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Abstract

Background—Brain abnormalities of subcortical and limbic nuclei are common in 

schizophrenia and variation in these structures is considered a putative endophenotype for the 

disorder. Multiplex-Multigenerational families afflicted by schizophrenia provide an opportunity 

to investigate the impact of shared genetic ancestry, but have not been previously examined to 

study structural brain abnormalities. Here we estimate the heritability of subcortical and 

hippocampal brain volumes in such families and the heritability of sub-regions using advanced 

shape analysis.

Methods—439 participants from two sites completed 3-Tesla structural magnetic resonance 

imaging. They included 190 European-Americans from 32 Multiplex- Multigenerational families 

with schizophrenia and 249 healthy comparison subjects. Subcortical and hippocampal volume 

and shape were measured in 14 brain structures. Heritability was estimated for volume and shape.

Results—Volume and shape were heritable in families. Estimates of heritability in subcortical 

and limbic volumes ranged from 0.45 in the right hippocampus up to 0.84 in the left putamen. The 

shape of these structures was heritable (range: 0.40–0.49) and specific sub-regional shape 

estimates of heritability tended to exceed heritability estimates of volume alone.
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Conclusions—These results demonstrate that volume and shape of subcortical and limbic brain 

structures are potential endophenotypic markers in schizophrenia. The specificity obtained using 

shape analysis may improve selection of imaging phenotypes that better reflect the underlying 

neurobiology. Our findings can aid in the identification of specific genetic targets that affect brain 

structure and function in schizophrenia.
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Introduction

The recent identification of genetic variants that influence brain structure (1–3) is an 

important step in elucidating the biological mechanisms underlying neuropsychiatric 

disorders. Structural brain abnormalities are common in schizophrenia (4–6) and variation in 

regional brain volume is considered a putative endophenotype for the disorder (7–9). 

Reduced gray matter volume associated with schizophrenia is present before illness onset 

and is heritable (8, 10). Consistent with the endophenotype concept (11), unaffected first-

degree relatives of patients also exhibit reduced regional brain volume compared to healthy 

controls, but of a lesser extent than that observed in patients (12–16). There is evidence that 

quantitative brain measurements, such as volume and cortical thickness, are heritable in 

healthy (17–22) and neuropsychiatric samples (8, 10, 23–25). However, little is known 

about specific genetic targets underlying structural brain variation in schizophrenia. The gap 

may relate to the heterogeneity of the disorder (26) or the morphometric abnormalities (4, 7, 

27). As heritability differs across brain structures (22) it is possible that particular regions, or 

sub-regions, will show greater heritability (28). Indeed, neuroimaging studies in healthy 

individuals (17, 29–31) and in large extended pedigrees (22), show a substantial range of 

heritability estimates across brain structures (22); a pattern that also extends to subcortical 

brain regions and hippocampus (17, 32). These findings suggest that some brain structures 

and measures are more heritable than others and may serve as better endophenotypes. The 

few studies supporting heritability of brain volume in schizophrenia employed twin pairs 

(33) or mostly nuclear families (24). No previous study has examined heritability of brain 

structures in large extended families affected with schizophrenia. Here we evaluate the 

influence of shared genetic ancestry on brain structure within large, multiplex-

multigenerational families afflicted by schizophrenia.

In this report, we focus on subcortical and limbic brain structures, which are heritable in 

healthy (17, 29, 31, 34) and clinical populations (35, 36). These regions show consistent 

volumetric reductions in patients with schizophrenia (4, 37–43) and to some extent in family 

members (13, 44–47). More recently, morphometric changes in schizophrenia have been 

further scrutinized using shape analysis (13, 39, 43, 44, 48, 49), which allows for the 

estimation of disease-related regional deformation. This complex approach is a reliable (48, 

50–53) and sensitive measure (54) of subtle, localized morphological changes in brain 

structure in schizophrenia (27, 39, 43, 49), and to a lesser extent in family members (13, 44). 

Such localized alterations may be related to distinctive dimensions of psychopathology and 

may be determined by specific genetic risk factors that are unique to subsets of patients with 
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schizophrenia, or particular families (13, 28, 55). Thus, the specificity obtained using shape 

analysis may improve the selection of imaging phenotypes that are closer to schizophrenia 

pathophysiology and that may be affected by risk gene variants.

Here, we estimate heritability of subcortical and limbic brain regions in multiplex-

multigenerational families and healthy comparison subjects. We focus on estimating 

heritability of 1) volume of subcortical and limbic brain regions, including the amygdala, 

caudate, hippocampus, accumbens, pallidum, putamen and thalamus, and 2) the local 

deformation patterns of these brain structures.

Methods & Materials

Participants

The sample consisted of 439 participants from two sites (223 from University of 

Pennsylvania, 216 from University of Pittsburgh), including 190 European-Americans from 

32 multiplex-multigenerational families with schizophrenia and 249 healthy volunteers 

(Table 1). This cohort is a sub-sample of a previously characterized cohort (56, 57) with the 

addition of new family members. Patients had an extended multigenerational family and a 

consensus best-estimate DSM-IV diagnosis of schizophrenia or schizoaffective disorder. An 

example pedigree is shown in Figure 1. Participants were older than 15 years of age at initial 

contact and provided signed informed consent. The Institutional Review Boards of 

University of Pennsylvania and the University of Pittsburgh approved the study. For minors 

<18 years old, assent was obtained from the child, and consent from a parent. These data 

were collected as part of a larger project examining genetic mechanisms of schizophrenia. In 

order to reduce genetic heterogeneity the sample was restricted to Caucasian individuals.

Schizophrenia patients were competent to provide informed consent, capable to participate, 

and not exhibiting acute positive symptomatology that required medication adjustment or 

hospitalization. Twenty-three patients were medicated with second-generation 

antipsychotics, two with first-generation antipsychotics, and four with a combination of first 

and second-generation antipsychotics. One individual was not medicated and medication 

information was not available for one other patient. Family members were excluded if they 

had mental retardation (IQ<70), a CNS disorder that could potentially impact brain function, 

or were not proficient in English. Global functioning was measured using the Global 

Assessment of Functioning (GAF; (58)) with higher scores indicating better functioning. 

The Scale for the Assessment of Negative Symptoms (SANS; (59)) and the Scale for the 

Assessment of Positive Symptoms (SAPS; (60)) were used to rate the presence and severity 

of negative and positive symptoms. Twenty-one families (one-hundred thirty-five 

individuals) provided to the sample at least one patient with schizophrenia and at least one 

family member, two families (three individuals) provided only patients, and nine families 

(fifty-two individuals) provided only family members. Overall, the multiplex sample 

included 33 patients with schizophrenia and 156 family members. There is a higher 

prevalence of mood (~26% vs. ~10%; 61) and substance related disorders (~15% vs. ~6%) 

as compared to the general population (62).
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The healthy comparison group included 249 psychiatrically, medically, and neurologically 

healthy European–Americans with no axis I or axis II cluster A disorders and no history of 

psychosis or mood disorder in their first-degree relatives. Healthy comparison subjects were 

recruited from the same communities as patients and families and also underwent urine drug 

testing to rule out current substance use. There were no related individuals in the comparison 

group, thus this randomly sampled group was included in analyses to estimate normal shape 

of subcortical brain structures and improve the accuracy of the statistical model used to 

estimate familial variance. No comparisons of heritability between multiplex families and 

the comparison group were performed due to the lack of family inclusion within the 

controls.

Demographic and clinical information for those that passed imaging quality control analysis 

(see below) is provided in Table 1. Permutation tests (100,000 permutations) were used to 

assess pairwise group differences in age, GAF, SANS, and SAPS. Permutation tests were 

used in place of t-tests because the data were not normally distributed based on quantile-

quantile plots and the Shapiro-Wilk test for normality.

Image acquisition

A 5-minute magnetization-prepared, rapid acquisition gradient echo T1-weighted 

(MPRAGE) image (repetition time 1680 msec, echo time 4.67 msec, field of view 180 × 240 

mm, matrix 192 × 256, flip angle =15 degrees, effective voxel resolution of 0.94 × 0.94 × 1 

mm) was acquired as part of a larger imaging protocol. Data were acquired with Siemens 

Tim Trio 3T (Erlangen, Germany) systems at both sites. Radio frequency transmission used 

a quadrature body coil and reception used an 8-channel head coil. Every effort was made to 

minimize potential differences between sites by using identical scanners, head coils, and 

acquisition protocols. In addition, all data were checked for quality assurance and site was 

accounted for in the analyses. The results of a pilot study demonstrated good comparability 

between the two imaging sites in both image quality and functional activation. Image SNR 

varied more between subjects than between sites as in a previous study (63).

Image analysis

Subcortical Volumetric Analysis—Structural images were segmented and vertex 

meshes were created within FSL v4.1.7 (FMRIB’s Software Library, www.fmrib.ox.ac.uk/

fsl; (64–66) using the FIRST subcortical segmentation procedure (53). FIRST segments 15 

regions, including the brainstem, bilateral nucleus accumbens, amygdala, caudate, 

hippocampus, pallidum, putamen, and thalamus. The brainstem was not considered for 

analysis. The segmented subcortical regions of interest (ROIs) were corrected for 

intracranial volume (ICV) using FSL’s SIENAX procedure. In addition, outlier detection (> 

2.5 S.D.) was performed for uncorrected brain volumes, ICV-corrected brain volumes, and 

laterality (LAT = 2*(L-R)/(L+R)) in each FIRST region. These parameters were selected to 

flag observations that may have had poor subcortical segmentation or ICV estimation. An 

expert analyst (SNV) visually inspected flagged regions for final determination of inclusion 

or exclusion. Seven subjects (3 HC; 1 SZ; 3 FAM) with poor imaging data quality failed 

inspection on >5 ROIs and were excluded from analysis. The final sample size for each ROI 
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is detailed in Supplemental Table S1. False Discovery Rate (FDR) correction was used to 

control for multiple comparisons in all analyses of the 14 subcortical volumes.

To ensure comparability across the two acquisition sites data from three human phantoms 

was acquired at the inception of this study. The same structural (MPRAGE) scan was 

collected at both sites and these data were analyzed according to the description in the 

Methods section. Overall, we find moderate to high intraclass correlations across brain 

structure (Table 3) indicating high reliability of measurement and analysis within this study.

Subcortical Shape Analysis—Changes in local regional shape of all structures were 

measured using FSL’s vertex analysis utility in FSLv5.0.0. Briefly, during FIRST 

segmentation a mesh was created for each subject that is a net of points (vertices) in 3-

dimensions that describe the shape of each ROI. For each ROI, averaging the location of 

each vertex across all subjects was performed to generate a mean shape mesh. To 

quantitatively measure the overall shape difference in each ROI, a distance (in mm) from the 

average shape mesh was calculated at each vertex using only data from healthy individuals. 

Distance was calculated in the direction perpendicular to the surface of the average shape 

mesh, which indicated whether a vertex was inward (e.g. smaller) or outward (e.g. larger) 

relative to the average. Measured distances for each subject were projected onto a mean 

shape image template for analysis. All vertex analyses were conducted in standard space 

(Montreal Neurological Institute) space to control for between-subject differences in ICV.

Heritability Analysis

Heritability estimates were generated for brain volumes and shapes similar to previous 

studies (22, 67). Briefly, standard maximum likelihood variance component methods (68–

71) were implemented in the Sequential Oligogenic Linkage Analysis Routines (SOLAR; 

Department of Genetics, Texas Biomedical Research Institute). Covariance among family 

members was modeled as a function of additive genetic effects, with this variance 

component structured by a kinship matrix, and heritability estimated as the ratio of the 

additive genetic variance to the total phenotypic variance. Likelihood ratio tests were used to 

compare models in which the additive genetic component was estimated versus constrained 

to zero. Thus, each individual’s volume (or shape) was modeled as a function of measured 

covariates, specifically age, sex, and site, additive genetic effects estimated from 

correlations among family members, and individual-specific residual environmental factors. 

For the shape analysis, heritability was estimated at each voxel and corrected p-values were 

generated using FDR. Finally, all statistical images were projected onto the group average 

template using nearest neighbor interpolation in R statistical software (72) allowing for 

visualization in KWMeshvisu software (73).

Results

Volumetric Analysis

Significant heritability (h2) of subcortical and limbic volumes among families was present 

(Figure 2). Heritability was significant in 12 of the 14 volumes (Figure 2, inset), including 

the bilateral accumbens, caudate, hippocampus, pallidum, putamen, and thalamus. Estimates 
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of heritability did not reach significance in bilateral amygdala. We also estimated heritability 

of ICV. The heritability of normalized ICV is 0.36; where as the heritability of raw ICV was 

0.68. These data indicate that ICV is heritable and is not accounted through normalization. 

However, all measures reported are corrected for ICV and thus the estimates of heritability 

of these regions should not be unduly influenced by ICV.

A comparison of subcortical and limbic volumes between patients, family members and 

healthy comparison subjects are provided in Table 4. There were significant group 

differences for bilateral accumbens, caudate, hippocampus, putamen and thalamus, but not 

for amygdala or pallidum. In general, patients with schizophrenia had smaller volumes as 

compared to family members and healthy comparison subjects. As a whole, multiplex 

family members were similar to healthy comparison subjects; however, when comparisons 

were limited to 1st degree family members an intermediate pattern emerged in several 

regions (putamen, caudate and hippocampus—See Table 4). Overall, in subcortical and 

limbic regions there is significant genetic contribution of volume among multiplex-

multigenerational families with schizophrenia. Importantly, many of these regions with high 

familial heritability have been frequently found to be abnormal in schizophrenia, including 

the bilateral caudate, hippocampus, and thalamus (4).

Vertex Analysis

Shape analyses were performed on the subcortical and limbic surfaces to identify specific 

loci that may be heritable. Sub-regions of bilateral accumbens, amygdala, caudate, putamen, 

and thalamus, and portions of left hippocampus and left pallidum were found to be heritable 

(Figure 2). Specific sub-regional estimates of heritability tended to exceed heritability 

estimates of volume alone. For example, heritability of a sub-region of right ventral 

amygdala was 0.76 (as seen on Figure 3b) as compared to 0.28 (Figure 2—table insert) for 

the entirety of right amygdala volume. Cumulatively, significant heritability was found 

across the surface of each structure. These effects ranged from 3% of right amygdala up to 

97% of right thalamus (Table 2). These data indicate that distinct local shape patterns of 

subcortical brain structures are heritable in multiplex-multigenerational families.

Discussion

The current study estimated heritability in both volume and shape of subcortical and limbic 

brain structures in multiplex-multigenerational families affected with schizophrenia. 

Heritability estimates for most brain volumes were moderate to high. The largest heritability 

estimates of brain volume were observed in bilateral putamen and left nucleus accumbens. 

Estimates of heritability of shape were moderate, but substantial extents of surface shape of 

most subcortical and limbic regions were found to be significantly heritable, with high 

heritability estimates in focal subfields of each region. Indeed, specific sub-regional 

estimates of heritability actually exceed heritability estimates of volume alone in some 

instances. Overall, these data confirm previous reports that subcortical regional volumes are 

heritable. Our results show, for the first time, heritability of localized sub-fields within these 

subcortical structures. These data add to recent findings using healthy populations that 

subcortical brain volume as well as shape may aid in the selection of imaging 
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endophenotypes associated with genetic variants underlying structural brain abnormalities in 

schizophrenia.

Our volumetric findings confirm and extend previous work. Patients with schizophrenia had 

smaller volumes than family members or healthy comparison subjects. In comparison to 

other studies in healthy individuals (29, 30, 74) we report similar heritability, albeit slightly 

lower, in subcortical brain volumes using a cohort of affected patients with schizophrenia 

and their relatives. Specifically, our heritability estimates in most brain regions, including 

the hippocampus (23, 34), caudate (17, 30), putamen (29, 31, 34), pallidum (29, 31) and 

thalamus (29, 31), but see (34), align with previous findings. Our pattern of heritability 

estimates in the accumbens (higher h2 in left than right accumbens) is consistent with one 

previous report (29). We also report no significant heritability in amygdala volume, which is 

at odds with a prior finding of significant heritability in this region (29). These discrepancies 

may be due to differences in the technical approach, such as image acquisition parameters, 

bias in regional partitioning (17, 32) or processing software (75), sample composition (e.g. 

age, family size) or the ascertainment strategy employed.

The few studies estimating heritability of brain volume in schizophrenia were encouraging, 

yet most employed twin pairs (33) or were limited to nuclear families (24). Thus, our 

findings in large extended pedigrees of families affected with schizophrenia corroborate 

previous work and further solidify subcortical volumes as meaningful endophenotypes. Our 

heritability estimates of brain volume in multiplex families with schizophrenia are lower in 

comparison with den Braber et al. (2013), the only study to estimate heritability of 

subcortical and limbic structures in a healthy sample. However, our use of multiplex 

multigenerational families is likely to represent a more homogeneous and targeted group of 

instrumental genes and pathways (76), as compared to studies of unrelated individuals (76). 

As previously discussed (56), it is unlikely that heritability estimates in extended pedigrees 

are inflated by shared environment, if that were the case each rung on the family tree would 

require a fixed proportional decrease in shared environment for it to mimic the genetic 

heritability estimated here, which is unlikely.

Significant heritability of sub-regional shape deformations in subcortical and limbic brain 

structures establishes for the first time the shape of these structures as promising 

endophenotypic markers of schizophrenia. Despite the absence of heritability in some 

subcortical volumes (e.g. amygdala), we found significant heritability subregionally. 

Notably, measurement of sub-regional variation with shape analysis provides a more 

sensitive method to detect subtle abnormalities compared to traditional volumetric methods 

(13, 54, 77). Local shape may imply volumetric change within that specific area, but also 

suggest differences deeper in a given structure. Systematic investigation of subcortical shape 

may provide insight into the underlying genetics of microscopic cytoarchitecture; for 

example changes in shape may indicate neurodevelopmental changes in parenchymal 

volume or physiological compensation due to variations in activity (55). Moreover, shape 

deformations may provide significant information about neurodevelopmental abnormalities 

seen in schizophrenia and family members (13, 44). Previous work suggests that physical 

tension during neurodevelopment may lead to specific, localized structural abnormalities 

(78, 79). Additionally, the onset of schizophrenia typically occurs during a critical period of 
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dynamic, progressive gray matter reductions (80). This may lead to localized changes within 

gray matter structures and possibly affect cognition. Furthermore, it is possible that sub-

regions with high heritability may help differentiate families with high burden of illness 

from those with a lower burden. Recent epidemiological work suggests that schizophrenia is 

associated with a large number of individually rare mutations that likely differ among 

families (81–83). If indeed unique genes are responsible for illness among families, the 

phenotypes (e.g. brain volume or shape) may differ enough such that pooling results across 

families would preclude identification of ‘common’ abnormalities. For example, a previous 

study of patients and unaffected family members reported that family explained 

approximately 10% of the variance in hippocampus volume (23). Thus, it is possible that 

particular families contribute more than others to these markers and on-going work in these 

multiplex-multigenerational families is aimed at identifying endophenotypes that result from 

rare alleles with large effect, which is another specific advantage of using large extended 

pedigrees (82, 83). In general, it appears that localized shape of subcortical structures in 

large families may be useful as endophenotypic markers of illness in frank schizophrenia. 

While we have focused on subcortical and limbic structures, future work is required to 

assess heritability of cortical structures, including cortical thinning (22), which may 

represent another informative endophenotype in schizophrenia.

It is likely that the multiplex multigenerational aspects (e.g. mixture of relationships— 

within and across multiple generations and the unequal numbers of observations per family) 

of this study add to the specificity of calculated heritability (84). It may result in preferential 

selection of patients and families with less genetic loading for pathological endophenotypic 

values, which may lower the value, but not reduce the significance of our heritability 

estimates. Moreover, the inclusion of affected individuals likely impacts our heritability 

results given known changes in brain structure in patients with schizophrenia (4). It is 

possible that lower heritability, as compared to den Braber et al., (2013), reflects disease 

specific differences in the variation of brain volumes in and across families affected with 

schizophrenia. In addition, the effect of environmental biases like antipsychotic medication 

introduces non-genetic variation and reduces our estimate of heritability (4). Our sample is a 

specifically selected subpopulation that likely has lower genetic variability than the 

population at large and this restricted range may affect estimates of heritability. Yet, we find 

significant heritability in many, but not all brain regions, which likely speaks to the 

heightened liability that schizophrenia has on regional brain volume in multiplex families. 

Other factors, such as, sample size, age, degree of relationship, or even measurement type 

(1.5T vs. 3T data acquisition) may affect comparison across studies. Yet, given the similar 

patterns observed in our data and in den Braber et al., (2013) we believe that our estimates 

of heritability are appropriate and useful. Thus, the heritability estimates presented may 

provide more specific, relevant targets for genomic studies of brain development in 

schizophrenia.

Our use of multiplex family members provides a unique perspective on subcortical volume 

and shape, but these data may not translate to simplex families because multiplex families 

may have higher incidences of other axis I or axis II disorders. While we did not consider 

other psychiatric diagnoses, future studies are aimed at using a dimensional approach to 

assess phenotypic heritability. Our sample does have higher prevalence of mood and 
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substance related disorders as compared to the general population, but we did not observe 

any effect on volumetric measures. However, the numbers here are small, particularly if 

family is considered as an additional factor, making it difficult to interpret the influence of 

Axis I and II disorders on brain volume in multiplex families. Furthermore, the older age 

and inclusion of only Caucasian individuals makes broad generalizations complex. In 

comparison to twin studies, which typically report higher heritability, the use of extended 

pedigree in the estimation of heritability is more susceptible to uncontrolled age-related 

influence. However, we have attempted to mitigate this by statistically correcting for age. 

One advantage over twin studies is that heritability estimates in extended pedigrees are less 

likely to be unduly inflated by shared environment (76). Importantly, relatively few genes 

are known to be associated with both brain structure and are relevant in schizophrenia (85, 

86). This scarcity may reflect the genetic heterogeneity of schizophrenia and suggests that 

different alleles in different families may be responsible for morphological abnormalities. 

Our use of an automated segmentation tool takes advantage of recent developments in the 

neuroimaging community, however this technique is not without its limitations. Regions that 

showed the lowest ICC were also the least heritable. This is in agreement with a recent 

manuscript that assessed heritability of these same structures in healthy individuals (17). 

Thus, there may be higher measurement error in some regions as compared to others, as has 

been previously suggested (32, 75). Nonetheless, automated segmentation in most 

subcortical and limbic structures appears robust and repeatable. Finally, our approach can 

also reduce heterogeneity by allowing for the analysis of subgroups or subfamilies, and 

follow-up studies in large pedigrees should consider family-specific effects. In the current 

study, we are unable to compare volume or family heritability within specific regions to a 

comparable group of healthy subjects due to a lack of related individuals within the healthy 

sample. Future endeavors can incorporate large pedigrees of healthy comparison subjects to 

determine if there are subtypes of families with schizophrenia that show especially large 

abnormalities in brain structure.

In conclusion, we find that subcortical brain volume and shape are heritable in multiplex 

multigenerational families with schizophrenia. Such localized features may be related to 

distinct dimensions of psychopathology or may be determined by specific genetic risk 

factors unique to patients with schizophrenia, or to particular families. The specificity 

obtained using shape analysis of brain structures may improve the selection of imaging 

phenotypes that better reflect the underlying neurobiology and aid in the identification of 

specific genetic targets that affect brain structure and function in schizophrenia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An example pedigree of a multiplex-multigenerational family with schizophrenia. This 

pedigree consists of 99 identified family members. Thirty-eight of which were enrolled in 

this study, and fourteen were eligible and completed structural magnetic resonance imaging.
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Figure 2. 
Three-dimensional reconstruction of subcortical brain structures. Most, but not all, 

subcortical volumes were heritable in multiplex-multigenerational families. Individual 

regions are color-coded according to heritability estimates presented in the accompanying 

table. Maps show are FDR corrected thresholded at p<.05
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Figure 3. 
Estimates of heritability in subcortical shape. Varying extents of the bilateral accumbens (a), 

amygdala (b), caudate (d), putamen (f) and thalamus (g), and portions of left hippocampus 

(c) and left pallidum (e) were found to be significantly heritable. Many of these subfields 

have high heritability estimates (h2 >0.8). Notably, subcortical volumes that were not 

heritable (e.g. amygdala) do have focal subfields that are heritable based on shape analysis. 

Maps show are FDR corrected thresholded at p<.05
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Table 2

Prevalence rates of Axis I and II disorders in multiplex multigenerational family members. Axis I and II 

diagnoses were grouped into the follow subcategories: Mood Disorders, Substance Abuse, Other and None. 

Mood disorders were the most prevalent followed by substance related disorders. Substance Related Disorders 

included abuse of alcohol, cannabis and opioids. Other disorders included Attention-Deficit/Hyperactivity 

disorder, Bereavement, Intermittent Explosive Disorder, Brief Psychotic Disorder, Delusional Disorder, and 

Paranoia-delusional Disorder.

Family Members Current Percent Current Past Percent Past

Mood Disorders 40 26.14% 9 5.88%

Substance Related
Disorders

24 15.68% 8 5.23%

Other 12 7.84% 0 0%

None 77 50.98% 0 0%
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Table 3

Intraclass correlations coefficients (ICC) and 95% confidence intervals (CI) for each subcortical region in 

three human phantoms. The same structural scan was collected at each site for each participant.

Region Hemisphere ICC Lower CI Higher CI

Accumbens L 0.86 −0.10 1.00

R 0.60 −0.60 0.99

Amygdala L 0.52 −0.67 0.98

R 0.60 −0.60 0.99

Caudate L 0.99 0.84 1.00

R 0.99 0.93 1.00

Hippocampus L 0.90 0.09 1.00

R 0.83 −0.20 1.00

Pallidum L 0.97 0.63 1.00

R 0.95 0.38 1.00

Putamen L 0.91 0.15 1.00

R 0.94 0.38 1.00

Thalamus L 0.96 0.54 1.00

R 0.89 0.02 1.00
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Table 5

Heritabiilty of Subcortical Shape in Multiplex-Multigenerational Families with Schizophrenia.

Region Hemisphere Heritability
% surface
heritable

Accumbens L 0.48(0.27–0.75) 61

R 0.44(0.31–0.75) 12

Amygdala L 0.48(0.38–0.59) 11

R 0.62(0.52–0.76) 3

Caudate L 0.45(0.21–1.00) 78

R 0.43(0.20–0.80) 61

Hippocampus L 0.49(0.28–0.72) 28

R 0.42(0.22–0.82) 64

Pallidum L 0.46(0.35–0.66) 10

R n.s. n.s.

Putamen L 0.47(0.20–1.00) 83

R 0.49(0.20–1.00) 82

Thalamus L 0.41(0.21–0.69) 76

R 0.48(0.21–0.70) 97

All results are False Discovery Rate (FDR) corrected and thresholded at p<0.05. Heritability = mean(minimum-maximum) heritability in the 
thresholded surfaces after controlling for age and site; % Surface = the percent of the subcortical surface that has significant heritability; ROI = 
Region Of Interest; n.s.= not significant.
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