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Abstract

Background—Recent advances in medical research suggest that the optimal treatment rules 

should be adaptive to patients over time. This has led to an increasing interest in studying dynamic 

treatment regimes (DTRs), a sequence of individualized treatment rules, one per stage of clinical 

intervention, which map present patient information to a recommended treatment. There has been 

a recent surge of statistical work for estimating optimal DTRs from randomized and observational 

studies. The purpose of this paper is to review recent methodological progress and applied issues 

associated with estimating optimal DTRs.

Methods—We discuss Sequential Multiple Assignment Randomized Trials (SMARTs), a clinical 

trial design used to study treatment sequences. We use a common estimator of an optimal DTR 

that applies to SMART data as a platform to discuss several practical and methodological issues.

Results—We provide a limited survey of practical issues associated with modeling SMART data. 

We review some existing estimators of optimal dynamic treatment regimes and discuss practical 

issues associated with these methods including: model building; missing data; statistical inference; 

and choosing an outcome when only non-responders are re-randomized. We mainly focus on the 

estimation and inference of DTRs using SMART data. DTRs can also be constructed from 

observational data, which may be easier to obtain in practice, however, care must be taken to 

account for potential confounding.
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Introduction

In practice, clinical and intervention scientists adapt treatment according to the evolving 

health status of each patient. Dynamic treatment regimes (DTRs), also known as adaptive 

treatment strategies, formalize this process as a sequence of individualized treatment rules, 
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one per stage of clinical intervention, which map up-to-date patient information to a 

recommended treatment. A DTR is said to be optimal if it maximizes the average of a 

desirable clinical outcome when applied to a population of interest. Note that the outcome of 

interest could be a measure of efficacy, side-effects, or even a composite of multiple 

outcomes combined into a single utility function; throughout, we assume that the outcome 

has been coded so that higher is better. There has been a recent surge of methodological 

work for estimating optimal DTRs from randomized and observational studies [1–14]. 

However, less attention has been given to applied issues associated with estimating optimal 

DTRs including model building, dealing with missing data, and choosing outcomes that 

define optimality. We discuss these issues within the context of data collected in a 

randomized clinical trial.

To review the motivation for DTRs we briefly consider an example. The treatment of 

advanced non-small cell lung cancer typically involves two or more lines of treatment. First-

line treatments primarily consist of platinum-based doublets which include: cisplatin; 

gemcitabine; pemetrexed; paclitaxel; carboplatin; and vinorelbine [15]. Docetaxel, 

pemetrexed and erlotinib are approved second-line treatments. The question of which first-

line treatment, or combination of treatments, is best depends both on patient individual 

characteristics and the protocol for choosing a second-line treatment as there are thought to 

be interactive effects between first-line and second-line treatments [15]. By considering 

sequences of treatments we can capture not only synergies between the first- and second-line 

treatments but also delayed or carry-over effects of the first-line treatment [1]. Another 

important consideration is the timing of the second-line therapy [16]. Figure 1 shows a 

schematic for treatment protocol for non-small cell lung cancer indicating where treatment 

choices must be made. There is interest in optimizing these treatment choices using data 

from a randomized clinical trial.

One type of randomized clinical trial, which provides data useful for estimating optimal 

DTRs, is the Sequential Multiple Assignment Randomized Trial (SMART) [17–22]. Optimal 

DTRs have been estimated from SMARTs for a wide range of chronic conditions including: 

attention deficit hyperactivity disorder [23, 24]; depression [25]; HIV infection [26, 27, 13]; 

schizophrenia [28]; and cigarette addiction [5]. In a SMART, subjects are randomized 

multiple times according to the progression of their health status. A common feature of a 

SMART is that the pool of available treatments depends on subject-specific characteristics. 

For example, in the CATIE Schizophrenia Trial [29], subjects with tardive dyskinesia could 

not be randomized to receive perphenazine. Another common feature of SMARTs is to first 

randomize subjects to a first-line therapy and subsequently re-randomize only a subset of the 

subjects according to their health status [30–36]. Figure 2 shows a schematic for such 

SMART for school-aged children with attention deficit hyperactivity disorder [37]; in this 

trial responders, operationalized by adequate response on the impairment rating scale [38] 

and individualized list of target behaviors [39], were not re-randomized. As we will show, 

these features present novel challenges for building high-quality and interpretable outcome 

models.
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In the next section we introduce basic concepts underpinning two common classes of DTRs 

estimators using data from SMARTs. Later we discuss some practical issues that arise in 

applying DTRs estimators, and we finish with some concluding remarks.

Estimating optimal DTRs from SMARTs

To simplify notation, we consider two-stage SMARTs with binary treatment options at each 

randomization. Data available from such a trial takes the form 

comprising n independent and identically distributed trajectories, one for each subject. A 

generic trajectory (X1, A1, X2, A2, Y) is composed of  which denotes baselines 

subject information; A1 ∈ {−1, 1} which denotes the initial (first-line) treatment; 

which denotes interim subject information collected during the course of the first treatment; 

A2 ∈ {−1, 1} which denotes the second (second-line) treatment; and Y ∈ R which denotes 

an outcome coded so that higher values are better. Sample size formulae exist for sizing a 

SMART to compare fixed (i.e., not data-driven) treatment strategies [20, 40, 41]; see [42] for 

designing SMART pilots. In a trial where only “non-responders” are re-randomized, A2 can 

be conceptualized as missing by design. Define H1 = X1 and  so that Hj 

denotes the available information before the jth treatment assignment.

A DTR is a pair of functions d = (d1, d2) where dj is a function mapping the covariate space 

to the treatment space. Under d, a patient with history hj is recommended with treatment 

dj(hj). Let Ed denote expectation under the restriction that A1 = d1(H1) and A2 = d2(H2) for 

those re-randomized at the second stage. The optimal DTR, dopt, satisfies  for 

all DTRs d. Define Q2(h2, a2) = E(Y | H2 = h2, A2 = a2) and 

; Qj is called the stage-j Q-function. The 

stage-2 Q-function measures the quality of assigning treatment A2 = a2 to a patient 

presenting at the second stage with history H2 = h2. The stage-1 Q-function measures the 

quality of assigning treatment A1 = a1 to a subject presenting at the first stage with history 

H1 = h1 if he/she were treated according to the  at stage-2. From dynamic programming 

[43] it follows that . This formulation suggests several 

strategies for estimating dopt from SMART data. Estimators can be broadly classified into 

three categories: (i) regression-based methods; (ii) value maximization methods; and (iii) 

planning methods. Regression-based methods attempt to first estimate the Q-functions via 

regression models and subsequently use a plug-in estimator of dopt. Regression based 

estimators include Q- and A-learning [1, 2, 25, 44, 45]; regret regression [6]; threshold 

methods [5, 4, 11]; and interactive Q-learning [46]. Regression-based estimators for 

censored data, discrete outcomes, continuous treatments [47, 48], and quantiles have also 

been developed [45, 49, 50]. We give a version of the Q-learning algorithm in the following 

section. Value maximization methods are based on forming an estimator of V(d) = EdY and 

then directly maximizing this estimator over d in some class of DTRs, say D. Value 

maximization methods include outcome weighted learning [9, 14], augmented value 

maximization [10, 12, 13], and structural mean models [7]. We give a version of outcome 

weighted learning in the subsequent section. Planning methods rely on systems dynamics 

models to simulate patient trajectories under different DTRs to find an optimum [51–53]. 
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These models rely strongly on biological or behavioral theory, which are absent or 

incomplete in the settings we consider and thus we will not discuss them further.

Q-learning

In this section we assume that all subjects are re-randomized at the second stage. The Q-

learning algorithm requires postulated models for the Q-functions; we consider linear 

working models of the form , where , Hj1, Hj2 

are known features constructed from Hj. Q-learning algorithm mimics the dynamic 

programming solution using a sequence of regressions to obtain the estimates , and 

subsequently the estimated DTRs. The algorithm is summarized in the Appendix. Thus, Q-

learning can be easily implemented in almost any statistical software package. Q-learning is 

available in packages qLearn and iqLearn of the R programming language (cran.us.r-

project.org), which is freely available and callable from both SAS and SPSS. Other 

advantages of Q-learning include: (i) that it can be extended to accommodate discrete 

outcomes [45, 50], censored outcomes [49], and competing outcomes [54, 55]; (ii) measures 

of goodness of fit and visual diagnostics can be used to assess the quality of the fitted 

regression models in each stage; and (iii) the estimated Q-functions are prognostic, i.e., 

, is a prediction for the outcome for a patient presenting at stage j and 

receiving optimal treatment thereafter.

Despite the foregoing advantages, Q-learning presents a number of challenges in practice. 

First, as the result of the maximization in the intermediate step (step Q2 in the appendix), 

modeling the stage-1 Q-function requires modeling a nonsmooth, nonmonotone 

transformation of the data. Even under simple generative models, it can be shown that the 

form of the stage-1 Q-function can be quite complex [25, 46] making it difficult to correctly 

specify a model. One potential remedy is to use flexible regression models, say, support 

vector regression or generalized additive models, to estimate the Q-functions [15, 45]; 

however, such models are difficult to interpret, limiting their ability to generate new 

scientific content. Another potential solution is to modify the Q-learning algorithm to avoid 

modeling after maximization [46].

A second challenge associated with Q-learning is statistical inference. Coefficients indexing 

the stage-1 Q-function are statistically nonregular [5, 23, 56]. A consequence is that standard 

methods for inference, e.g., the bootstrap or normal approximations, cannot be applied 

without modification. Proposed solutions include subsampling [56] and adaptive confidence 

intervals [23]. Both of these methods have been shown to perform well in simulations but 

may be conservative in small samples.

Value maximization methods

Q-learning is often called an indirect method because it estimates the optimal DTR 

indirectly through the estimated Q-functions. A more direct approach is to postulate an 

estimator of V(d) = EdY, say , and then estimate the optimal DTR by searching for 

, where D is a prespecified class of DTRs. Estimators of this form are 
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called value maximization methods or policy search methods and have received a great deal 

of attention recently [7, 9, 10, 12–14]. A potential advantage of value maximization methods 

is that, because they need not rely on models for the Q-function, they may be more robust to 

model specification. Conversely, fewer assumptions about the trajectory distribution may 

lead to estimators with higher variability.

Methods for estimating V(d), include: inverse probability-weighting [9, 14]; augmented 

inverse probability-weighting [10, 13]; and marginal structural mean models [7]. Marginal 

structural mean models are most effective with low-dimensional histories and a small class 

of potential regimes D. Inverse probability-weighting and augmented inverse probability-

weighting estimators can be applied with high-dimensional histories and very large classes 

of regimes, however, they are nonsmooth functions of the observed data making the search 

for the optimal regime within D computationally challenging. Both [9] and [10] connected 

the problem of maximizing inverse probability-weighting and augmented inverse 

probability-weighting estimators of V(d) with weighted classification problems and were 

thereby able to leverage existing classification algorithms to approximately compute 

. We briefly review a simple value maximization algorithm.

Assume that binary treatments are equally randomized at each stage. Then, under mild 

regularity conditions, it can be shown that  where 1z 

equals one if z is true and zero otherwise [14]. The inverse probability weighted estimator is 

based on the foregoing expression for V(d) and is given by 

.

For illustration, assume D is the space of all linear decision rules. Then, for an d ∈ D, we 

may associate a vector  so that  where sign(x)=1 if x>0 and 

sign(x)=−1 if x<0, and write

An estimator of the optimal DTR is obtained by solving for . However, 

the indicator functions make this a mixed integer linear program, which is known to be 

computationally burdensome. Approaches to finding  include employing a stochastic 

search algorithm, for example simulated annealing or a generic algorithm [13], or using a 

concave surrogate for the indicator functions [14]. Depending on the optimization method, 

additional constraints on 9 may be required to ensure a unique solution.

Value maximization methods are appealing because they avoid strong and potentially 

incorrect assumptions about the outcome distribution. Furthermore, the class of regimes D 

can be restricted to only include regimes which are logistically feasible, parsimonious, 

interpretable, or otherwise desirable. Drawbacks of value maximization methods include: 

computational complexity; the lack of a prognostic model; the potential lack of a 
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scientifically meaningful estimand; and, as mentioned previously, potentially higher 

variability.

Additional practical considerations

In addition to the issues raised in the foregoing section, there are a number of important 

practical considerations associated with estimating optimal DTRs from SMART data. Here, 

we provide an overview of those that we have found to be most common.

Missing data

SMARTs, like any clinical trial, are prone to missing data. Dealing with missing data in 

SMARTs is complicated by the sequential design and the fact that treatment randomizations 

depend on evolving subject status. For example, in a trial where only responders are re-

randomized at the second stage, a subject that is lost to follow-up during the first stage will 

be missing: second stage history which contains his/her responder status; second stage 

treatment; and outcome. Whether the second stage treatment is truly missing or missing by 

design depends on the subject’s unobserved responder status. Another complication is that 

the timing and number of clinic visits may be dependent on patient outcomes [29]; thus, a 

natural approach is to use multiple imputation and sequentially impute missing data as 

needed. For example, if clinic visits are dependent on patient status, one would first impute 

patient status, then, conditional on the imputed status, one would subsequently impute the 

next visit time, etc. Shortreed et al. provide a sequential multiple imputation strategy for 

SMARTs that can be used with existing multiple imputation software [57].

Both regression-based and value-maximization methods for estimating optimal DTRs can be 

extended for use with multiply imputed datasets by either aggregation or concatenation. In 

the aggregation approach one first estimates the optimal DTR separately for each imputed 

data set and then take a majority vote. For example, if  are M stage-j decision 

rules estimated across M multiply imputed datasets, then the aggregated rule is 

. Note that in the case of linear decision rules, the 

aggregated decision rule is equivalent to simply averaging the coefficients indexing the 

decision rules to form a single linear decision rule. Alternatively, concatenation involves 

stacking the M imputed datasets on top of each other to form a single large dataset and then 

estimating a single decision rule. This is advantageous if fitting the model on each imputed 

dataset is computationally expensive or if it is desired that the final decision be sparse (the 

average of sparse vectors need not be sparse). However, concatenation may preclude 

estimation of between-imputation variance estimation used in standard multiple imputation 

variance formulas [58].

Choosing an outcome in responder trials

SMARTs where only a subset of subjects, which we generically term ‘non-responders,’ are 

re-randomized at the second stage are common, especially in cancer clinical trials. We 

assume responders are followed until the end of the study.
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Let R be an indicator of response, which takes the value 1 if the subject is a responder and 0 

otherwise, then R is contained in H2 for all subjects. We assume that R is assessed at the end 

of a fixed time-period, e.g., six-months from baseline. Those deemed non-responders are 

immediately re-randomized. For responders, Y is collected prior to the assignment of A2 and 

hence is part of H2; indeed, H2 will contain different information for responders and non-

responders. Thus, Q2(H2, A2) = Y R + E (Y | H2, R = 0, A2). In Q-learning one would thus 

estimate the stage-2 Q-function by regressing Y on H2 and A2 only using the non-responder 

data. Let  denote this estimator. The second step of the Q-learning algorithm, 

Q2, is to compute . However, note that  will 

typically be more variable for responders than non-responders since non-responder data has 

been projected onto H2. This can complicate building high-quality models of the stage-1 Q- 

function. One approach to alleviate this problem is to regress Y on information collected 

prior to classification of responder status. Let  denote information collected prior to 

responder classification and let  be an estimator of  built using only responder 

data. Then,  is used in place of  in the first stage 

regression of Q-learning. Note that this does not affect the validity of the Q-learning 

algorithm since H1 and A1 are contained in  so that 

.

Conclusions

We have tried to provide a limited survey of practical issues associated with estimation of 

optimal DTRs from SMART data. While estimation of and inference for DTRs is a rapidly 

growing area of statistics methodological research, it is equally important to address more 

practical issues associated with modeling SMART data. Given the rapidly growing interest 

in estimating optimal DTRs from SMARTs we believe a crucial open issue is the 

development of valid sample size formulae for testing data-driven DTRs.
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Appendix

Q-learning algorithm is as follows:

Q1
Find ;

Q2
Define ;

Q3
Find ;
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then . Q-learning, in the simple case considered, requires 

fitting two linear regressions (steps Q1 and Q3) and making linear predictions for each 

subject (step Q2).
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Figure 1. 
Non-small Cell Lung Cancer. There are multiple possible 1st-line treatments to start with. As 

a follow-up, multiple possible 2nd –line treatments exist. In addition, there are many choices 

for when to initiate the 2nd-line treatment. For example, it can be initiated once the 1st-line 

treatment is finished (immediate); it can be initiated when the disease progresses 

(progression); or any time inbetween.
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Figure 2. 
Schematic describing the Adaptive Pharmacological and Behavioral Treatments for Children 

with ADHD SMART [W. Pelham (PI)]; randomizations, denoted by a circled letter ’R,’ 

were with equal probability. Responder status is based on subject Impairment Rating Scale 

[38] and Individualized List of Target Behaviors [39]. see [22] for additional details.
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