
THE JOURNAL OF CHEMICAL PHYSICS 141, 204106 (2014)

Multidimensional reaction rate theory with anisotropic diffusion
Alexander M. Berezhkovskii,1 Attila Szabo,2 Nicholas Greives,3 and Huan-Xiang Zhou3

1Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience,
Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20819, USA
2Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases,
National Institutes of Health, Bethesda, Maryland 20819, USA
3Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee,
Florida 32306, USA

(Received 10 September 2014; accepted 10 November 2014; published online 26 November 2014)

An analytical expression is derived for the rate constant that describes diffusive transitions between
two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer
formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach
is based on a variational principle for the reactive flux and uses a trial function for the splitting
probability or commitor. The theoretical result is validated by Brownian dynamics simulations.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4902243]

I. INTRODUCTION

Langer1 generalized Kramers’ seminal work2 on reaction
rates to many dimensions.3 Assuming that the rate-limiting
step is crossing the saddle point region, he derived an analytic
expression for the rate constant for escape from a deep po-
tential well. The problem appeared to have been completely
solved until Berezhkovskii and Zitserman (BZ) pointed out
that Langer’s formula failed for potential surfaces of a cer-
tain shape when the friction/diffusion was highly anisotropic.4

They developed a formalism, based on reaction-diffusion
equations, to obtain the rate constant in the regime where
Langer’s formula was incorrect,4–6 but did not give a general
analytic expression for the rate constant.

In this paper, we derive such an expression using a varia-
tional principle for the reactive flux.7 We consider diffusive
dynamics in a two-dimensional potential U(x, y) with two
deep wells separated by a high saddle-shaped barrier, when
diffusion coefficients along x and y are arbitrary (Dx �= Dy).
We assume that the matrix of diffusion coefficients, denoted
by D, is diagonal, the potential U(x, y) is non-separable, and
the potentials of mean force along x and y each have a double-
well form. Our goal is to find an expression for the rate con-
stant of the transition from one well to the other that is valid
for all values of the diffusion coefficients. If the potential U(x,
y) is not symmetric, then the rate constants for transitions in
the two directions differ. Since the theory presented here is
equally applicable to both rate constants, we will focus only
on the transition from the reactant to the product. For the sake
of concreteness, we assume that progress along x describes
the breaking of a chemical bond or the unfolding of a protein,
and refer to this coordinate as chemical or molecular. We call
y the environmental coordinate, assuming that it describes the
influence of the solvent8 or the tip of an atomic force micro-
scope in a single-molecule pulling experiment.9

When the potentials of mean force along x and y have
a double-well shape, expressions for the rate constant can be
readily obtained in the limiting cases of fast and slow relax-
ation of the environment (Dy → ∞ and Dy → 0, respectively)

using Kramers’ theory. When Dy → ∞ the two-dimensional
diffusion equation reduces to a one-dimensional one for diffu-
sion along x in the potential of mean force denoted by U∞(x)
and defined (to within a constant) by

e−U∞(x) =
∫ ∞

−∞
e−U (x,y)dy, (1a)

where we have set the product of the Boltzmann constant and
absolute temperature to unity. The corresponding rate con-
stant, k∞, obtained using the one-dimensional Kramers theory
involving the potential U∞(x) with a high parabolic barrier, is
given by

k∞ = Dx

2π

√
K∞KR∞e−�U∞ , (1b)

where K∞ = −U ′′
∞(xb), KR∞ = U ′′∞(xw), with double prime

denoting the second derivative, xb and xw are the locations of
the barrier top and the reactant well bottom of the potential
U∞(x), and �U∞ = U∞(xb) − U∞(xw).

In the opposite limit (Dy → 0), where the environment re-
sponds so slowly that its adjustment becomes the rate-limiting
step, the two-dimensional reaction dynamics reduces to one-
dimensional diffusion along y in the presence of a double-
well potential of mean force denoted by U0(y) and defined (to
within a constant) by

e−U0(y) =
∫ ∞

−∞
e−U (x,y)dx. (2a)

The corresponding rate constant, k0, is given by

k0 = Dy

2π

√
K0K

R
0 e−�U0 , (2b)

where K0 = −U ′′
0(yb), KR

0 = U ′′
0 (yw), �U0 = U0(yb)

− U0(yw), with yb and yw denoting the locations of the bar-
rier top and the reactant well bottom of the potential U0(y).

To write Langer’s rate constant for arbitrary Dx and Dy,
we assume, without loss of generality, that the saddle point
of the potential surface U(x, y) is located at the origin and
U(0, 0) = 0. In the vicinity of the saddle point, U(x, y) can
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FIG. 1. Whether Langer’s generalization of Kramers’ theory is valid for all values of the diffusion coefficients depends on the shape of the two-dimensional
potential. The potentials shown are given by Eqs. (8) and (19) at �U = 8, with γ = 2 in (a) and 1/3 in (b). When the potential along x for y = 0 has a single-well
form (i.e., one minimum), as shown in (a), Langer’s formula is always valid; when the potential along x for y = 0 has a double-well form (i.e., two minima), as
shown in (b), Langer’s formula fails as Dy → 0.

be approximated by a quadratic expansion, U(x, y) = (Kxxx2

+ 2Kxyxy + Kyyy2) / 2, where Kxx, Kxy = Kyx, and Kyy are el-
ements of the symmetric matrix, K, of second derivatives of
U(x, y) at the saddle point. From the definition of the sad-
dle point it follows that det K = KxxKyy − K2

xy < 0. The cor-
responding matrix of force constants for the reactant well
is denoted by KR, with det KR > 0. In the diffusive regime
Langer’s rate constant for the reactant-to-product transition,
denoted by kL, is given by

kL = 1

2π

(
det KR

|det K|
)1/2

λe−�U, (3)

where �U is the energy difference between the saddle point
and the reactant well bottom, and −λ is the only negative
eigenvalue of matrix KD, corresponding to the only positive
root of the equation det (λI + KD) = 0.

If Langer’s result were valid for all Dx and Dy, one would
expect that it would reduce to k∞ and k0 in the Dy → ∞ and
Dy → 0 limits,

lim
D

y
→∞

kL = k∞ ∝ Dx, lim
D

y
→0

kL = k0 ∝ Dy, (4)

where, as above, k∞ and k0 are the rate constants correspond-
ing to the potentials of mean force U∞(x) and U0(y), respec-
tively. When Kyy > 0, BZ4 showed that Langer’s formula is
valid for all Dx and Dy only when Kxx > 0, i.e., when the force
constant along the chemical/molecular coordinate at the sad-
dle point is also positive. This means that the potential along
x for any fixed y near the barrier top has a single-well form.
When Kxx < 0, the potential along x at fixed y has a double-
well form, and Eq. (3) leads to (see Appendix A)

lim
D

y
→0

kL = k∞
KxxKyy

det K
∝ Dx, (5)

which is obviously an unphysical result. Instead of predict-
ing that the rate constant vanishes as Dy → 0, Langer’s for-
mula predicts that it approaches a constant proportional to Dx.
The physical reason for this failure is the change in the nature
of the reactant-to-product transition when Dy → 0. Langer’s
theory postulates that the transition rate is determined by the

passage through the saddle point region. If Kxx < 0, the poten-
tial U(x, y = const) has two minima along x for some range
of fixed y values. Therefore, when Dy → 0, the system, be-
fore it moves along y, makes many transitions between the
two wells. As a consequence, the motion along the slow envi-
ronmental coordinate is governed by the potential of mean
force U0(y), which is determined by the local minima and
not by the saddle point region. Examples of potentials for
which Langer’s theory works and does not work are shown in
Figs. 1(a) and 1(b), respectively.

II. RESULTS

The main result of this paper is an analytical expression
for the rate constant k, derived using a variational principle,
which is valid for all Dx and Dy. It correctly reduces to k∞
and k0 in the limiting cases of fast and slow response of the
environment irrespective of the sign of Kxx. Our result for the
rate constant is

k = kLk0 − χ2

kL + k0 − 2χ
, (6)

where Langer’s rate constant, kL, depends on both Dx and Dy,
the rate constant k0 for escape from the reactant well of the
potential of mean force U0(y) is proportional to Dy, and χ is
a cross term given by

χ = Dyey

√
K0 |det K|

2π (e · D · e)
√

KL

kL

×
∫∫

I

e
−U (x,y)−K

L
(xe

x
+ye

y
)2/2−K0(y−y

b
)2/2

dxdy. (7)

Here, e is the unit eigenvector of the matrix KD corre-
sponding to the only negative eigenvalue −λ (i.e., KDe
= −λe), ex and ey are the x- and y-components of e, KL is
a force constant defined as KL = −(e · K−1 · e)−1 = λ /
(e · D · e). The integration in Eq. (7) is over the intermedi-
ate region I that separates the reactant region from the product
region.
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The expression for χ can be simplified for a double-well
potential U(x, y) of the form

U (x, y) = U∞(x) + � (y − x)2 / 2, (8)

which nevertheless contains the essential physics of the prob-
lem. Using Eq. (1a), one can check that U∞(x) is indeed the
potential of mean force along x. Let us further assume that
U∞(x) is symmetric, U∞(x) = U∞(−x), with the barrier top
located at the origin, xb = 0, and the barrier energy equal to
zero, U∞(xb) = 0. The double-well potential of mean force
along y, U0(y), defined by Eq. (2a), depends on the sign of
the matrix element Kxx = �−K∞. For Kxx > 0, it can be
shown that KR

0 = �KR∞ /
(
� + KR∞

)
, K0 = �K∞ / (� − K∞),

and �U0 = �U∞ − (1 / 2) ln[(� + KR∞) / (� − K∞)]. Using
these relations one can check that Eq. (2b) leads to k0
= Dy�k∞ / [Dx(� − K∞)], which is identical to the Dy → 0
limit of kL. When Kxx < 0, the condition where Langer’s the-
ory fails, the potential along x at constant y, U(x, y = const),
has a double-well form for y near yb = 0. Then the main con-
tribution to the integral in Eq. (2a) comes from the vicinities
of the two minima. Using quadratic expansion of U∞(x) near
its minima and evaluating the resulting Gaussian integrals, we
obtain

U0(y) = − ln
(
e−KR

0 (y−x
w)2

/ 2 + e−KR
0 (y+x

w)2
/ 2

)
, (9)

where again KR
0 = �KR∞ /

(
� + KR∞

)
. Now we have K0

= KR
0

(
KR

0 x2
w − 1

)
and �U0 = KR

0 x2
w / 2 − ln 2. The rate

constant k0 is again given by Eq. (2b). Langer’s formula for
the rate constant in this case is

kL = k∞
[√

(γ − 1 + εγ )2 + 4εγ − (γ − 1 + εγ )
]/

2,

(10)
where γ = �/K∞ and ε = Dy/Dx.

For the potential in Eq. (8), when U∞(x) is symmetric
and yb = 0, we carry out the integration over y in Eq. (7) and
find that the cross term becomes relatively simple,

χ = kL

√
A

2π

∫ ∞

−∞
e−U∞(x)−K∞x2 / 2−Ax2 / 2dx, (11)

where the force constant A is given by

A = δε2γ 3

(δ + γ ) (εγ + μ)2 − δγμ2
K∞ (12)

with δ = K0/K∞ and μ = kL/k∞. When Kxx > 0 (i.e., � > K∞),
the force constant A remains finite over the entire range of Dy.
Then the main contribution to the integral in Eq. (11) comes
from the barrier region near x = 0 where U∞(x) ≈ −K∞x2/2
so that the integrand can be approximated by exp ( − Ax2/2).
This leads to χ = kL. Consequently, it follows from Eq. (6)
that k = kL, i.e., we recover Langer’s formula for the entire
range of Dy. When � < K∞, Eq. (12) shows that the force
constant A vanishes as Dy (or ε) tends to zero. Here, χ ap-
proaches kL and hence k approaches kL only when Dy is large
enough for the integrand in Eq. (11) to be still well approx-
imated by exp (−Ax2 / 2). When Dy → 0, this approximation
fails, and χ becomes proportional to Dy. Consequently, the
rate constant k approaches k0, as it should. Thus, Eq. (6) re-
covers Langer’s formula for the rate constant over the entire

range of Dy for Kxx > 0 and corrects the defect of this formula
when Dy → 0 for Kxx < 0.

III. OUTLINE OF DERIVATION

To derive the expressions in Eqs. (6) and (7), we use the
fact that the rate constant is the ratio of the unidirectional
reactive flux through the intermediate region (I) to the reac-
tant well population at equilibrium. The flux, in turn, can be
expressed in terms of the splitting probability (or commitor)
φ(x, y), which is the probability of reaching the reactant re-
gion before the product region from a point (x, y) in the inter-
mediate region.7, 10 Consequently, the rate constant k can be
expressed as

k = 1

2π

√
det KRe−�U

∫∫
I

(∇φ · D · ∇φ) e−U (x,y)dxdy.

(13)
We now exploit the E and Vanden-Eijnden7 variational prin-
ciple for the reactive flux: the reactive flux is greater than or
equal to

∫∫
I

(∇f · D · ∇f ) e−U (x,y)dxdy/
∫∫

e−U (x,y)dxdy for

any function f(x, y) that is unity and zero at the two boundaries
of the intermediate region. The equality occurs when f(x, y) is
the splitting probability φ(x, y).

We determine the rate constant by minimizing the expres-
sion for k in Eq. (13) with respect to the parameter α in the
trial function for the splitting probability,

φ(x, y) = αφL(x, y) + (1 − α)φ0(y). (14)

Here, φL(x, y) and φ0(y) are the splitting probabilities which,
when substituted into Eq. (13), yield kL and k0, respectively,
and α is a variational parameter, with 0 ≤ α ≤ 1. Substituting
the trial function in Eq. (14) into Eq. (13), we arrive at

k = α2kL + (1 − α)2k0 + 2α(1 − α)χ, (15)

where χ is the cross-term given by

χ = 1

2π

√
det KRe−�U

∫∫
I

(∇φL · D · ∇φ0

)
e−U (x,y)dxdy.

(16)
The optimal value of the variational parameter, α∗, is found
by minimizing the rate constant in Eq. (15) with respect to α.
The result is α∗ = (k0 − χ )/(kL + k0 − χ ). Substituting α∗

into Eq. (15), we arrive at the expression for the rate constant
in Eq. (6).

To complete the derivation we use the gradient of the
splitting probability that leads to Langer’s rate constant kL,11

∇φL(x, y) = −
√

KL

2π
e
−K

L
(xe

x
+ye

y
)2 / 2e, (17)

and its one-dimensional counterpart leading to Kramers’ rate
constant k0,

∇φ0(y) = −
√

K0

2π
e−K0(y−y

b)
2
/ 2y, (18)

where y is a unit vector in the y-direction. Substituting these
gradients into Eq. (16), after considerable algebra, we arrive
at the expression for the cross-term given in Eq. (7).
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IV. VALIDATION VIA SIMULATIONS

To check the accuracy of our formula for the rate con-
stant in Eq. (6), we compare its predictions with the results
obtained from Brownian dynamics simulations. This is done
for the potential U(x, y) in Eq. (8) with a symmetric piecewise
parabolic potential U∞(x) of the form

U∞(x) = �U ·
{

−2x2,

−1 + 2(|x| − 1)2,

0 ≤ |x| ≤ 1/2

1/2 ≤ |x|
(19)

and � = 4�U / 3, so that γ = � / K∞ = 1/3 (see Fig. 1(b) with
�U = 8). The comparison is made for �U = 4, 8, and 12
and diffusion anisotropy ε = Dy / Dx ranging from 10 to 10−4.
In Fig. 2, the simulation results (see Appendix B) are shown
as symbols whereas our theoretical predictions are given by
dotted curves. The systematic difference between the two for
small Dy is due to the fact that the potential of mean force
U0(y) near the barrier top is parabolic only in a very short
range. Therefore, the formula for k0 in Eq. (2b), which as-
sumes a parabolic barrier, is inaccurate. Consequently, we re-
place k0 in Eq. (6) by the rate constant obtained from the mean
first passage time to the barrier top (y = 0) starting from the
equilibrium distribution in the reactant well of U0(y),12

k0 =
∫ 0
−∞ e−U0(y)dy

2
∫ 0
−∞ eU0(y)dy

(∫ y

−∞ e−U0(z)dz
)2 . (20)

The dependence of the resulting rate constant on the diffusion
anisotropy is shown in Fig. 2 as solid curves. One can see
that our theoretical predictions are in good agreement with the
simulation results. We also notice that a simple interpolation

FIG. 2. Comparison of predictions of Eqs. (6) and (21) for the rate constant
of the transition between two wells in a two-dimensional potential with simu-
lation results over a wide range of diffusion anisotropy. The simulation results
for the ratio k/k∞ are shown as symbols with error bars representing standard
deviations obtained from 10 independent simulations; note that many error
bars are smaller than the corresponding symbols. The predictions of Eq. (6)
with k0 given by Eqs. (2b) and (20) are shown as dotted and solid curves,
respectively. The predictions of Eq. (21) with k0 given by Eq. (20) are shown
by dashed curves. The thick solid curve shows the rate constant given by
Langer’s formula, Eq. (10).

formula,

k = kLk0

kL + k0

, (21)

which follows from Eq. (6) if χ2 is much smaller than the
product, kLk0, of the rate constants, works remarkably well.
The resulting dependence of k, with k0 given in Eq. (20), on
diffusion anisotropy is shown in Fig. 2 as dashed curves. To
show the failure of Langer’s formula, we also display the pre-
diction of Eq. (10) as a thick solid curve.

V. CONCLUDING REMARKS

In summary, our main results are the expression for the
reactant-to-product rate constant given by Eq. (6) and its sim-
plified version in Eq. (21). They are applicable for arbitrary
diffusion anisotropy, thus correcting the defect of Langer’s
formula for potential surfaces with Kxx < 0 when the diffu-
sion is highly anisotropic. Our results can be generalized to
more than two dimensions. For example, when there is only
one slow mode, the expression for the rate constant in Eq. (6)
remains unchanged, but χ in Eq. (7) becomes a multiple in-
tegral over x, y, z, . . . with xex + yey replaced by xex + yey +
zez + . . . . Our results do not correct the defect of Langer’s
formula when applied to the irreversible escape from a sin-
gle metastable well to the continuum, since there is no longer
a potential of mean force along the slow coordinate. For this
case, BZ4, 5 showed that in the regime where Langer’s for-
mula fails, the two-dimensional Smoluchowski equation can
be reduced to a one-dimensional one along the slow coordi-
nate with a sink term equal to the escape rate constant at fixed
y. Approximate solutions to this equation have been found,
but the problem of finding an analytical expression for the
rate constant in the irreversible case, valid for all diffusion
coefficients, remains open.
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APPENDIX A: DERIVATION OF EQ. (5)

The two-dimensional potential U(x, y) has the reactant
well bottom located at (xR,yR) and the saddle point located
at the origin. In the vicinities of these points, U(x, y) can be
approximated by quadratic expansions. Near the reactant well
bottom the potential is

U (x, y) = −�U+ 1

2

[
KR

xx(x−xR)2+2KR
xy(x − xR)(y − yR)

+KR
yy(y − yR)2

]
, (A1)

with det KR > 0, while near the saddle point the potential is
given by

U (x, y) = 1

2

(
Kxxx

2 + 2Kxyxy + Kyyy
2
)
, (A2)
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with det K < 0. Substituting these expressions into Eq. (1a)
and integrating over y, we obtain

e−U∞(x) =
√

2π ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
KR

yy

e
�U− det K

R

2KR
yy

(x−x
R)2

, near x = xR

1√
Kyy

e
det K
2K

yy
x2

, near x = 0

.

(A3)

It then follows that

K∞ = |det K|
Kyy

, KR∞ = det KR

KR
yy

, (A4)

and

�U∞ = U∞(0) − U∞(xR) = �U + 1

2
ln

(
Kyy

KR
yy

)
. (A5)

Applying Eqs. (A4) and (A5) in Eq. (1b), we obtain

k∞ = Dx

2πKyy

(|det K| det KR

)1/2
e−�U . (A6)

To show that the same expression for k∞ follows from Eq. (3)
for kL when Dy → ∞, we note that in this limiting case the
equation det (λI + KD) = 0 leads to

λ = Dx

Kyy

|det K| , Dy → ∞. (A7)

Substituting this into Eq. (3), we arrive at the expression for
k∞ in Eq. (A6). When Dy → 0, the equation det (λI + KD)
= 0 leads to different expressions for λ depending on the sign
of the force constant Kxx,

λ =
{ |det K|

K
xx

Dy, Kxx > 0∣∣Kxx

∣∣ Dx, Kxx < 0
. (A8)

Inserting the second line of Eq. (A8) in Eq. (3) and using
Eq. (A6), one obtains the limiting behavior of kL given in
Eq. (5).

APPENDIX B: VALUES OF THE RATE CONSTANT
FROM BROWNIAN DYNAMICS SIMULATIONS

Our model system consists of N point-like particles that
reside in a symmetric two-dimensional double-well poten-
tial of the form given in Eqs. (8) and (19). Here, the ratio
�/(4�U), denoted as γ , is set to 1/3. The particles are allowed
to diffuse along x and y. A particle is considered to be in the
left well if x is less than zero and in the right well otherwise.

When the diffusion along one of the coordinates becomes
infinitely fast, the dynamics can be reduced to one dimension.
In the case of infinitely fast diffusion along y, the system be-
comes one-dimensional in x, with the potential of mean force
given by U∞(x) and the boundary between the wells still at x
= 0.

For infinitely fast diffusion along x or, equivalently, in-
finitely slow diffusion along y, the system becomes one-
dimensional in y. The potential of mean force, U0(y), is now

given by [see Eq. (9)]

exp[−U0(y)] ≈ exp[−�U (y + 1)2/2]

+ exp[−�U (y − 1)2/2], (B1)

and the well boundary is at y = 0.
Two-dimensional Brownian dynamics simulations were

carried out to determine the rate constant k. The simulations
began with the N particles initially positioned in the left well
(x < 0) according to the Boltzmann distribution, exp[−U(x,
y)]. This was done by first choosing x according to the Boltz-
mann distribution exp[−U∞(x)] and then choosing y accord-
ing to the conditional probability p(y|x) ∝ exp[−�(y − x)2/2].
To choose x, the fractions of particles that would begin in the
x < −1/2 and −1/2 < x < 0 regions were determined accord-
ing to their respective Boltzmann weights. These fractions
were compared to a random number uniformly distributed be-
tween 0 and 1 in order to determine which region a particle
would start in. If the particle was to start in the x < −1/2 re-
gion, a normally distributed random number was generated
via the Box-Muller method, and linearly transformed to pro-
duce the initial x value with the desired mean of −1 and stan-
dard deviation of 1/(2

√
�U ); any initial x value greater than

−1/2 was discarded and the process was repeated until an x
value less than −1/2 was produced. If a particle was to start
in the −1/2 < x < 0 region, its initial x value was generated
by the rejection method. Specifically, a random x was gener-
ated according to the exponential distribution exp(�Ux), and
whether that x was accepted was determined by comparing a
random number uniformly distributed between 0 and 1 to the
ratio of the desired distribution exp[−U∞(x)] = exp(2�Ux2)
and the reference exp(�Ux). Once the initial x was assigned,
the initial y was generated via the Box-Muller method and lin-
early transformed to have the desired mean of x and standard
deviation of 1/(2

√
γ�U ).

After the initial coordinates of a particle were gener-
ated, its diffusion was followed according to the Ermak-
McCammon algorithm

x = x0 + Fx(x0, y0)Dx�t + (2Dx�t)1/2Rx,

y = y0 + Fy(x0, y0)Dy�t + (2Dy�t)1/2Ry.
(B2)

Here, x0 is the current x, x is the position after a timestep of
�t, Fx(x0, y0) is the x component of the force calculated at
the current position from the potential U(x,y), Dx is the diffu-
sion constant along x, and Rx is a normally distributed random
number. The description of the quantities in the y direction is
similar. The number of particles remaining in the left well was
recorded as a function of time throughout the simulation until
this number first became one half of N.

In addition to the two-dimensional simulations outlined
above, simulations were also carried out for one-dimensional
diffusion along either x (to determine k∞) or y (to deter-
mine k0). For the simulations along x, the initial x coordi-
nates were generated the same way as described above in the
two-dimensional case. The movement of x was also nearly
the same as above, except now the force was calculated from
U∞(x) instead of U(x, y). The same type of data was recorded
and each simulation was again ended when the number of par-
ticles in the initial well became N/2.
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TABLE I. Effects of the timestep on the simulation results for the rate
constants.

�t k0/Dy k∞/Dx

1.0 × 10−3 (2.25 ± 0.08) × 10−2 (4.67 ± 0.09) × 10−5

5.0 × 10−4 (2.27 ± 0.10) × 10−2 (4.70 ± 0.19) × 10−5

1.0 × 10−4 (2.29 ± 0.05) × 10−2 (4.69 ± 0.13) × 10−5

For the simulations along y, the initial y coordinates were
generated according to the first term, exp [−�U(y + 1)2/2], of
the Boltzmann distribution exp[−U0(y)], via the Box-Muller
method and a linear transformation to have the correct mean
of −1 and standard deviation of 1/

√
�U . The contribution

of the second term, exp [−�U(y − 1)2/2], was captured by
a reflection of the initial y value (to −y) if y generated by
the foregoing procedure was greater than 0. The movement
of y was the same as described in the two-dimensional case,
except that the force was calculated from the potential U0(y).
The rest of the simulation process was the same as described
above.

Three different values of �U, i.e., 4, 8, and 12, were stud-
ied. In each simulation, the number of particles was 5000.
For the two-dimensional simulations and the one-dimensional
simulations in x, Dx was fixed at 1; in the former case six
Dy values were used: 10, 1, 10−1, 10−2, 10−3, and 10−4.
For the one-dimensional simulations in y, Dy was fixed at 1.
In all cases, final data were produced using a timestep of 5
× 10−4. This timestep was chosen after running simulations at
a series of timesteps in the two one-dimensional cases. It was
found that there was no significant difference in the rate con-
stant obtained from the simulations (see below) with a tenfold
change in timestep. The latter results for �U = 12 are listed in
Table I.

The middle timestep was chosen for the balance of accu-
racy and speed. These results can be compared with the pre-
dictions of Kramers’ theory, k0/Dy = 3.14 × 10−2 and k∞/Dx

= 4.69 × 10−5. The simulation result for k∞ agrees very well
with the Kramers prediction, but there is a significant discrep-
ancy between the two for k0. As explained in the main text,
due to the narrow parabolic region of U0(y) near the barrier,
the Kramers prediction for k0 is inaccurate. A better predic-
tion is given by half the inverse of the mean-first-passage-
time for reaching the barrier from the reactant well [Eq. (20)],
yielding k0/Dy = 2.30 × 10−2, which is in excellent agree-
ment with the simulation result.

The data recorded from each simulation were the number
of particles remaining in the left well over time, n(t), up to the
time when the number of particles in the initial well dropped
to one half for the first time. For the two high energy barriers
(�U = 8 and 12), the decay of n(t) to its equilibrium value
N/2 could be fit well to a single exponential function, 2n(t)/N
− 1 = exp(−t/τ ), where τ is the relaxation time. For the low-
est barrier (�U = 4), n(t) in the two-dimensional simulations

FIG. 3. The decay of the number of particles in the initial well toward the
equilibrium value. The gray curves are data averaged over 10 repeat simula-
tions, and red, blue, and green curves are exponentials with the average rate
constants for Dy = 1, 10−1, and 10−2, respectively, at �U = 8.

with small Dy (i.e., ≤ 10−2) exhibited a rapid initial decay
before the slow decay. The initial decay came from particles
initially near the boundary between the wells, and only the
slow decay represented inter-well transitions. To account for
the presence of the initial decay, for �U = 4 the amplitude of
the exponential function was treated as a floating parameter
rather than fixed at unity. In all the cases, the value of 1/τ was
equated to twice the rate constant for the transition from the
reactant well to the product well.

Sample data for the two-dimensional problem at �U = 8
and Dy = 1, 10−1, and 10−2 are shown in Fig. 3 to illustrate
the exponential fitting. For each set of parameters, simulations
were repeated ten times with different random number seeds.
The averages and standard deviations of the rate constant cal-
culated among the 10 repeat simulations are taken as the sim-
ulated rate constant and the simulation error, respectively.
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