteristics in the design stage, because the 

predictive probability calculation may be needed for each interim analysis within every 

simulated trial for each set of parameter settings. As high performance computers continue 

to improve in efficiency and Bayesian software becomes more available, we anticipate this 

issue will gradually lessen over time.

Emerson et al. [22] argue that the choice of scale for the stopping rule is immaterial so long 

as the operating characteristics of the stopping rule are adequately addressed, but that 

predictive probability or stochastic curtailment cannot accurately predict the impact of a 

stopping rule on statistical power or efficiency. While we agree that power and efficiency are 

important factors, trials must also reflect good judgment. Continuing a trial that has a very 

small probability of success may not be considered an ethically sound decision, even with 

optimized frequentist operating characteristics. Friedlin and Korn [36] also discuss instances 

in which group sequential boundaries would stop a trial early, even though the predictive 

probability of success is reasonably high.

Emerson et al. [22] also criticize the use of predictive probabilities for interim monitoring 

due to the uncertainty in the specification of the prior distribution. This is not a criticism 

specific to predictive probabilities, but of Bayesian methods in general. Clinical trial designs 

using predictive probabilities for interim monitoring do not claim efficacy using predictive 

probabilities. Rather, the claim of treatment benefit is based on either Bayesian posterior 

probabilities or frequentist criteria such as p-values. Hence, the same discussions of prior 

distributions in the literature [17, 48, 50, 51] are applicable to Bayesian designs with interim 

monitoring via predictive probabilities.

Dmitrienko and Wang [21] discuss the choice of prior distributions specifically in the 

context of interim monitoring via predictive probabilities. They show that flat (or weak) 

priors can result in high early termination rates that may not be acceptable for many 
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applications, and argue for stronger aggressive priors for futility monitoring when early 

stopping is undesirable, and that flat priors be used primarily for efficacy monitoring. The 

prior used for the predictive probability calculation need not match the prior used for the 

final analysis [48]. For example, a predictive probability of trial success at an interim 

analysis may use historical prior information while the final analysis uses a flat or skeptical 

prior. Such a strategy attempts to use all available information to more accurately predict 

whether the trial will be a success, but maintains objectivity or skepticism for determining 

efficacy.

Finally, all trial designers are informal Bayesians when calculating sample size, needing to 

use historical data and expert opinion to estimate effect size and its variability. It is 

inconsistent to criticize Bayesian predictive probabilities for depending on a well-

constructed prior (while also incorporating current within-trial data), yet suggest that a better 

approach is to rely on initial, precise guesses of effect size and population variability in the 

face of accumulating contrary evidence within the trial.

In summary, we have illustrated settings in which Bayesian predictive probabilities have 

advantages for interim monitoring of clinical trials, specifically in the context of futility 

monitoring and efficacy monitoring with lagged outcomes. We advocate that more trials use 

predictive probabilities for interim monitoring for addressing hypotheses related to 

prediction, which if implemented correctly will lead to better designs and decisions in the 

practice of clinical trials.
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Figure 1. 
Bayesian posterior distributions for 4 interim analyses with x responses of n observations 

and maximum sample size N= 100; comparing predictive probability of success, posterior 

probability Pr(p > 0.50∣x, n), and one sided p-value for H0 : p = 0.5
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Figure 2. 
Conditional power of successful trial at N = 100 (solid line) by (assumed) true success 

probability compared to interim posterior distribution of response probability p (shaded 

region), given x1 = 12 successes in n1 = 20 subjects
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Figure 3. 
Predictive probability of success vs. maximum sample size N by posterior threshold η, with 

interim n = 50 and observed x = 25
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Figure 4. 
Predictive probability of success vs. posterior estimate Pr(p > 0.50∣x) by interim sample size 

n, with maximum sample size N = 100 and posterior threshold η = 0.95
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