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Electrically generated flows around a thin dielectric plate pierced by a cylindrical
hole are computed numerically. The geometry represents that of a single nanopore
in a membrane. When the membrane is uncharged, flow is due solely to induced
charge electroosmosis, and eddies are generated by the high fields at the corners
of the nanopore. These eddies meet at stagnation points. If the geometry is chosen
correctly, the stagnation points merge to form a single stagnation point at which
four streamlines cross at a point and eight eddies meet. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4901984]

I. INTRODUCTION

Streamline patterns reveal the topology of a flow field: we sketch streamlines, eddies, and
stagnation points in order to develop our understanding of flows.1, 2 Stagnation points away from
solid walls usually occur at the intersection of two streamlines, which divide the fluid into four
separate regions. Such stagnation points can be generated in many ways, e.g., by a four-roll mill3

or by opposed fluid jets in a cross-slot device.4, 5 More complicated stagnation points are harder
to generate. Berry and Mackley6 built a six-roll mill and investigated the flow field. When exact
symmetry was achieved, six eddies met at a central point, and the various ways in which symmetry
could be broken were described by Berry and Mackley6 in terms of catastrophe theory. Here, we
report an electrically generated flow field in which four streamlines cross at a point and divide the
flow into eight regions.

The axisymmetric flow geometry is shown in Figure 1. A cylindrical hole of radius a passes
through an uncharged thin dielectric plate of thickness h: the hole represents a nanopore in a
membrane, and we are interested in the induced charge electroosmotic flow generated by an electric
potential difference applied between the two sides of the membrane.7–9 We set up cylindrical polar
coordinates, with z axis along the axis of symmetry and with the plane surfaces of the membrane at
r > a, z = ±h/2.

In Sec. II, we consider the electric field passing through a circular hole in a membrane of
zero thickness. We then (Sec. III) show how the field is modified at the edge of the hole when the
membrane thickness h is small but non-zero. In Sec. IV, we review the fluid jets that are created by
the electrical forces on the fluid near the corners of the membrane, and then in Sec. V we present
numerical computations that show how the geometry of eddies created by these jets depends on the
geometry of the hole in the membrane. As the ratio h/a increases, three stagnation points merge to
form a stagnation point at which four streamlines cross. The stagnation points separate again as h/a
increases further.
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FIG. 1. The (infinite) dielectric plate of thickness h, pierced by a hole of radius a and surrounded by an electrolyte solution.
The axisymmetric geometry represents a nanopore in a membrane. An electrical current is driven through the hole by a
potential difference �φ between the two sides, at infinity.

II. THE IMPOSED ELECTRIC FIELD

The pore and the two regions on either side of the membrane are occupied by an incompressible,
electrically conducting Newtonian electrolyte solution with viscosity μ and electrical permittivity εf.
The membrane is non-conducting, with permittivity εs. The electrical potential φ is continuous at the
boundary between the solid membrane and the fluid. The surface charge density on the membrane is
zero, so that εn · ∇φ is continuous, where n is the unit normal to the membrane and the permittivity
ε takes values εs and εf on the two sides of the boundary. If (as is usually the case) εs � εf, then to
a first approximation we set εs = 0, and n · ∇φ = 0 in the fluid adjacent to the membrane.

We assume that the electrolyte solution contains N ionic species, with valence zi and number
density ni. Far from any charged surfaces, the ionic number densities are ni = ni

∞, with
∑

i zi ni
∞ = 0

to ensure electrical neutrality of the bulk electrolyte. The electrical potential satisfies the Poisson
equation

∇2φ = −ρ/ε f = −
N∑

i=1

ezi n
i/ε f , (1)

where ρ is the charge density.
Ions are convected with the fluid velocity u, and move relative to the fluid under the influence

of electric fields and thermal diffusion. The conservation equation for the number density ni of the
ith ionic species, in steady state, is therefore

∇ · [
ni u − ωi (kT ∇ni + ezi n

i∇φ)
] = 0, (2)

where ωi is the mobility of the ith species of ion, kT is the Boltzmann temperature, and e is the
elementary charge. In the absence of any reactions at the surface of the membrane, the flux of ions
normal to the membrane is zero at the membrane surface.

When εs = 0, there is a steady solution of the ion conservation equation (2) in which the fluid
is at rest (u = 0), the ionic number densities are unperturbed (ni = ni

∞), and the electrical potential
φ = φ0 within the electrolyte is given by the solution of the Laplace equation

∇2φ0 = 0, (3a)

n · ∇φ0 = 0 on the membrane surface, (3b)
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φ → ±�φ/2, as r → ∞ in z ≷ 0. (3c)

This represents Ohmic conduction through an electrolyte with uniform electrical conductivity. The
solution φ0 = �0 of the Laplace equation (3) when h = 0 is given by Morse and Feshbach10 (p.
1292) in terms of oblate spherical coordinates (ξ , η) where −∞ < ξ < ∞, 0 ≤ η ≤ π /2 such that

z = a sinh ξ cos η , r = a cosh ξ sin η, (4)

and is

φ0 = �0(r, z) = �φ

2

[
1 − 2

π
tan−1

(
1

sinh ξ

)]
, z > 0, h = 0, (5a)

= −�0(r,−z), z < 0. (5b)

On the surface z = 0+ of the membrane

�0(r, 0+) = �φ

2

[
1 − 2

π
tan−1

(
a

(r2 − a2)1/2

)]
, r > a, (6)

and for r = a(1 + δ), with δ � 1,

�0(r, 0+) ≈ �φ

π
(2δ)1/2, (7)

with �0(r, 0−) = −�0(r, 0+). The electric field in the plane of the hole is

E = − �φ ẑ

πa
(
1 − r2/a2

)1/2 , r < a, (8)

and if the conductivity of the electrolyte is �, the total current through the hole is 2a��φ. However,
real membranes have a non-zero thickness h > 0. We shall show in Sec. III that when 0 < h � a,
the potential φ0 differs from the potential �0 for h = 0 by an amount O((h/a)1/2). We neglect this
perturbation for the moment, and assume φ0(r, h/2) ≈ �0(r, 0+). The leading order potential φ0

leads to an electric field of strength

ẑ · ∇φ = 2φ0(r, h/2)

h
≈ 2�0(r, 0+)

h
(9)

within the membrane.
If εs = 0 (as assumed so far), the electric field (9) within the membrane and the electric field (3b)

outside the membrane satisfy the requirement that εn · ∇φ should be continuous at the boundary.
However, in the real world, εs is at least as large as the permittivity of free space, ε0, so that εs ≥ ε0

> 0, and the normal electric field outside the membrane must be perturbed at O(εs�φ/(εfh)) in order
to ensure continuity of εn · ∇φ. Ions move toward (or away from) the membrane under the influence
of this perturbation until equilibrium, with zero flux of ions into the membrane, is achieved. In order
to determine this perturbation to the field, we assume that

γ = εs

ε f
� 1 (10)

and use γ as the basis for a perturbation expansion

φ = φ0 + γφ1 + · · · , (11a)

ni = ni
0 + γ ni

1 + · · · , (11b)

u = γ u1 + · · · , (11c)

where the subscript 0 refers to the uniform ion density ni
0 = ni

∞ and to the potential (3c) for εs = 0.
The O(γ ) terms in the steady-state ion conservation equation give

u1 · ∇ni
0 = ωi∇ · [

ezi n
i
0∇φ1 + ezi n

i
1∇φ0 + kT ∇ni

1

]
. (12)
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Since ni
0 is uniform, the left-hand side of (12) is zero.

On the surface of the membrane (except close to the edge of the hole), the potential φ0 varies
on a length scale r > a, whereas we expect the perturbation potential φ1 to vary on the Debye length
scale

κ−1 =
(

ε f kT∑N
i=1 e2z2

i ni∞

)1/2

. (13)

Hence, if r − a 	 κ−1 so that we are much further than a Debye length away from the edge of the
hole, we may neglect the second term on the right-hand side of (12), which reduces to

∇ · [
ezi n

i
0∇φ1 + kT ∇ni

1

] = 0. (14)

The perturbed ionic number densities are therefore given by a Boltzmann distribution

ni
1 = ni

∞e−ezi φ1/kT (15)

and φ1 satisfies the Poisson equation

∇2φ1 = −ρ1

ε f
= − e

ε f

N∑
i=1

zi n
i
1 = − e

ε f

N∑
i=1

zi n
i
∞e−ezi φ1/kT . (16)

The perturbation potential φ1 varies in the z direction over the Debye length scale κ−1, and we neglect
its slow variation with r. We assume that γ eφ1/(kT) is small, and linearize the Poisson-Boltzmann
equation (16), which becomes

d2φ1

dz2
= −κ2φ1. (17)

The solution of (17) that ensures that the potential φ = φ0 + γφ1 satisfies the jump boundary
condition [εn · ∇φ] = 0 at the surface of the membrane is

φ = φ0 − 2�0(r, 0+)εs

hκε f + 2εs
exp[−κ(z − h/2)], z > h/2, (18a)

φ = φ0 + 2�0(r, 0+)εs

hκε f + 2εs
exp[κ(z + h/2)], z < −h/2, (18b)

with

φ = 2�0(r, 0+)κε f z

hκε f + 2εs
, |z| < h/2, (19)

inside the solid membrane. We see from (18) that the perturbation γφ1 is only small compared to φ0

if γ /(hκ) � 1. We also note that (18) does not represent the first terms of a systematic expansion, and
is incorrect at O((γ /hκ)2). However, we prefer to leave the expansion in the form (18) since it shows
explicitly how the expansion fails in the limit h → 0. In particular, far from the hole we recover
the uniform charge cloud that would be induced in the absence of any hole. A detailed analysis of
induced charge electroosmotic flow around an uncharged dielectric sphere (or cylinder) of radius a
in the limit aκ 	 1 has been provided by Schnitzer and Yariv.11

The perturbation potential (18) outside the membrane can be described in terms of an effective
induced zeta potential

ζi = −2εs�0(r, 0+)

hκε f + 2εs
. (20)
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The tangential electric field −∂φ/∂r acts on the charge cloud adjacent to the membrane and
causes a tangential velocity. Immediately outside the double layer (assuming r 	 a + κ−1, so that
flow can be assumed to be locally one-dimensional), the leading-order radial fluid velocity outside
the charge cloud is given by the Smoluchowski slip velocity

u = ∂φ

∂r

ε f ζi

μ
, (21)

and using the expansion (7) at r = a(1 + δ), together with (20), we obtain, in the limit εs � hκεf,

u = − 2εs

ahκμ

(
�φ

π

)2

, z = 0+. (22)

The radial velocity created by the induced charge is toward the hole on both sides of the membrane.
This solution (18), (19), (22) is clearly inappropriate within a distance O(κ−1) of the edge of

the hole, where the electric field can no longer be assumed to vary slowly with r. In Sec. III, we find
a local solution to the Laplace equation in the neighbourhood of the edge, for the case εs = 0 for
which the electric field satisfies a Neumann boundary condition (3b) at the surface of the membrane.

III. MEMBRANE OF UNIFORM THICKNESS: A CONFORMAL MAPPING SOLUTION

We now study in detail the electric field at the edge of the membrane of thickness h > 0 near
r = a, for the case εs = 0. Sufficiently close to the edge (Figure 2(b)) we neglect the azimuthal
curvature, and seek a local solution of the two-dimensional Laplace equation. In the limit h � a, the
outer limit of the local solution can then be matched to the inner limit (7) of the outer solution for a
membrane of zero thickness.

We map the upper half of the Z-plane Z = X + iY (Figure 2(a)) onto the region outside a
rectangular edge in the w plane w = u + iv (Figure 2(b)) by means of the conformal mapping12

w = H
[
Z (Z2 − 1)1/2 − cosh−1(Z )

]
, (23)

where the constant H will be determined later, and the branch of the square root is chosen such that

w = H
[
X (X2 − 1)1/2 − ln(X + (X2 − 1)1/2)

]
, Z = X ≥ 1, (24)

along the real axis. The rectangular edge (Figure 2(b)) represents the right-hand edge of the hole in
the membrane (Figure 1), seen on a scale at which the membrane thickness can be observed, and the
constant H in (23) will eventually be chosen to ensure that the membrane has thickness h.

If Z = X 	 1 (E on Figure 2(a)),

w ∼ H X2. (25)

If Z = 1 + ε, with |ε| � 1 (near D on Figure 2(a)), then

w = H

(
4
√

2

3

)
ε3/2, (26)

A B C D E

X
−1 0 1 A′B′

C′

D′ E′

(a) (b)

FIG. 2. (a) The Z plane, with origin at C. D is at Z = 1 and B at Z = −1. (b) The w plane, with origin at D′. C′ is at
w = −iHπ/2 and B′ is at w = −iHπ . The w plane represents the edge of the hole in the membrane.
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so that if Z = 1 − εR, with 0 < εR � 1 real,

w = −H

(
4
√

2

3

)
ε

3/2
R i, (27)

and if Z = ε with |ε| � 1 (near C on Figure 2(a)),

w = −iH
[π

2
− 2ε

]
. (28)

Finally, since cosh −1(−Z) = π i − cosh −1Z, we note that when Z = −1 (at B),

w = −H cosh−1 Z = −iHπ. (29)

In order to map the upper half Z plane into the space outside a semi-infinite rectangular slab of
thickness |D′B′| = h, we see from (26) and (29) that we should choose H = h/π .

We now consider the (harmonic) function

φ = C H 1/2
(Z ) = C H 1/2 X. (30)

This satisfies the Neumann boundary condition (3b) on the boundary ABCDE in the Z plane, and
after transformation to the w plane leads to a solution10 of the Laplace equation that satisfies the
Neumann boundary condition on the transformed boundary A′B′C′D′E′, i.e., on the boundary of the
membrane near the edge of the hole. In the far field of the w plane,

φ = C
(w1/2), (31)

which matches with the inner expansion of the outer solution (7) for the electric potential at the edge
of the hole in a membrane of zero thickness if

C =
(

2

a

)1/2
�φ

π
. (32)

Close to the corner D′ of the slab, at w = s eiθ with s � 1,

φ = C H 1/2

{
1 +

(
3s

4H
√

2

)2/3

cos

(
2θ

3

)}
. (33)

Thus, the electrical potential at the corner D′ is CH1/2 = �φ(2h/a)1/2π−3/2, together with an eigen-
solution proportional to sλ, with λ = 2/3, and the potential difference between the two corners D′

and B′ (Figure 2) is

�φc = �φ

(
2

π

)3/2 (
h

a

)1/2

. (34)

In Sec. IV, we compare the magnitude of the electroosmotic flow generated at the corner by
the potential (33) with the magnitude of the flow (22) generated along the surface of the membrane
away from corners at the edge of the hole.

IV. INDUCED CHARGE AT A CORNER

The theory of electro-osmotic flow at a dielectric corner is discussed by Thamida and Chang13

and Yossifon et al.14 We consider a plane 2-dimensional wedge of internal angle 2α = 2(π − θ0),
and adopt plane polar coordinates (s, θ ), as shown in Figure 3. The solution of the Laplace equation
for the potential φ outside the electrical double layer, antisymmetric in θ outside the wedge, has the
form

φ = Asλ sin λθ. (35)

Zero flux of ions into the solid wedge requires

n.∇φ = 1

s

∂φ

∂θ
= Aλsλ−1 cos λθ = 0, θ = θ0 = π − α, (36)
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s

α θ

n

liquid

solid

FIG. 3. A dielectric wedge, of angle 2α, with local cylindrical coordinates (s, θ ).

so that

λ = (2n + 1)π

2θ0
, n = 0,±1,±2 . . . . (37)

If θ0 = π , the least singular eigensolution (35) corresponds to λ = 1/2, in agreement with (7). If α

= π /4, so that θ0 = 3π /4, then λ = 2/3, as found in (33), and

A = 32/3

25/3
C H−1/6 = 32/3

27/6

�φ

πa1/2

(
π

h

)1/6

. (38)

Within the solid wedge, the potential is

φ = φw = Asλ sin λθ0

sin λα
sin[λ(π − θ )], (39)

which is antisymmetric about θ = π . As in Sec. II, we conclude that there will be an induced surface
charge, corresponding to an induced zeta potential

ζi = − εs

κε f

∂φw

∂n
= − εs

ε f

Asλ−1

κ
λ cot λα sin λθ0, θ = θ0, (40a)

= εs

ε f

Asλ−1

κ
λ cot λα sin λθ0, θ = −θ0. (40b)

Note that this potential becomes large as s → 0 close to the apex of the wedge, and an analysis
based on linearized Poisson-Boltzmann theory therefore breaks down. Large induced potentials on
the surface of a spherical particle are discussed by Yariv and Davis.15

The tangential electric field immediately outside the wall is

Es = −∂�l

∂s
= λAsλ−1 sin λθ0, θ = θ0, (41a)

= −λAsλ−1 sin λθ0, θ = −θ0, (41b)

and, as discussed in Sec. II, this acts upon the charge cloud associated with the induced zeta potential
ζ i (40). If the Debye length κ−1 is sufficiently small, we expect a Smoluchowski slip velocity just
outside the charge cloud, of magnitude

us = −ε f Esζi

μ
= − εs

κμ
A2s2λ−2λ2 cot λα sin2 λθ0, θ = ±θ0. (42)

For the corner of the membrane at the entrance to the pore, α = π /4 and λ = 2/3, with A given by
(38), so that the velocity is

us = − εs

aκμ
s−2/3

(
�φ

π

)2 (
π

h

)1/3

3−1/62−1/3, θ = ±θ0. (43)
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We can seek a solution of the Stokes equations for fluid flow around the corner which has the
required radial velocity us ∝ s2λ − 2, and look for a stream function ψ of the form2 (for m �= 0, 1, 2)

ψ = sm
[
B1eimθ + B2ei(m−2)θ

]
, (44)

where the Bi are constants. The fluid velocity is then

us = 1

s

∂ψ

∂θ
, uθ = −∂ψ

∂s
. (45)

However, we shall not proceed further with this local solution, since in Sec. V we consider full
numerical solutions of the governing equations.

Note that a direct comparison between us (43) and the slip velocity u (22) away from the the
edge of the hole indicates that u > us for s > 0.337h, so that any solution of the form (44) is only
useful very close to the corner.

V. NUMERICAL COMPUTATION OF EDDIES

The set of time-independent equations governing the electrical potential φ, the ionic number
densities ni, the fluid velocity u, and fluid pressure p consists of the Poisson equation (1), the ion
conservation equation (2), and the Stokes equations

−∇ p + μ∇2u − ∇φ

N∑
i=1

zi eni = 0, (46)

∇ · u = 0. (47)

We solve the coupled equations (1), (2), (46), and (47) by means of a finite volume numerical scheme
based upon the OpenFOAM CFD library.16 The surface charge density σ m in the absence of any
imposed field is set to zero, and a symmetrical electrolyte (N = 2, z1 = −z2 = 1) is considered, with
identical cationic and anionic mobilities. There is therefore complete symmetry about the plane of the
membrane, and no net flow through the hole. The relative permittivity of the electrolyte is εf /ε0 = 80,
where ε0 is the permittivity of free space, and that of the membrane is set in the computations to be
either εs/ε0 = 3.9, corresponding to silica, or εs = 0. The hole has radius a = 5 nm (a typical hole
size in silica17 or graphene18, 19), with aκ = 5, corresponding to an electrolyte of strength 95 mM (at
300 K). The results presented here were performed with a mesh spacing that varied smoothly from
κ−1/10 close to the membrane and hole, to κ−1 at the far outer boundary. The potential difference
applied to generate the flow was �φ = 1 mV, so that e�φ/kT ≈ 0.04: fluid velocities are everywhere
proportional to (�φ)2 as long as e�φ/kT is sufficiently small for the linearized Poisson-Boltzmann
equation to be valid, in which case the streamlines are independent of �φ. Further details of the
computational scheme are given by Mao et al.8

The difference in electrical potential between the two ends of the pore, at the wall of the
cylindrical pore, is �φc (34) when h � a and this analytic prediction is shown in Figure 4 as a
function of h/a. We see that the analytic result is in good agreement with computed results �φc, 0 (εs

= 0) for h/a < 0.4. Also shown are computations for a membrane with relative permittivity εs/ε0 =
3.9, which differ little from those for εs/ε0 = 0. If h/a is sufficiently small, the resistance of the pore
changes only slightly9 from that predicted for the electric field (5b) when h = 0. We therefore expect
the current along the centreline of the pore, well away from the edges, to be little changed, and the
electric field along the centreline is still (to a first approximation) −ẑ�φ/(aπ ) (8). The potential
difference between the ends (z = ±h/2) of the pore along the centreline should therefore be

�φx = �φ

π

(
h

a

)
, h � a. (48)

This too is shown in Figure 4, and we see reasonable agreement between theory and computation.
When εs/ε0 = 3.9, induced charges lead to electro-osmosis. Streamlines computed for the case

h = 0.4a are shown in Figure 5(a) and take the form shown schematically in Figure 6(a). Axial
symmetry implies that ABD and GFH in Figure 6(a) are cross-sections of the same toroidal eddy
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FIG. 4. The potential difference across the cylindrical pore, scaled by the total potential difference �φ between the two sides
of the membrane. Potential difference along the pore wall: ——— theoretical prediction �φc (34); – – – – �φc, 0 computed
for εs = 0; · · · computed for εs/ε0 = 3.9. Potential difference along the pore axis: - - - - - - - �φc, 3.9 theoretical prediction
�φx (48); – - – - – computed �φx, 3.9 for εs/ε0 = 3.9.
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FIG. 5. Numerically computed streamlines in the neighbourhood of the hole, aκ = 5, εs/ε0 = 3.9. Uncharged membrane of
thickness: (a) h = 0.4a; (b) h = 0.8a; (c) h = 0.84a; (d) h = a.
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FIG. 6. Schematic showing the boundaries of eddies in Figure 5. MA and GP represent the membrane surface at z = h/2; NC
and EQ the surface at z = −h/2. ABC and GFE represent the cylindrical surface of the nanopore. Stagnation points within
fluid (away from the walls) are at (a) O,D,H and (b) O,J,K. Axial symmetry implies that the eddies ABD and GFH in (a) are
cross-sections of the same toroidal eddy.

(and similarly for CBD and EFH). However, the eddy pairs ABCD and EFGH in Figure 5(a) are very
small. Flow near the corners A,C,E,G is a combination of the horizontal velocity (22) predicted on
the upper and lower surfaces of the membrane, and the local corner flow (43), which flows upwards
along BA and FG, thereby causing the horizontal flow to separate at A and G (and similarly at C
and E). At fixed position, the uniform flow (22) varies as h−1, whereas the corner flow (43) varies as
h−1/2. As h increases, the ratio of the corner flow to horizontal flow increases, and the eddies become
larger, so that the stagnation points D and H (or more correctly, stagnation lines, since the flow
has axial symmetry) move toward the central stagnation point at O. This is seen in Figure 5(b) for
h = 0.8a.

When h ≈ 0.84a the stagnation points D and H merge into O, and 8 eddies meet at O, as seen
in Figure 5(c). Any further increase in h causes the stagnation point to bifurcate into three points,
at O, J, and K, as seen in Figure 5(d) and shown schematically in Figure 6(b). Figure 5(c) shows
eddies for h = 0.84a, and the precise value for h at which the 8-fold stagnation point is formed lies
within the range 0.83a < h < 0.85a. Computations with larger grid size κ−1/5 in the vicinity of the
membrane gave streamlines that could not be distinguished from those in Figure 5, and the 8-fold
stagnation point was still formed at h ≈ 0.84a,

The Debye length when h = 0.84a and aκ = 5 is κ−1 = 0.238h. The corner flow discussed in
Sec. IV is valid only outside the charge cloud (i.e., for s > κ−1), in which region the corner flow
(45) is swamped by the velocity (22) parallel to the plane of the membrane. We are therefore unable
to see in Figure 5 regions close to the corners in which streamlines are symmetric about the local
coordinate θ = 0 (Figure 3).

Any asymmetry in the flow caused by a non-zero surface charge density σ m or by differences
between the mobilities of the ions causes a net flow from one side of the membrane to the other. If
this is weak, the eddies seen in Figure 5 persist, and the net flow has to snake its way between them,
as discussed by Jeffrey and Sherwood,2 Thamida and Chang,13 and Yossifon et al.14

VI. CONCLUDING REMARKS

We have shown that the system of induced charge electro-osmotic eddies in a cylindrical pore
can have a rich structure that varies markedly with pore aspect ratio. If flows created by induced
charge electroosmosis are strong compared to net motion through the pore, there is a danger that
fluid trapped in the eddies may become contaminated (or may degrade) over time, and lead to
contamination of samples passing through the pore. Such problems can be reduced by suitable
choice of pore geometry and imposed electric field strength, in order to control the ratio of eddy
velocity to volumetric flow rate through the pore.
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