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Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new
approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and
requires significant computational resources for data development, data analysis, and simulation. Computational modeling
has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches
have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and
their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to
disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several
aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We
discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle
in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the
environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized
knowledge of bioinformatics or systems biology.

INTRODUCTION

Plant metabolism represents an enormous source of bioactive
compounds with pharmaceutical and biotechnological importance.
Currently, most commercialized metabolites are extracted from
their native plant sources or are semisynthesized from metabolic
intermediates. However, the natural manufacturing process has
been overshadowed by low yield and numerous technical diffi-
culties (Xu et al., 2013b).

Nevertheless, the use of plant metabolites for industrial pur-
poses is growing, increasing the relevance of metabolic engi-
neering, an approach which seeks to redesign natural pathways
via the up- or downregulation of native genes or the introduction of
transgenes (Jarboe et al., 2010). While engineering prokaryotic
metabolism is a well-developed technology, its status in plants
lags behind (Morgan and Rhodes, 2002; Toya and Shimizu, 2013;
Xu et al., 2013b), mainly because of the extremely large diversity of
metabolites present within plants compared with other organisms
(Fernie et al., 2011). Such diversity implies a highly complex net-
work of metabolic pathways, requiring sophisticated over-arching
control by supercoordinated gene-metabolic interaction networks
(Aharoni and Galili, 2011). An additional complication not faced in
the prokaryotic cell is the number of distinct compartments
present, some of which make plants more complicated than
animal systems (large vacuoles and metabolically active plastids)
(Heinig et al., 2013; Sweetlove and Fernie, 2013). Plants are also

heterogeneous at the organ level, with recognizable energy sources
and sinks and a well-defined transport system (Stitt et al., 2010).
Physiological complexities aside, the conventional paradigm of

first identifying the relevant gene targets may need to be re-
thought. From the experimental point of view, the dominant idea
was and partially still is that in every metabolic pathway there is
a reaction or reactions that limit flux, mainly governed by irre-
versible enzymes, which play a key role in the regulation of me-
tabolism (Morandini, 2009, 2013). However, the experimental
evidence is incompatible with this assumption. For instance, ge-
netic studies using gene dosage mutants or reverse genetics have
shown that pathway flux is often unaffected by small changes in
the level of enzymes catalyzing irreversible reactions (Flint et al.,
1981; Morandini, 2009). Other studies have also predicted that
manipulating a single enzyme is likely to give disappointing results
(Small and Kacser, 1993). In summary, it is possible to imagine
conditions where only a single reaction affects the rate of a path-
way, although experimental studies show that this is not the usual
case. In fact, attempts to analyze the kinetics of multireaction
systems have shown that more than one enzyme can affect the
rate of a pathway (Fell, 1997), and efforts to replace the concept of
the rate-limiting step have led to introduction of a new approach
known as metabolic control analysis (Kacser and Burns, 1973;
Heinrich and Rapoport, 1974; Heinrich et al., 1977).
It is also important to distinguish the difference between “flux

control” and “flux regulation,” which are distinct properties of
complex metabolic systems. Flux control is defined as the ex-
tent to which a change in enzyme activity alters the flux through
a pathway, whereas flux regulation refers to the response of
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a metabolic process to an external perturbation (Fell, 1997). To
minimize the effect of external perturbations, regulatory en-
zymes can regulate intermediate concentrations or control flux,
and in this sense both concepts are connected to metabolic
homoeostasis. These two concepts play a key role in linking the
knowledge of molecular details to a system-level understanding.
Therefore, an increased understanding of them could promote
systemic approaches toward metabolic engineering.

Furthermore, metabolic pathways are highly branched and
most of the time multiple enzymes contribute to flux control
through a pathway (Peterhansel et al., 2008; Morandini, 2013).
Significant interventions in flux are therefore likely to require the
manipulation of not one, but several sites in the network (Stitt
et al., 2010; Kruger and Ratcliffe, 2012). Thus, the development
of a successful engineering experiment will require not just
a determination of which gene/s are the optimal candidates (Lee
et al., 2011), but also the gaining of an improved understanding
of the regulatory circuits governing cellular metabolism (Curien
et al., 2009). Advances in metabolic modeling are now beginning
to address these issues (Yuan et al., 2008; Stitt et al., 2010).

The aim of this review is to highlight the increasing importance of
modeling in understanding metabolism and the role it can play in
plant metabolic engineering. The initial section discusses the po-
tential of metabolic modeling in the context of plant systems biology,
and an outline is given of the systems workflow required for plant
metabolic modeling. In subsequent sections, the relevant mathe-
matical modeling approaches are discussed, and an explanation is
offered of the software tools available for simulation purposes. We
then review the opportunities opened up by recent improvements in
modeling; finally, a description of the insights provided by modeling
into the metabolic engineering of plant central metabolism is given,
along with an outline of the challenges that still lie ahead.

SYSTEMS BIOLOGICAL APPROACH TOWARD
UNDERSTANDING PLANT METABOLISM

Systems biology has been defined as the study of the interactions
between genes, metabolites, proteins, and regulatory elements
and seeks to elaborate integrative models and/or networks (Yuan
et al., 2008). Its overriding focus is to take a holistic view of the
structure and dynamics of organisms, rather than to pursue the
arguably more conventional reductionist approach. Systems bi-
ology has helped in summarizing huge disparate data sets and
testing their consistency (Xu et al., 2013b). Efforts to adopt this
approach for plant studies have led to the concept of the “in silico
plant” (Raikhel and Coruzzi, 2003). In fact, significant improvements
in the available resources for systems biology have made it more
realistic to take a systemic approach toward studying not just model
plants (Arabidopsis thaliana) but some economically important crop
plants such as rice (Oryza sativa) (Chandran and Jung, 2014).

Some recent achievements of the plant systems biology ap-
proach have been reviewed by Keurentjes et al. (2011). The
applications include analyses of the abiotic stress response
(Cramer et al., 2011), of the host/pathogen interaction (Elena et al.,
2011; Pritchard and Birch, 2011), of nitrogen nutrition (Gutiérrez,
2012), and of general metabolism (Sweetlove et al., 2003).

At the simplest level, a metabolic model captures the connec-
tivity of the metabolic network of the target organism. Depending

on the type of model and the data that have been embedded,
a metabolic model can quantify the flux yield, predict alternative
routes through which fluxes can move, and suggest possible
novel routes (Pitkänen et al., 2010). Constructing a metabolic
model using a systems biological approach requires the four
steps described in the following paragraphs.

1. Structural Establishment of the Metabolic Network

Literature sources or online databases (Table 1) provide much
of the information required for establishing the structure of
a metabolic network. A “pathway mapping” tool developed for
the KEGG database produces a graphical display of the lo-
cation of various metabolites in the relevant metabolic network
(Fiehn et al., 2011). The ever-expanding volume of omics data
requires the elaboration of new databases and associated
analytical tools to allow for the efficient archiving, access, and
sharing of data (Gutiérrez et al., 2005). Few such plant-centered
databases are in existence, and many of the necessary tools are
still under development (Go, 2010; Schreiber et al., 2012). Bio-
informatics efforts have been intensified to address this gap and
examples are the Golm Metabolome Database, which provides
access to custom mass spectral libraries, metabolite profiling
experiments, as well as additional information and tools (Kopka
et al., 2005); MetaCrop, which is a manually curated resource of
high-quality data devoted to crop plant metabolism (Schreiber
et al., 2012); and the Plant Metabolic Network, which contains
links to plant metabolic pathway databases (Zhang et al., 2010).
Some of the currently available databases are species-

specific, but others are more general (Table 1). Prominent among
the former are MoTo DB, a metabolic database for tomato
(Solanum lycopersicum) (Grennan, 2009), and AraCyc, a bio-
chemical pathway database for Arabidopsis (Mueller et al., 2003).
Nevertheless, there are usually gaps in which neither the liter-

ature nor databases can provide the required information. This is
especially common when it comes to inter/intracompartmental
transport reactions along with their related transport sys-
tems, as information in this area remains, for the most part,
uncharacterized.

2. Conversion from Reconstruction to Mathematical Model
and Visualization

While step one provides a static view of the metabolic network,
mathematical methods are required in order to process and in-
tegrate heterogeneous omics data and to build a comprehensive
metabolic model (Kurata et al., 2007; Ghosh et al., 2011). De-
pending on the mathematical model chosen, the outcome of
integrating mathematical formulations with available information
can be used to simulate metabolism (Gómez-Galera et al., 2007;
Stitt et al., 2010). Computational platforms have been developed
to make the mathematical analysis and visualization convenient.
In plants, however, the complexity of the metabolic network has
held back the development of computer-aided synthesis
methods (Mendes, 2002), but this sort of bioinformatics platform
is quite widely used for modeling in microorganisms. Fortu-
nately, the mathematical approaches are developing rapidly
and efforts have been intensified to develop plant-specific
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platforms, allowing us to analyze and model plant metabolic
pathways (Libourel and Shachar-Hill, 2008; Stitt et al., 2010). In
subsequent sections, we shall discuss the different methods of
modeling and the implications of computer aided platforms and
toolboxes.

3. Validation

A valid model faithfully reflects the biologically realistic behav-
ior of the metabolic network (Arnold and Nikoloski, 2011). Of
course, errors can arise during the elaboration of the structure
and/or during the embedding of quantitative data (Collakova
et al., 2012). Any model therefore must be subjected to iterative
hypothesis generation, followed by both wet and dry (in silico)
experimental hypothesis testing (Klipp and Schaber, 2006). Lack
of concordance between observed and predicted behavior re-
quires reelaboration of the model to remove inconsistencies
(Pitkänen et al., 2010). A model becomes acceptable as soon as
the outcome of future experiments can be predicted (Wiechert,
2002). It is also an overriding priority to continuously update the
validated model by reference to new findings. Such findings may
include new locations for specific processes or the discovery of
formerly unknown reactions (Kruger et al., 2012). An example in
which a validated model was revised and updated occurred

during a recent study by Wang et al. (2012). Using the validated
model of C4GEM (de Oliveira Dal’Molin et al., 2010b) for their
study, they realized that there were missing reactions in the
xylose pathway and that the model could be improved by in-
cluding them.

4. Analytical Investigation

A valid model can be regarded as a virtual laboratory, so predictions
can bemade much faster and more cheaply than by conducting the
necessary wet lab experiments (Rohwer, 2012). Where the intention
is to manipulate a given pathway to produce a specific outcome,
applying the model can potentially generate a variety of alternative
strategies, which can lead to a directed experimental validation
(Copeland et al., 2012). However, we should bear in mind that the
computational model represents an in silico prediction of what is
supposed to occur in reality and it is the biologist who can de-
termine appropriate experiments and the approach to be used.
To give an example of how modeling can contribute to ex-

perimental analysis, we refer to a study of photosynthesis (Zhu
et al., 2007), during which an in silico approach was applied in
order to identify the optimal protein-nitrogen distribution among
38 enzymes involved in photosynthetic carbon metabolism.
If the total protein-nitrogen available to the enzymes is fixed,

Table 1. Major Public Databases Containing Metabolic Information on Plants

Database Comment

General
Expasy Provides access to databases and software tools in areas such as omics, phylogeny, systems

biology, population genetics, etc.
Golm Metabolome Database Enables exchange and presentation of metabolomic and related information for metabolite identification.
KEGG An exclusive database covering a wide variety of organisms. These pathways are hyperlinked

to metabolite and protein/enzyme information.
MetaCrop Includes manually curated data of metabolic pathways in major crops. It allows automatic

data export for creation metabolic models.
MetaCyc A collection of model organism databases of metabolic pathways, including reactions,

enzymes, genes, and substrate compounds.
PlantCyc Includes manually curated or reviewed information about shared and unique metabolic

pathways present in over 350 plant species.
Plant Reactome A manual curated plant pathway database which hosts plant metabolic and

regulatory pathways.
Pubchem Database of chemical structures of small organic molecules. Linked with NIH

PubMed/Entrez information.
SolCyc Pathway Tools-based PGDBs for tomato, potato, tobacco, pepper, and petunia that

were created at the Sol Genomics Network.
Wiki Pathways An open, collaborative platform that enhances and complements ongoing efforts,

such as KEGG, Reactome, and Pathway Commons.
Species-specific

Arabidopsis Reactome Initially developed to represent biological processes in Arabidopsis, but which
has been extended to include information about other plant species.

AraCyc Includes metabolic data for Arabidopsis. The pathways may be unique to
Arabidopsis or shared with other organisms.

GRAMENE Pathway databases for rice, maize, Brachypodium, and sorghum.
MedicCyc Pathway database for Medicago truncatula containing more than 400

pathways with related genes, enzymes, and metabolites.
MoTo DB A metabolic database for tomato
PoplarCyc Includes metabolic data for the model tree P. trichocarpa and a few other

related Populus species and hybrids.
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any increase in the amount of some enzymes will require com-
pensatory decreases in the amount of other enzymes. An ex-
perimental approach to identify the optimal protein-nitrogen
distribution would involve prohibitive testing of a huge number
of permutations. In contrast, the mathematical model developed
by Zhu et al. (2007) tackled the question efficiently using an in
silico approach. The model mathematically captured all the
enzyme-catalyzed reactions of the Calvin-Benson cycle and end
product processes, namely, starch and sucrose syntheses, as
well as its interplay with photorespiration. Using an evolutionary
algorithm, partitioning of a fixed total amount of protein-nitrogen
between enzymes was allowed to vary in the model. The model
successfully simulated the dynamics of photosynthetic carbon
fixation and the metabolite concentrations. The conclusion was
that manipulation of enzyme partitioning could improve carbon
fixation without any increase in total protein-nitrogen investment
in photosynthetic carbon metabolism (Zhu et al., 2007).

MATHEMATICAL MODELING METHODS

Here, we summarize methods that are being used in the context
of plant metabolic modeling. To make the topic more approach-
able, we will avoid mathematical or biophysical detail. Table 2
provides definitions of a number terms commonly used in com-
putational modeling.

Network Models

The most basic systems approach toward understanding a cel-
lular biological process is establishing a network model. A net-
work can be described as a graph in which biological entities such
as metabolites, genes, transcripts, and proteins correspond to
nodes, and the interactions between nodes, such as biochemical
transformation, coexpression, and protein-protein interaction,

correspond to edges (Yonekura-Sakakibara et al., 2013). The core
networks in plant systems biology are gene-to-metabolite, pro-
tein-protein interaction, transcriptional regulation, gene regulation,
and metabolic networks (Yuan et al., 2008). Network analysis
refers to the use of algorithms to identify structurally important
elements or network parts and graph-theoretic models, which use
statistical methods to identify and infer complex functional inter-
actions among the components (Yonekura-Sakakibara et al.,
2013). However, this topological approach does not incorporate
the dynamic behavior of the system, which requires other meth-
ods (Wiechert, 2002), as further described below.

Stoichiometric Models

Stoichiometric models (Figure 1) are often applied to large
metabolic networks (;1000 reactions) by imposing constraints
to define the space of allowable metabolic flux states (Papp
et al., 2011). Imposing such constraints allows the achievable
flux distributions to be predicted. The basic feature of the
stoichiometric approach is the assumption that a steady state
prevails (Steuer, 2007). The three leading analytical approaches
for characterizing a steady state flux distribution are flux bal-
ance analysis (FBA) (Figure 1E, ii), elementary mode analysis
(EMA), and extreme pathway analysis (EPA) (Figure 1E, iii)
(Schuster et al., 1999; Papin et al., 2004; Llaneras and Picó,
2008). Some further information regarding EMA and EPA is
provided in Figure 2.

Genome-Scale Metabolic Models

The increasing volume of annotated genome sequence has
allowed for the scaling-up of some metabolic models to form
genome-scale metabolic models (Lee et al., 2011). In the ideal
genome-scale metabolic model, every gene-to-protein-to-reaction

Table 2. Definitions of Terms Used in Metabolic Modeling

Term Definition

Constraint A restriction that must be satisfied for a solution to be permitted. It limits and defines
a space where the feasible flux distributions occur.

Elementary modes Unique sets of nondecomposable reactions within any network that are able to both
sustain a steady state flux and operate independently.

Extreme pathways Unique and minimal sets of reactions within any network that correspond to the
extreme rays of a polyhedral cone and therefore completely characterize the
steady state capabilities of metabolic networks.

Flux distribution A specific set of reaction fluxes in a network.
Isotopic labeling experiment An experiment in which isotopically labeled precursor (generally 13C-labeled) is

fed to the target, and the subsequent redistribution of the label is measured as
a time course or after the system has reached an isotopic steady state.

Metabolic control analysis A means to investigate the sensitivity of the steady state properties of a network
by quantitative determination of enzymatic control coefficients.

Network robustness The potential of a network to tolerate and respond to perturbation cause by a
genetic and/or an environmental change.

Objective function A function that must be maximized or minimized, reducing the solution space and
defining fluxes that satisfy the objective of the model.

Steady state The state wherein the quantity of a compound being produced is equal to the
quantity being consumed.

Stoichiometric matrix A matrix wherein, for each reaction, the stoichiometry of the metabolism is represented
by a column and each metabolite is represented by a row.
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association for each metabolic reaction in every pathway of a re-
constructed network is represented (Collakova et al., 2012). The
size and complexity of genome-scale metabolic models often
imply that potential behavior can only be analyzed using con-
straint-based methods, in particular FBA. So although genome-
scale metabolic model has become a popular modeling approach
in recent years, it should not be considered as an independent
mathematical model, but rather as an extended form of existing
modeling platforms.

Steady State Metabolic Flux Analysis

Metabolic flux analysis (MFA) relies heavily on data acquired from
experiments in which an isotopically labeled precursor (generally 13C)
is fed to the target, and the subsequent distribution of label into
metabolic intermediates and end-products is analyzed when the
system has reached a steady state (Figure 1E, iv). A model of the
target metabolic network is used to predict the redistribution of
the labels in a steady state situation. The experimentally observed

Figure 1. Steady State Modeling Approaches.

(A) A model reaction consisting of three metabolites (M ), three exchanges (b), and three internal reactions (v).
(B) The reaction network represented in a stoichiometric matrix.
(C) The network rewritten in matrix form based on the equations.
(D) In a metabolic steady state, the product of the stoichiometric matrix (S) and the flux vector (v) returns a null vector (i.e., S.v = 0). Mass balance
equations for each metabolite have been represented here.
(E) Constraints (shown in gray) and solution space. With no constraints, the flux distribution of a biological network reconstruction may lie at any point in
a solution space (i). FBA (ii) solves the equation S.v = 0 by calculating intracellular fluxes from the measurement of a limited number of input and output
fluxes. The solution (black dot) requires the definition of an objective function. By applying EMA and EPA (iii), the irreversible fluxes are constrained to be
non-negative (v$ 0), then the resulting space of flux distributions is a convex polyhedral cone, which represents the flux space of the metabolic system,
containing all allowable flux distributions. MFA (iv) provides information concerning the contribution of a measured reaction (m) to the operational state
of overall unmeasured fluxes and computes a metabolic flux vector specific for a particular growth condition (black dot).
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pattern is compared with the predicted labeling pattern and ad-
justments are made in the fluxes of the model until the agreement
between the predicted and observed measurements becomes as
close as possible. This process is repeated many times and finally
leads to hundreds of flux maps from which it is then possible to
deduce the model that provides the best prediction for the system
(Kruger et al., 2012).

Kinetic Models

A kinetic model dynamically defines the metabolic network
and, hence, is the most detailed and predictive mathematical

description. Kinetic modeling requires the input of the dynamic
behavior of enzymes and is generally applied to small portions of
the metabolic network (10 to 50 reactions) (Morandini, 2009).
Unlike the steady state stoichiometric approach, dynamic
models calculate the time-dependent behavior of the system in
terms of both fluxes and metabolite concentrations (Rohwer,
2012). In this approach, each reaction is defined in terms of an
enzyme that catalyzes the conversion of its substrate into
a product and reactions are modeled using differential equations
(representing reactions rates) such as Michaelis-Menten kinet-
ics. First, values are specified for the kinetic parameters vmax,
Km, the reaction stoichiometry, and the initial metabolite con-
centrations. Then, the velocity (v) of the reaction can be nu-
merically simulated according to the Michaelis-Menten equation
(vmax[S])/(Km + [S]). Given the initial concentration of each me-
tabolite, it is possible to simulate the system by considering the
relevant rate equations and kinetic parameters (Schallau and
Junker, 2010). However, since precise kinetic formulae are not
available for many enzymes, assumptions must be made from
heterologous systems or the literature (Sweetlove et al., 2008). A
further challenge is to fit parameters to ensure a unique solution
(Schallau and Junker, 2010). A reliable kinetic model can identify
key control points via metabolic control analysis (Rohwer, 2012).
In well-defined networks, where full information regarding in-
dividual enzyme-substrate kinetics is available, applying meta-
bolic control analysis leads to the control coefficients, which
predict the response of the system to perturbations (Toya and
Shimizu, 2013). In instances where the kinetic parameters of
a reaction (or reactions) are not known or, indeed, even the form
of the kinetic relationship is not defined, control coefficients can
be determined experimentally by altering the amount of a spe-
cific individual enzyme and measuring the impact on flux or
other output variables of the network (Cascante et al., 2002).

MODELING SOFTWARE

The support of software toolsets is required for each step of the
modeling workflow. This issue is particularly critical for model
analysis and simulation (Ghosh et al., 2011). Advances in these
toolsets enable us to assemble data into models in more efficient
ways. MATLAB and the user-friendly tool Complex Pathway
Simulator (COPASI) are perhaps the two most commonly used
toolsets (Libourel and Shachar-Hill, 2008; Ghosh et al., 2011).
MATLAB has been exploited for FBA in Arabidopsis (de Oliveira
Dal’Molin et al., 2010a) for analyzing flux distributions in the leaves
of C4 species (de Oliveira Dal’Molin et al., 2010b) and for the
analysis of storage metabolism in oilseed rape (Brassica napus)
(Hay and Schwender, 2011a, 2011b). COBRA, a MATLAB-based
toolbox designed for the constraint-based prediction of cellular
behavior (Becker et al., 2007), has been applied to study both
storage metabolism in the developing barley (Hordeum vulgare)
endosperm (Grafahrend-Belau et al., 2009a) and the metabolic
properties of B. napus seed (Pilalis et al., 2011). COPASI is an
open-source software application for the simulation and analysis
of biological processes such as biochemical reaction networks,
cell-signaling pathways, and regulatory networks (Hoops et al.,
2006). An example of its use is the detailed kinetic model of the
aspartate-derived amino acid pathway in Arabidopsis (Curien

Figure 2. The Matrix and Figures Representing the Set of Three Ele-
mentary Modes and the Set of Two Extreme Pathways of the Network
Depicted in Figure 1A.

With respect to the equation S.v = 0, S denotes the matrix formed by
regarding each elementary mode (EM) (A) or each extreme pathway (EP)
(B) as a column, and v is the vector containing their respective activity.
Notice that the two EPs are also EMs, but the EM3 can be expressed as
a combination of the others. This occurs because EPs are a subset of
EMs, but no EP can be reconstructed as a linear combination of other
EPs. Each EM represents a stoichiometrically and thermodynamically
feasible route to the conversion of substrates into products, which
cannot be decomposed into simpler routes. EMA reveals the adaptability
and robustness of the metabolic network and EPA represents the mar-
gins of the derived steady state flux cone.

3852 The Plant Cell



et al., 2009). Unlike COPASI, the use of MATLAB requires
a background knowledge of mathematics and programming, but
offers a substantial level of flexibility (Alves et al., 2006). A Python-
based modeling tool known as ScrumPy has been developed to
combine the advantages of COPASI and MATLAB (Poolman,
2006), and this has been successfully applied to construct and
analyze genome-scale metabolic models of Arabidopsis (Poolman
et al., 2009; Cheung et al., 2013) and rice (Poolman et al., 2013).
Other tools for FBA include CellNetAnalyzer (Klamt et al., 2007) and
FBASimViz (Grafahrend-Belau et al., 2009b), which provides
a graphical front end to the COBRA toolbox. One can also find
modeling studies, which have opted to apply other analytical ap-
proaches such as the General Algebraic Modeling System
(Lakshmanan et al., 2013). To visually explore fluxes from experi-
mental or simulated studies, tools such as FluxMap can be em-
ployed (Rohn et al., 2012).

In addition to simulation and analysis toolkits, software plat-
forms are required to facilitate the exchange of data created by
different researchers or different toolkits (Libourel and Shachar-
Hill, 2008; Ghosh et al., 2011). To meet this requirement, three
major standards have been developed, namely, SBML (Hucka
et al., 2003), SBGN (Le Novère et al., 2009), and MIRIAM (Le
Novère et al., 2005). Plant modelers have also started to apply
these platforms for their models, which makes it convenient to
exchange models and will increase the efficiency of future plant
metabolic modeling. With rare exceptions such as the MIRIAM-
compliant model of Arabidopsis (Mintz-Oron et al., 2012), many
recent plant flux models have been made available in SBML,
including a barley model (Grafahrend-Belau et al., 2009a;
Grafahrend-Belau et al., 2013), AraGem (de Oliveira Dal’Molin
et al., 2010a), C4GEM (de Oliveira Dal’Molin et al., 2010b), B.
napus models (Hay and Schwender, 2011a, 2011b; Pilalis et al.,
2011), the maize (Zea mays) model (Saha et al., 2011), the model
of heterotrophic Arabidopsis cells in culture (Cheung et al., 2013),
and a diel model that integrates temporally separated metabolic
networks in C3 and Crassulacean acid metabolism (CAM) leaves
(Cheung et al., 2014). Many manually curated as well as com-
putationally derived draft models represented in SBML and par-
tially represented in SBGN can be found in BioModelsDB (Li et al.,
2010).

DEVELOPMENTS IN PLANT METABOLIC MODELING

Further details concerning FBA, kinetic modeling, MFA, and genome-
scale metabolic modeling have been provided in a number of recent
reviews: Sweetlove and Ratcliffe (2011), Rohwer (2012), Kruger et al.
(2012), and Collakova et al. (2012), respectively. Here, we discuss
attempts to improve their effectiveness and the challenges that still lie
ahead.

Network Models

The ever-increasing amount of high throughput data has opened
new horizons in the application of purely structural network-based
approaches for studying plant metabolism. One of the latest
developments for network-based analysis of plant metabolites is
correlation-based networks (CNs). This approach can be readily
applied in plant science to gain novel insights into the complex

regulation of biochemical reactions (Toubiana et al., 2013). De-
pending on the biological question to be answered and the type
of data being studied, the CNs can help to identify regulatory
mechanisms between distinct metabolic pathways in response to
perturbation and to indicate the existence of uncharacterized
metabolic pathways or to highlight phylogenetic relationships
(Sulpice et al., 2013). For instance, CNs derived from metab-
olomics and transcriptomics data collected during time-resolved
experiments of Arabidopsis rosette leaves and roots were used to
study allosteric regulations in Arabidopsis and led to the identifi-
cation of flavonoid biosynthetic genes (Sulpice et al., 2010). In
a more recent study by Sulpice et al. (2013), the same approach
was applied for studying the impact of carbon and nitrogen
supply on metabolism/biomass interactions. A panel of 97 ge-
netically different Arabidopsis accessions was grown in three
different environmental conditions. CNs were created from the
genotype-dependent variation in each condition to reveal sets of
metabolites that indicated coordinated changes across ac-
cessions. The findings indicated that the networks were mostly
specific for a single growth condition and the overall conclusion
was that robust prediction of biomass across a range of con-
ditions would require condition-specific measurement of meta-
bolic traits to consider the effect of environment-dependent
changes on the underlying networks (Sulpice et al., 2013).

Stoichiometric Models

EMA and EPA have been used to develop effective metabolic
engineering strategies in microorganisms (Schuster et al., 2000;
Tomar and De, 2013). However, their application for pathway
analysis of large and highly entangled metabolic networks leads
to the problem of the combinatorial explosion of possible routes
across the network (Klamt and Stelling, 2002; Dandekar et al.,
2003). Even though methods have been suggested to tackle
larger systems by using these approaches (Dandekar et al., 2003),
neither have been much employed for analyzing plants, most
likely because their application to a larger metabolic network
presents such a computational challenge (Klamt and Stelling,
2002). However, a comparison between EMA and MFA of B.
napus cells indicated that the network structure described by the
EMA captured a significant part of the metabolic activity in this
biological system (Beurton-Aimar et al., 2011). The combination of
EMA with kinetic modeling has proved successful for studying
sucrose synthesis in sugarcane (Rohwer and Botha, 2001), and
the combination of EMA with MFA was found informative for
modeling oil synthesis in B. napus (Schwender et al., 2004).
Moreover, using EMA, Steuer et al. (2007) outlined the structural
and stoichiometric properties of the tricarboxylic acid (TCA) sys-
tem. Aiming for transition from structure to dynamics of the sys-
tem, they established a structural kinetic model of TCA.
Considering recent publications, it is apparent that among

stoichiometric approaches, FBA has dominated the general
trend in plant modeling studies. A successful FBA model relies
on a complete and correct list of enzymatic reactions and more
importantly the accuracy of the experimentally measured con-
straints (Sweetlove et al., 2013), which in many cases are not
available for plants. The other major challenge of FBA in plants is
that they are exposed to a wide range of environmental conditions.
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Therefore, a realistic description of the multiple behaviors of
the cells likely will require multiple and more complex objec-
tive functions (Collakova et al., 2012). Another obstacle is the
current insufficient knowledge regarding the constraints af-
fecting all species and all environmental condition (Allen et al.,
2009). A range of different objective functions can be used in
FBA, including maximizing ATP yield per unit flux, minimizing
energy usage, minimizing substrate uptake (at fixed biomass
efflux), minimizing reaction steps or total flux, and maximizing
biomass yield per total flux. However, none of these objective
functions are consistently successful in predicting growth
rates (Chen and Shachar-Hill, 2012).

In plant FBA modeling, the most popular constraint is the
requirement to synthesize biomass of appropriate proportions
and at a certain rate. The objective function is usually based on
either minimization of the total reaction fluxes in the network or
maximization of the carbon conversion efficiency (Table 3). A
problem that arises here is that net biomass synthesis con-
sumes a small proportion of the total energy budget. Therefore,
when FBA is constrained solely by biomass synthesis, the fluxes
through the energy-transforming pathways are greatly neglected
(Sweetlove et al., 2013). Hence, because of the major energetic
demand due to transport costs and cell maintenance, the bio-
mass constraint alone is not sufficient to predict realistic fluxes
in central heterotrophic metabolism of plant cells (Cheung et al.,
2013). Accordingly, when Cheung et al. (2013) studied the effect
of different constraints and objective functions on the accuracy
of flux prediction by a FBA model of heterotrophic Arabidopsis
cells in culture, they found accounting for energy costs (transport

and maintenance costs) in the network system to be more im-
portant than the choice of objective function. In this regard, they
developed a method to account for both the ATP and reductant
costs of cell maintenance on the basis of the measured flux ratio
between the oxidative steps of the oxidative pentose phosphate
pathway (OPPP) and glycolysis.
Another issue is that while FBA is solely constrained by bio-

mass synthesis, flux through the OPPP is absent in the vast
majority of plant FBA models. Considering that these models
account for the synthesis of biomass in sufficient quantities, this
illustrates that the optimizing algorithm chooses other dehydro-
genase enzymes to satisfy the NADPH demand of metabolism
(Sweetlove et al., 2013). Cheung et al. (2013) show that the
presence of thermodynamically implausible transhydrogenase
cycles in the models can also lead to the absence of a predicted
OPPP flux. Constraining these cycles to zero leads immediately to
non-zero OPPP fluxes. Yet, there are studies showing that FBA, in
its current standard form, has been very effective in predicting
metabolic fluxes in plants. For instance, it was shown that FBA
can predict net CO2 evolution in a range of plant tissues and in
response to environment (Sweetlove et al., 2013). More in-
terestingly, by applying a set of appropriate constraints, the FBA
framework has been used to establish a more representative
model of leaf metabolism by solving the two phases of day and
night photosynthetic cycles as a single optimization problem (a
diel flux balance model). Applying only minimal changes to the
constraints of this model enabled it to accurately capture CAM
over a diel cycle (Cheung et al., 2014). Other studies have also
shown that FBA has the capability to establish a condition-specific

Table 3. Summary of Objective Functions Used in the Literature to Optimize Plant FBA Models

Species Model Name Reference Objective Function

Arabidopsis – Poolman et al. (2009) Minimize total flux
Arabidopsis AraGEM de Oliveira Dal’Molin et al. (2010a) Minimize uptake of biomass rate (photon for

photosynthesis/photorespiration and sucrose for
heterotrophic metabolism)

Arabidopsis – Mintz-Oron et al. (2012) Minimize metabolic adjustment (MOMA)
Arabidopsis – Cheung et al. (2013) 25 combinations of five objective functions, including

minimization of overall flux, maximization of biomass,
minimization of glucose consumption, maximization of
ATP production, and maximization of NADPH
production

Arabidopsis Diel model Cheung et al. (2014) Minimize total flux
Barley – Grafahrend-Belau et al. (2009a) Maximize growth (linear optimization)

Minimize overall flux (quadratic optimization)
Barley – Grafahrend-Belau et al. (2013) Minimize carbon uptake (linear optimization)

Minimize overall flux (quadratic optimization)
B. napus bna572 Hay and Schwender (2011a), (2011b) Flux balance: minimize substrate and light uptakes

Flux variability: minimize and maximize each reaction
while objective function is fixed

B. napus – Pilalis et al. (2011) The actual biomass production based on measurements
from the literature

Maize iRS1563 Saha et al. (2011) Maximize flux of biomass reaction
Maize, rice, sorghum, sugarcane C4GEM de Oliveira Dal’Molin et al. (2010b) Same as in AraGEM
Rice – Poolman et al. (2013) Minimize total flux
Rice – Lakshmanan et al. (2013) Flux balance: maximize biomass production

Flux variability: minimize and maximize each reaction
while objective function is fixed
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metabolic model that is predictive under different environ-
mental conditions (Williams et al., 2010; Cheung et al., 2013;
Poolman et al., 2013). The extent to which FBA can successfully
predict networks fluxes in plant metabolism is surprising as this
method makes no reference to enzyme kinetic or regulation. This
implies that enzyme regulation (i.e., allosteric regulation and
posttranslational modifications) acts in such a way as to maintain
metabolic steady state rather than as a key driver of the flux
distribution across the network. Instead, it seems that the output
demands are the main drivers of the flux distribution in central
metabolism (Sweetlove et al., 2014).

Nevertheless, continuing efforts have been undertaken to
improve the technical and practical aspects of plant FBA. So far,
plant FBA models have been based primarily on data averaged
across different cell types (Sweetlove and Ratcliffe, 2011). Given
that many plant metabolic functions are based on interactions
between different subcellular compartments, cells, tissues, and
organs, the reconstruction of FBA models at the cell-type, tis-
sue-specific, or even organ specific level is a prerequisite for
their use in metabolic engineering (Grafahrend-Belau et al.,
2013). A clear shift in this area has occurred with an increasing
number of tissue-specific (de Oliveira Dal’Molin et al., 2010b;
Hay and Schwender, 2011a, 2011b; Lakshmanan et al., 2013)
and organ-specific (Mintz-Oron et al., 2012) FBA models or
a whole-plant scale model (Grafahrend-Belau et al., 2013).

A key issue that may arise in the use of constraint-based
models is the existence of alternate optimal solutions in which
the same objective function can be achieved through different
flux distributions. Flux variability analysis (FVA) is an efficient
strategy for calculating flux variability that can exist to achieve
optimal and suboptimal objectives (Tomar and De, 2013) and
has been used to explore the metabolic capabilities of oil me-
tabolism in a model of developing B. napus embryos (Hay and
Schwender, 2011a). FVA was also applied to understand how
oxygen influences the internal flux distributions in a model of
rice, representing two tissue types: germinating seeds and
photorespiring leaves (Lakshmanan et al., 2013). Cheung et al.
(2014) also applied FVA to determine the feasible range of all
fluxes in order to compare the predictions of a diel-modeling
framework with the fluxes predicted in a constant light model.

Genome-Scale Metabolic Models

Over the past decade, genome-scale metabolic modeling has
successfully provided unique insights into the metabolism of
prokaryotic microorganisms (Toya and Shimizu, 2013; Xu et al.,
2013a). Genome-scale models of prokaryotes can be analyzed
with a wide range of optimization based tools and algorithms for
rational design in metabolic engineering studies. Three of the
most popular tools are OptKnock, OptORF, and OptFlux, which
are used to simulate the simultaneous up- or downregulation (or
knockout) of multiple genes (Lee et al., 2011; Tomar and De,
2013). Yet in plants, the application of genome-scale metabolic
modeling is quite new, and it was not until 2009 that the first
genome-scale model for Arabidopsis cell suspension culture
(Poolman et al., 2009) became available. Since then, genome-
scale metabolic modeling has been applied to studying the
central metabolism of various C4 plants (de Oliveira Dal’Molin

et al., 2010b; Saha et al., 2011), Arabidopsis (de Oliveira Dal’Molin
et al., 2010a; Mintz-Oron et al., 2012), and rice (Poolman et al.,
2013).
In general, these plant genome-scale metabolic models have

proved to be functional, robust, and accurate in predicting
qualitative changes in selected aspects of central carbon me-
tabolism (Collakova et al., 2012; de Oliveira Dal’Molin and
Nielsen, 2013). However, in the context of metabolic engineer-
ing, there are some concerns when it comes to comparing the
application of genome-scale metabolic models to plants and
microorganisms as unlike microorganisms, plants generally are
not grown under a highly controlled environmental regime.
Broadly speaking, extending the network flux analysis results of
microorganisms to plant metabolic engineering studies will re-
quire some caution (Stitt et al., 2010). In this regard, Shachar-Hill
(2013) provided an illustrative study using the case of lysine
production, which is a metabolic engineering target common to
plants and microbes. Mathematical modeling methods have
been used successfully to improve lysine production in bacterial
fermentation systems of Corynebacterium glutamicum. These
tools have helped to identify possible metabolic bottlenecks and
significant changes, leading to significant increase in lysine
production. However, when the same approach was applied to
maize endosperm, the general conclusion was that such limi-
tations might not exist (Shachar-Hill, 2013). Another concern is
that although genome-scale metabolic models may have been
validated for selected aspects of central metabolism, they do
not usually extend to secondary metabolism (Collakova et al.,
2012). One exception to this can be found in a model of Arabi-
dopsis, which includes some aspects of secondary metabolism
(Mintz-Oron et al., 2012). Other challenges facing plant genome-
scale metabolic models include uncertainty about the sub-
cellular localization of reactions and the incomplete annotation
of plant genomes (Sweetlove and Fernie, 2013). Approaches
have been suggested for dealing with these challenges, such as
applying subcellular localization prediction software for com-
partmentalizing metabolic reactions and comparative genomics
for annotating undiscovered genomic content (Seaver et al.,
2012; Lakshmanan et al., 2013).
Integration of genome-scale modeling and transcriptomics or

proteomics data sets is another approach that can be used to
extend understanding of the complex metabolic behavior of
plants (Töpfer et al., 2012, 2013). An integrative approach was
used to predict the metabolic response of Arabidopsis to
changing conditions, and it was found that including the tran-
scriptomic data improved the predictions even though transcript
levels do not relate directly to fluxes (Töpfer et al., 2013). Further
analysis has shown that this approach can successfully bridge
the gap between flux- and metabolite-centric methods (Töpfer
et al., 2014). In general, the fact that plant genome-scale models
rely on constraint-based analysis makes them particularly suit-
able for defining the outer limits of a system’s behavior rather
than for making accurate predictions. An ideal progression
would be to build a genome-scale kinetic model of a metabolic
network, although the determination of kinetic parameters can
be expected to be difficult, perhaps even to the point where it
becomes too complex for calculation. A first attempt at building
a parameterized genome-scale kinetic model of yeast metabolism
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has been described by Smallbone et al. (2010). However,
this approach still requires extensive development before
it can be applied to higher eukaryotic systems. Given the
acceleration in the sequencing of diverse plant genomes and
the increasing interest in genome-scale metabolic models as
a tool for examining plant metabolic networks, there is every
reason to expect that with further improvement in available
data and accordingly further refinement of the models their
application will make an important contribution to plant metabolic
engineering.

MFA

Despite the fact that steady state MFA techniques have
addressed important questions, including the role of Rubisco in
developing seeds and the regulation of oil seed metabolism
(Kruger et al., 2012), their application to higher organisms (such
as plants and mammalian systems) faces challenges, such as
complex media formulations, subcellular compartmentation,
and slow labeling dynamics (Allen et al., 2009). The major ap-
plication of MFA to date has been on isolated cells or tissues,
where typically 50 to 100 reactions are monitored (Allen et al.,
2009). Technical difficulties in extending the analysis to plant
networks have encouraged the development of alternative
techniques (Sweetlove and Ratcliffe, 2011), such as the com-
binations MFA/EMA (Schwender et al., 2004) and MFA/FVA,
which have been applied to study developing B. napus embryos
(Hay and Schwender, 2011a, 2011b). Also, to avoid the long
time period that MFA requires to achieve isotopic steady state,
the isotopically nonstationary MFA (INST-MFA) technique has
been developed. INST-MFA analyzes the metabolite labeling
patterns obtained during the transient labeling period prior to
isotopic steady state. This technique has been successfully
applied to human cell studies (Murphy et al., 2013) and has
also been used to study photosynthesis (Young et al., 2011;
Szecowka et al., 2013). Steady state MFA is inapplicable to
photoautotrophic tissues because labeling with 13CO2 leads to
uniform labeling of all metabolites in the steady state (Roscher
et al., 2000). Therefore, while steady state MFA is a well-
established technique for studying heterotrophic and mixo-
trophic plant tissues, it cannot be used to study photosynthesis.
Moreover, achieving an isotopic steady state in leaves is in any
case unlikely because of complications introduced by the light-
dark cycle and the slow turnover of metabolite pools (Sweetlove
et al., 2013). To address this problem, Young et al. (2011) ap-
plied the INST-MFA technique to the cyanobacterium Syn-
echocystis. They obtained a comprehensive flux map for all the
Calvin-Benson cycle reactions and some side reactions, in-
cluding those catalyzed by Glc-6-phosphate dehydrogenase,
malic enzyme, and the photorespiratory pathway. In this analy-
sis, the metabolic pool sizes were fitted as free parameters,
whereas in the application of a similar approach, kinetic flux
balancing, to Arabidopsis, the model was constrained with
measured pool sizes obtained by mass spectrometry, as well as
nonaqueous fractionation to provide information on subcellular
pool sizes. In this study, Szecowka et al. (2013) deduced a set of
intracellular fluxes in intact illuminated Arabidopsis rosettes.
They analyzed the dynamic redistribution of label from 13CO2

supplied to leaves, from which a small set of fluxes were cal-
culated. This approach allowed them to determine kinetic
changes in isotope patterns of 40 metabolites of primary carbon
metabolism and to benchmark them against four classically
determined flux signatures of photosynthesis (Szecowka et al.,
2013).

Kinetic Modeling

Where there is enough reliable data a kinetic model can be both
comprehensive and predictive (Schallau and Junker, 2010;
Wang et al., 2014). An example is the kinetic model of mono-
lignol biosynthesis in Populus trichocarpa (Wang et al., 2014),
which was constructed by performing a comprehensive study to
obtain the reaction and inhibition kinetic parameters of all the
relevant enzymes based on functional recombinant proteins.
However, few such comprehensive models have been pre-
sented in plant metabolism because of the difficulty in obtaining
the required information (Wang et al., 2014).
Structural-kinetic modeling could provide a potential way

around this deficiency. This method represents a transitional
bridge between the stoichiometric approach and the various
dynamic kinetic models. Although it does not define actual
dynamic behavior, it describes the stability and robustness of
a specific metabolic state, and clarifies related interactions and
parameters governing the system’s dynamic properties. De-
tailed mathematical information, as well as the proposed
workflow for modeling, have been provided by Steuer et al.
(2006). A structural kinetic model consisting of 18 metabolites
and 20 reactions was established to analyze the Calvin-Benson
cycle. The model successfully extracted dynamic properties of
the system without relying on any particular assumption about
the functional form of the kinetic rate equations (Steuer et al.,
2006). The same approach has been applied to the TCA cycle in
plants (Steuer et al., 2007) to detect and quantify the dynamic
behavior.
A second approach to address the problem has been to as-

semble the kinetic model in a “top-down” fashion, amounting to
fitting the model to the observed metabolite concentrations and
fluxes. This approach was used to model the benzenoid network
in the petunia (Petunia hybrida) flower, leading to the successful
identification of the key flux-controlling steps (Colón et al.,
2010). A “bottom-up” kinetic modeling approach has been de-
scribed in modeling phloem flow in sugarcane (Saccharum of-
ficinarum) in the form of an advection-diffusion reaction framework.
This pioneering model can probably be adapted to other plant
species and perhaps even be extended to study xylem flow. It has
been suggested that the same framework could form the basis for
creating an integrated kinetic model of whole plant physiological
function (Rohwer, 2012).

NEW INSIGHTS INTO METABOLISM AND ENGINEERING
PLANT SYSTEMS

One of the most important goals of metabolic engineering is the
optimization of metabolic pathways for the production of in-
dustrially important metabolites. A major challenge is to accu-
rately select the target pathways and then to tune and optimize
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the expression level of each enzyme for the selected pathways
(Xu et al., 2013b). Models of plant metabolism have begun to
address this challenge by providing a more rigorous basis for
future genetic engineering. One such example is the identifica-
tion of some key regulatory points within the pathway of mono-
terpene metabolism in peppermint, using a dynamic MFA
approach. The model-derived results of this study have been
experimentally verified and demonstrated the potential to guide
the manipulation of metabolism to enhance monoterpene accu-
mulation (Rios-Estepa et al., 2008). Another example is provided
in a study on Arabidopsis seed, where the FBA model was used
to computationally design metabolic engineering strategies for
vitamin E overproduction (Mintz-Oron et al., 2012). A third ex-
ample is a kinetic model of monolignol biosynthesis in P. tricho-
carpa, which revealed mechanisms involved in the regulation of
lignin biosynthesis (Wang et al., 2014). This work provides
a platform for future engineering of lignin production as well as
improvements in other related areas such as the resistance to
biotic and abiotic stresses and new biomaterials production
(Wang et al., 2014).

The compounds synthesized within the plant cell can be
classified as either primary metabolites or secondary metabo-
lites (Bu’Lock, 1965; Luckner, 1972; Richter, 1978). Manipulation
of secondary metabolic networks typically is less complex than
that of primary metabolism, allowing them to be readily broken
down into more manageable entities and therefore offering more
favorable opportunities for pathway engineering (Sweetlove
et al., 2010). Moreover, despite the remarkable diversity of
secondary metabolism, they can still be organized into groups of
structurally related compounds. This facilitates the categorizing
of pathways and even their order to make their modeling more
tractable. Grouping metabolites of similar biosynthetic origin
forms the logical basis of organization of models of fluxes as
well as kinetic models (Morgan and Shanks, 2002; Fernie and
Morgan, 2013).

Nevertheless, secondary metabolite engineering in plants is
less developed than in other organisms, perhaps because of the
highly complicated network connections which link primary and
secondary metabolisms. For instance, some transcription fac-
tors associated with the production of a particular group of
secondary metabolites coactivate the expression of genes
encoding metabolic enzymes linked with primary pathways that
provide precursors to these secondary metabolites (Aharoni and
Galili, 2011). Such links have been responsible for frustrating
a number of attempts to engineer plant secondary metabolism,
producing unanticipated outcomes or trivial alterations to the
system (Colón et al., 2010; Stitt et al., 2010). Therefore, studying
the central metabolism network may promote the engineering of
both primary and secondary metabolism.

Photosynthesis

Numerous experiments have been conducted to enhance crop
productivity by genetic manipulation of photosynthetic electron
transport, RuBP regeneration, Rubisco activity, and the asso-
ciated flow to photorespiration (Peterhansel et al., 2008; Raines,
2011). These results reaffirm the importance of mathematical
models for a better understanding of photosynthetic reactions

(Arnold and Nikoloski, 2014). A functional model of photosyn-
thesis should include not only the individual metabolic steps, but
also the major regulatory mechanisms affecting these steps.
Such comprehensive models ideally would predict the photo-
synthetic metabolic network response to environmental or ge-
netic perturbations and would have implications for the
redirection of carbon to high value natural products and ul-
timately the improvement of crop yield (Szecowka et al., 2013;
Zhu et al., 2013).
Although many aspects of photosynthetic networks have been

subjected to modeling studies, the Calvin-Benson cycle has
become a favored target, as it is the primary pathway in plants,
producing starch and sucrose from CO2 (Arnold and Nikoloski,
2014). However, a neglected aspect of the C3 photosynthesis
network is the control of flux from the Calvin-Benson cycle to the
output pathways of starch, sucrose, isoprenoids, shikimate, and
nucleotides. Because of this, it is difficult to predict in a com-
prehensive fashion the way the relative flux to these pathways
changes during development or in response to environmental
changes (Raines, 2011). Nevertheless, the existing models po-
tentially provide a good starting point for extending and im-
proving future photosynthesis models. In this regard, Arnold and
Nikoloski (2011) compared 15 Calvin-Benson cycle models as-
sembled over the past 30 years and provided a detailed classi-
fication on the basis of the model boundaries, the level of cellular
organization, the complexity of the kinetics, and the regulatory
processes that were included. They ranked the models on sev-
eral criteria, including sensitivity, stability, robustness, and the
residual sum of squares at the resulting steady states. Their
target was to identify model candidates that provided quantita-
tively accurate predictions for use in metabolic engineering.
Based on their analysis, they categorized the existing models
into two groups: those suitable for carbon fixation and those
suitable for metabolic engineering. The most suitable models
appear to be those proposed by Farquhar et al. (1980) and
Poolman et al. (2000), respectively.
The advantage of the model proposed by Farquhar et al.

(1980) is that it links Rubisco with in vivo measurements of
photosynthetic rate and therefore is capable of predicting net
rates of photosynthetic CO2 fixation in response to variable
environmental conditions. Because of these advantages, the
model has been studied and extensively validated over many
years, and derivatives of the model have been established which
are currently used in large-scale ecological modeling studies
(Sweetlove et al., 2013). The Farquhar model and its derivatives
consist exclusively of algebraic equations that can only capture
the steady state behavior through restricting assumptions
(Arnold and Nikoloski, 2013). However, photosynthesis is rarely
at steady state in the natural environment due to fluctuating
conditions of environment. Therefore, a highly mechanistic, well-
validated model is required to study photosynthesis in a more
practical approach. In this regard, a kinetic model (e-photosynthesis),
which includes each discrete process from light capture to
carbohydrate synthesis, has been recently described for C3

photosynthesis. The e-photosynthesis model effectively mimics
many typical kinetic of photosynthetic features and provides
a workable platform for guiding engineering of improved pho-
tosynthetic efficiency (Zhu et al., 2013).
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Because of its steady state nature, Farquhar model and its
derivatives are incapable of capturing dynamic changes that
occur in the relationship between photosynthesis and photo-
respiration at varying light intensities and concentrations of CO2

and O2. Recent experimental evidence indicates that photores-
piration is also involved in nitrate assimilation, energy production
of photosynthesis, exchange of redox equivalents between
compartments, one-carbon (C1) metabolism, and redox signal
transduction (Arnold and Nikoloski, 2013). Accurate quantitative
modeling of photorespiration is thus of major importance to
understand how the fine tuning of the levels of intermediates and
fluxes maintains optimal CO2 assimilation in response to per-
petually changing conditions (Fernie et al., 2013). The Farquhar
model’s derivatives aside, even kinetic modeling approaches of
photorespiration have neglected its complex role and have
mostly coupled a far too simplified version with photosynthetic
metabolism. However, the e-photosynthesis model (Zhu et al.,
2013) has included photorespiration in more detail.

A promising approach toward modeling photorespiration
could be assembling a complete metabolic network in such
a way that the connection of nitrogen metabolism is also taken
into account. For instance, through perturbing nitrogen-specific
reactions in such a model, the interplay of photorespiration and
photosynthesis as well as effects on the whole system could be
tested. An extension to such an approach could be undertaken
by adding the recent findings regarding regulatory and signaling
events of photorespiration into genome-scale models (Arnold
and Nikoloski, 2013).

While the balance between photosynthesis and respiration is
a key determinant of the carbon economy, another flaw in the
Farquhar model and its derivatives is that they predict respira-
tion on the basis of its correlation with other processes not as an
independent metabolic phenomenon (Sweetlove et al., 2013). To
attain the goal of an applicable mechanistic respiration model,
several challenges must be addressed. It seems that the term
“respiration” should be defined in such a way as to capture the
light-independent metabolic networks, which lead to the net
CO2 production. In this regard, Sweetlove et al. (2013) suggest
substituting the poorly defined term “respiration” with “net CO2

evolution,” which is defined as the sum of all the CO2-producing
steps minus the sum of all the CO2-consuming steps, excluding
photosynthesis and photorespiration. Concentrating on net CO2

evolution results in the identification of two precise challenges
for the modeling process. First, one must identify all the meta-
bolic processes contributing to net CO2 production and this is
generally regarded as extremely difficult. Second, any predictive
model must allow for differences between tissue types and the
impact of a change in conditions on the processes contributing
to net CO2 evolution. In addressing these challenges, quantifi-
cation of biochemical processes leading to net CO2 evolution by
MFA shows that the contribution of different processes to the
CO2 balance is highly variable. It also shows that the variability in
CO2 evolution between species and tissues might be greater
than between growth conditions. This finding would indirectly
reflect the need for a robust central metabolic network in the
face of suboptimal environmental conditions. In addition to
MFA, the potential for FBA as a tool to predict net CO2 evolution
has been assessed. Although there are relatively few FBA studies

for which experimentally constrained metabolic flux data are
available as a point of comparison/validation, the conclusion is
that FBA has the potential to predict the metabolic origin of
evolved CO2 in different tissues/species and under different con-
ditions (Sweetlove et al., 2013).
However, most of these models assume that the organism

grows in constant light, which is unlike the natural situation
where the interaction between light and dark metabolism is
a major feature of metabolism of photosynthetic organisms. To
establish a more representative model of leaf metabolism,
Cheung et al. (2014) constructed a diel flux balance model that
accounted for metabolic fluxes in the light and dark phases of
leaf metabolism by simulating them simultaneously in a single
optimization problem. The diel model was obtained by applying
a specific framework of constraints to an existing genome-scale
model of Arabidopsis metabolism (Cheung et al., 2013). The
model successfully captured many known features of C3 leaf
metabolism including the role of citrate synthesis and accumu-
lation at night (through the mitochondrial tricarboxylic acid
cycle) and its export from the vacuole during the day as a pre-
cursor for the provision of carbon skeletons for amino acid
synthesis. Generally, this model discovered some important
features of interactions between light and dark metabolism and
successfully predicted the metabolic fluxes in the light in C3

photosynthesis.
C4 plants possess a characteristic leaf anatomy, which su-

percharges photosynthesis by concentrating CO2 in the vicinity
of Rubisco and significantly reducing the oxygenation reaction
(Wang et al., 2012). A system understanding of the distinctive
anatomy and unique physiology is a prerequisite to effective
modeling of C4 metabolism. In order to achieve a system-level
understanding of spatial regulation of photosynthesis in C4

plants, a genome-scale metabolic model (C4GEM) was de-
veloped and applied to investigate the flux distribution between
two interacting tissues of bundle sheath and mesophyll during
C4 photosynthesis. The model is an extension of an Arabidopsis
model (AraGEM) (de Oliveira Dal’Molin et al., 2010a), which
represents three different C4 subtypes NADP-ME (NADP-
dependent malic enzyme), NAD-ME (NAD-dependent malic en-
zyme), and PEPCK (phosphoenolpyruvate carboxykinase) (de
Oliveira Dal’Molin et al., 2010b). In an extension to this study,
Wang et al. (2012) simulated the influence of each subtype on
biomass synthesis and CO2 fixation and concluded that the
PEPCK subtype is superior to NADP-ME and NAD-ME subtypes
under sufficient supply of water and nitrogen. Moreover, the
C4GEM model highlighted differences in the relative fluxes
through photosystem I and photosystem II (PSII) in the different
cell types and in each of the three C4 subtypes. The model also
predicted that the NAD-ME and PEPCK subtypes have sub-
stantial PSII activity in the bundle sheath tissues, while NADP-
ME species have little PSII and more cyclic electron transport
(CET) in their bundle sheath cells. While C4 plants require more
ATP than C3 plants to assimilate CO2, it has not been elucidated
how the extra ATP is produced. Interestingly, simulations have
shown that CET occurring in the bundle sheath is an efficient
means for supplying the extra ATP needed in the NADPH-ME
subtype. The model compared the minimum photon requirement
for CET in the mesophyll bundle sheath. The results showed that
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CET in the bundle sheath is energetically more efficient as it
requires fewer photons to produce the extra ATP than CET
that is active in the mesophyll (de Oliveira Dal’Molin et al.,
2010b).

A system-level understanding of how C4 photosynthesis op-
erates and differs from C3 plants is also a prerequisite to un-
derstanding how carbon shuttling enzymes are tuned by
controlling networks (Wang et al., 2012; Weissmann and
Brutnell, 2012). The study by Wang et al. (2012) compared a C3

metabolic network (AraGEM, for Arabidopsis) with a C4 meta-
bolic network (C4GEM, for maize). To this end, they first made
some improvement to both models and compared them using
graph theory analysis (which allows the comparison of important
topological parameters). They found out that the C3 network has
a denser topology than C4. This is probably a reflection of the
anatomical difference between C4 and C3 leaf structure, as the
former includes both mesophyll and bundle sheath cells, while
the latter consists of single cell types. The simulation of enzyme
knockouts (single reaction deletion) showed that more than 86%
(where the objective function is biomass maximal) and more
than 96% (where the objective function is CO2 fixation) of re-
actions have no influence when deleted in C4 and C3 networks.
This demonstrates the robustness of these networks. Further to
this, a comparison of the redundancy of the primary metabolic
network between C4 and C3 showed that, regardless of the type
of objective function, the C4 plant is more robust to gene mu-
tation or environmental changes (Wang et al., 2012).

CAM represents a temporal separation of metabolic events in
which CO2 is initially fixed at night in the form of carboxylic acids
(mainly malic acid) and then decarboxylated during the day to
provide CO2 for conventional photosynthesis (Cheung et al.,
2014). CAM maximizes water use efficiency and maintains high
biomass productivity by concentrating CO2 around Rubisco,
favoring carboxylase activity. CAM also represents a simpler
anatomical structure, as its photosynthetic metabolism occurs
in a single mesophyll cell instead of in the two separate cells as
in C4 photosynthesis. Modeling could provide a key approach
for comprehensive systemic understanding of the enzymatic
and temporal regulatory events that control the carboxylation-
decarboxylation of carboxylic acids and the concurrent meta-
bolic fluxes through glycolysis-gluconeogenesis (Borland et al.,
2014). Relatively little effort has been made toward studying
CAM in a systems level. To address this, Cheung et al. (2014)
used an innovative technical approach by making some changes
to the constraints of the original diel C3 model in order to capture
the classical CAM cycle of a mature leaf and to predict the
metabolic flux over a diel cycle. While the model successfully
predicted metabolic fluxes consistent with the well-known CAM
cycle, it also showed that despite the potential for suppression of
photorespiration through CO2 concentration, there are unlikely to
be significant energetic benefits in CAM photosynthesis over C3.
The model predicted that the energetic savings of enzymatic
machinery, which have been achieved by suppression of photo-
respiration, are probably offset by the higher flux demand of the
CAM cycle.

In addition to Rubisco, which is the carboxylating enzyme
operating in the Calvin-Benson cycle, nature employs several
other carbon fixation pathways. This diversity of natural solutions

offers the chance of utilizing a combination of modeling to-
gether with synthetic biology, to assemble fully innovative CO2

fixation pathways that may be more efficient than the C3 cycle.
With the aim of designing synthetic metabolic pathways for
improved carbon fixation, growth, and yield, Bar-Even et al.
(2010) considered the entire range of ;5000 metabolic en-
zymes known to occur in nature as components and used an
FBA to systemically discover all possibilities that can be de-
vised with these enzymes as building blocks. This led to several
promising synthetic carbon fixation pathways, which then they
compared with the natural pathways using physiochemical cri-
teria. The comparison suggested that some of proposed synthetic
pathways could have a significant quantitative advantage over the
natural ones.
Besides the Calvin-Benson cycle, which supports most of the

global carbon fixation, there are currently five known naturally
occurring carbon fixation pathways: the reductive TCA cycle,
the 3-hydroxypropionate/malyl-CoA cycle, the reductive acetyl-
CoA pathway, the 3-hydroxypropionate/4-hydroxybutyrate cy-
cle, and the dicarboxylate/4-hydroxybutyrate cycle. Boyle and
Morgan (2011) compared the thermodynamics and efficiency of
these six pathways using FBA. Based on comparisons of either
the energy demand or photon requirement for conversion of
photoassimilate into biomass, it was shown that the reductive
TCA cycle is the most efficient way of generating biomass from
solar energy. However, the reductive TCA cycle is only trivially
more efficient than Calvin-Benson cycle. Overall, this study
emphasizes the role of the Calvin-Benson cycle, which has
evolved to operate in the current oxidative environment of the
earth (Boyle and Morgan, 2011).

TCA Cycle

In microorganisms, in silico pathway analysis has suggested
a significant potential for TCA cycle optimization (Kjeldsen and
Nielsen, 2009); hence, efforts have been initiated to engineer it
(Becker et al., 2009). Engineering the TCA cycle in plants could
also be useful because of the high value metabolites derived
from carbon skeletons provided by this pathway, including
amino acids, fatty acids, flavonoids, pigments, alkaloids, and
isoprenoids. In plants, there are significant hurdles in advancing
engineering of the TCA cycle, perhaps because of the overall
complexity of the system. However, almost all the genes en-
coding the enzymes involved in TCA cycle have been cloned
from different plant species, and many of the encoded proteins
have been biochemically characterized. Efforts have also been
intensified to understand the modular organization of TCA cycle
(Carrari et al., 2003). These achievements have provided the
basis for efforts to genetically modify TCA cycle and to enhance
the organic acid content in plants (Morgan et al., 2013).
Genetic and metabolic experiments have shown that the

conventional TCA cycle is not the only pathway through which
TCA flux passes (Sweetlove et al., 2010), raising numerous as
yet unanswered questions concerning the balance between the
cyclic and the noncyclic flux modes. Answers to these questions
could help to efficiently engineer the plant TCA cycle. To this
end, modeling experiments have been of great benefit in
showing that when the demand for ATP is low, the cyclic flux
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mode is not necessarily maintained (Sweetlove et al., 2010).
Similarly, a large-scale model of cellular metabolism in de-
veloping embryos of the B. napus developing seed demon-
strated that cyclic TCA activity is reduced as the photosynthetic
output of NADPH and ATP rises (Hay and Schwender, 2011a,
2011b), while an FBA-based model of heterotrophic Arabidopsis
metabolism demonstrated that cyclic TCA flux is only required
when there is a high demand for ATP (Poolman et al., 2009). In
the barley endosperm, FBA has been used to show that the
gradual switch from cyclic TCA (in aerobic tissue) to noncyclic
TCA (in hypoxic tissue) occurs during the process of grain
maturation, probably because succinate dehydrogenase (which
connects the TCA cycle with the mitochondrial electron trans-
port chain) is associated with only a minor flux (Grafahrend-
Belau et al., 2009a). In agreement with this report, in silico flux
maps of seed-derived suspension culture rice cells grown under
anoxic conditions showed a truncated TCA cycle operation
between fumarate and oxaloacetate while a fully operational
TCA cycle was characterized under aerobic conditions. This
difference was mainly due to the limited regeneration of redox
cofactors since mitochondrial respiration was impaired under
anoxia. Interestingly, FBA revealed the possible role of g-ami-
nobutyric acid shunt in the conversion of a-ketoglutarate to
succinate instead of a-ketoglutarate dehydrogenase and suc-
cinate-CoA ligase under anaerobic conditions. Furthermore, in
contrast to anaerobic conditions, a significant amount of pyru-
vate was converted to acetyl-CoA under aerobic conditions,
thus enabling its entry into the TCA cycle for energy production
(Lakshmanan et al., 2013). The genome-scale metabolic model
of a developing leaf cell of rice predicted that the responses of
the three neighboring enzymes succinate dehydrogenase, fu-
marate, and malate dehydrogenase are different under different
light intensities. This study pointed out that the TCA cycle has
the ability to reconfigure its reactions to fulfill different require-
ments under different conditions or developmental stages (Poolman
et al., 2013). This view of the TCA cycle is supported by experi-
mental evidence from other studies (Studart-Guimarães et al.,
2007; Rocha et al., 2010).

Sucrose Metabolism

Sucrose accumulation in storage tissues is accompanied by
recurring cleavage and synthesis, during which ATP is wasted
(Schäfer et al., 2004). The genetic inhibition of this futile cycle
might be expected to increase crop productivity. Identifying the
candidate genes for transgenic regulation would require a labo-
rious gene-by-gene approach (Rohwer, 2012), whereas model-
ing could radically short-cut this process. Applying a combination
of EMA and kinetic modeling, 14 elementary modes were de-
tected during sucrose accumulation in sugarcane, five of which
were associated with a futile cycle. The model also predicted that
the attenuation of neutral invertase and the overexpression of
a vacuolar sucrose importer and plasma membrane glucose
and fructose transporters would provide an efficient means of
reducing futile cycling (Rohwer and Botha, 2001). These pre-
dictions were partially validated in an analysis of suspension
cell cultures in which neutral invertase activity had been
downregulated by RNA interference, since these cells were

more capable of accumulating sucrose compared with the wild
type (Rohwer, 2012). MFA of the maize kernel similarly showed
that depending on the subcellular location of glyceradehyde
3-phosphate and the identity of the enzymes involved, futile cy-
cling could waste between 18 and 47% of the ATP pool
(Alonso et al., 2011). However, Kruger et al. (2007) argue that
this value is unlikely to be as high as reported and that reliable
13C MFA measurements of the flux from hexose phosphate to
glucose (sucrose cycling), will only be possible if the labeling
pattern is known for both the cytosolic and vacuolar glucose
pools.

Seed Oil Synthesis

During seed storage deposition, the biosyntheses of different
storage compounds need different proportions of energy cofac-
tors (ATP and NADPH), as well as different proportions of meta-
bolic precursors (Hay and Schwender, 2011b). As a predictive
model of oil metabolism is helpful in manipulation of seed com-
position, many efforts have been conducted in this regard. An
important feature influencing the seed oil yield is the average
carbon conversion efficiency (CCE), a measure of the efficiency of
conversion of substrates into storage product (Alonso et al.,
2011). CCE is a straightforward definition of metabolic efficiency
and highlights the proportion of resources devoted to accumu-
lation of structural, storage, and reproductive biomass (Chen and
Shachar-Hill, 2012). CCE estimates have been obtained for the
sunflower (Helianthus annuus) embryo (50%) (Alonso et al., 2007),
the maize endosperm (76 to 92%) (Alonso et al., 2011) and em-
bryo (56 to 71%) (Alonso et al., 2010), and the B. napus seed
(>80%) (Alonso et al., 2007). Studying the metabolic basis un-
derlying these differences may promote insights into how genetic
engineering can be used to increase oil content and to improve its
composition. Several models have been established for de-
scription of oil production, including in B. napus (Schwender
et al., 2004; Schwender, 2008; Hay and Schwender, 2011a,
2011b), maize (Alonso et al., 2010, 2011), and sunflower (Alonso
et al., 2007).
Modeling storage metabolism in the developing B. napus

embryo has highlighted the potential participation of various
pathways, including the formation of the lipid precursor pyruvate
and the potential role of PEP carboxylation in either nitrogen
assimilation or in lipid synthesis. No increased uptake or changed
use of amino acids, as possible lipid precursor, was predicted
using MFA or FVA (Hay and Schwender, 2011a, 2011b). The
same studies also characterized the bypass of glycolytic re-
actions by Rubisco to lipid synthesis. This “Rubisco bypass”
pathway can explain the observed increase in CCE. However,
due to the energy requirement of the bypass, this contribution is
only predicted to be beneficial if the light intensity is above
a certain threshold (Hay and Schwender, 2011a).
In an elegant study, an FBA model for cultured B. napus (Hay

and Schwender, 2011a, 2011b) was combined with high-
resolution measurements of in planta developing embryos in or-
der to get an in-depth insight into the spatial variation in metabolic
fluxes across different tissues of oilseed. Unlike the FBA model
prediction, this study predicted that the Rubisco bypass occurs
only in the outer cotyledon, hypocotyl, and radicle, but not in the
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inner cotyledon. This probably happens due to the shape of the
seed because as the seed gets bigger, light penetration into
the inner tissues gets smaller (Hay and Schwender, 2011a;
Borisjuk et al., 2013).

MFA of the developing maize embryo and endosperm has also
revealed that flux through the OPPP is greater in the embryo than
in endosperm. Nevertheless, even the carbon amount entering
the embryo cannot fully meet the NADPH demand for fatty acid
synthesis and may limit oil production, while NADPH is not
a limiting factor for lipid synthesis in the endosperm. MFA studies
also revealed the key role for plastidic NADP-depended malic
enzyme activity in providing reductant and carbon for fatty acid
synthesis in developing maize embryo (Alonso et al., 2010, 2011).

Metabolism and the Environment

The level of metabolites is dramatically influenced by environ-
mental adversity. However, the connection between environ-
mental conditions and metabolism is hidden by the complex
networks linking them. Understanding this connection becomes
more important when we try to recognize the role of metabolism
in acclimation to abiotic stress. Metabolic modeling has been
applied to this issue, seeking answers to questions such as to
what extent the functioning of metabolic pathway(s) may be
associated with environmental change and whether the network
connectivity is conserved or changes between different growth
conditions.

One of the first attempts at stoichiometric modeling of plant
metabolism was performed to analyze the storage pattern of
developing barley seed endosperm in response to oxygen de-
pletion (Grafahrend-Belau et al., 2009a). Since then, several
modeling investigations of plant-environment interactions have
studied the impact of stress (increased temperature and hy-
perosmotic stress) (Williams et al., 2010; Cheung et al., 2013),
carbon and nitrogen availability (Sulpice et al., 2013), light and
temperature condition (Töpfer et al., 2013), and nitrogen supply
(nitrate or ammonium) (Masakapalli et al., 2013) on heterotrophic
metabolism in Arabidopsis.

The increasing availability of high throughput data for crop
plants is leading to new modeling applications in studies of the
interaction between crop plants and their environment. For in-
stance, to elucidate metabolic flux profiles during abiotic stresses
(flooding and drought stresses) a metabolic/regulatory network of
rice cells was reconstructed for two different rice tissues, germi-
nating seeds and photorespiring leaves (Lakshmanan et al., 2013).
In another study, a genome-scale metabolic model of a developing
leaf cell of rice was used over a range of photon flux values
(Poolman et al., 2013).

The breeding of new crop varieties with improved perfor-
mance under abiotic stress is becoming increasingly important.
Therefore, it is expected that metabolic modeling will play a key
role in this field in the near future.

CONCLUDING REMARKS

Plant computational modeling is evolving rapidly and will soon
reach the point where it can begin to make an impact on plant

metabolic engineering practice. However, there is still a need to
overcome serious difficulties before plant metabolic models can
be routinely incorporated as part of crop systems biology and
there is a particular need for multiscale models (Baldazzi et al.,
2012). By definition, a multiscale model explicitly integrates
mechanisms that occur across multiple spatial or temporal scales
and/or functions (Baldazzi et al., 2012; Walpole et al., 2013). Es-
tablishing such a model sometimes requires a range of diverse
inputs from biochemical or mechanistic mechanisms to bio-
mechanical phenomena, which leads to a hybrid multiscale model
(Baldazzi et al., 2012). An excellent example of such a hybrid
multiscale model was developed for the heart (Noble, 2011) in
which the reaction-diffusion equations (as a description for the
electro-mechanical contraction of heart) are coupled to a set of
ordinary differential equations (as a description for ions transport
at the cellular membrane). Examples in plant biology include
models that correlate molecular level processes with plant de-
velopment/morphogenesis in Arabidopsis (Vernoux et al., 2011;
Grieneisen et al., 2012). However, the comprehensive physiolog-
ical role of the metabolic network can only be fully understood from
a whole-body perspective where individual cells, the surrounding
tissue, and the whole organism interact continuously at a meta-
bolic level (Krauss et al., 2012; Grafahrend-Belau et al., 2013).
Several approaches for combining metabolic models, cover-

ing different levels of biological organization in humans have
been described (Krauss et al., 2012), while at the time of this
review, the only multiscale metabolic model in plants was pre-
sented by Grafahrend-Belau et al. (2013). During this study, the
multiorgan FBA model was combined with a dynamic whole-
plant multiscale functional plant model. Dynamic FBA was per-
formed by partitioning a selected plant growth phase into
several time intervals and by computing a static FBA at the
beginning of each time interval. To include dynamic processes,
exchange fluxes that had been predicted by the functional plant
model and are also time dependent were used to constrain the
static FBA within each time interval.
Establishing a multiscale plant model requires simultaneous

modeling of many different cell types in several connected tis-
sues/organs. Considering the large scale of a multiorgan or
whole-organism model, stoichiometric modeling, in particular
FBA, is the most suitable approach. With the aim of achieving
a multiscale metabolic model, first the validated subsystem
specific models should be constructed separately, and then the
separate parts can be coupled together to construct the multi-
scale model. This presents several technical and mathematical
challenges. The first is that we need to formulate new con-
straints and/or objective functions, both at the level of sub-
systems and at the level of the integrated model to describe the
behavior of the plant as realistically as possible. The second is
the lack of tissue-specific information on metabolite uptake and
secretion, which is required for FBA (Shlomi et al., 2008). It is
obvious that coupling submodels together redraws the system
boundaries. The question that arises during coupling subsystem
models is to what extent the interdependencies of fluxes in
subsystems will vary with those in the coupled metabolic net-
work. Special mathematical analysis, such as flux-coupling
analysis, has been developed to deal with this question (Marashi
and Bockmayr, 2011; Marashi et al., 2012).
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Plant metabolic engineering will be able to address human
needs only when it begins to make meaningful changes on an
industrial scale. To achieve this, multiscale modeling is a pre-
requisite for obtaining an improved understanding of metabo-
lism at a systems level. However, before that, plant metabolic
modeling needs to be supported by more advanced bio-
informatics platforms and computational toolboxes. There is
also a need to gain an improved understanding of the regulatory
circuits governing cellular metabolism. Moreover, improved
cellular resolution and enhanced sensitivity of metabolomics
are also required.
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