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Maize (Zea mays) displays an exceptional level of structural genomic diversity, which is likely unique among higher eukaryotes.
In this study, we surveyed how the genetic divergence of two maize inbred lines affects the transcriptomic landscape in four
different primary root tissues of their F1-hybrid progeny. An extreme instance of complementation was frequently observed:
genes that were expressed in only one parent but in both reciprocal hybrids. This single-parent expression (SPE) pattern was
detected for 2341 genes with up to 1287 SPE patterns per tissue. As a consequence, the number of active genes in hybrids
exceeded that of their parents in each tissue by >400. SPE patterns are highly dynamic, as illustrated by their excessive degree
of tissue specificity (80%). The biological significance of this type of complementation is underpinned by the observation that
a disproportionally high number of SPE genes (75 to 82%) is nonsyntenic, as opposed to all expressed genes (36%). These genes
likely evolved after the last whole-genome duplication and are therefore younger than the syntenic genes. In summary, SPE
genes shape the remarkable gene expression plasticity between root tissues and complementation in maize hybrids, resulting in
a tissue-specific increase of active genes in F1-hybrids compared with their inbred parents.

INTRODUCTION

Maize (Zea mays) is a highly polymorphic species with an ex-
traordinary level of intraspecific genomic diversity compared
with other eukaryotes (Springer et al., 2009; Swanson-Wagner
et al., 2010). This diversity is mediated by single nucleotide
polymorphisms (SNPs), insertion-deletion polymorphisms (INDELs),
and structural variations. Major genotyping efforts determined ex-
ceptionally high frequencies of SNPs and INDELs (~1 per 80 bp
and 1 per 300 bp genomic sequence, respectively) (Bi et al., 2006;
Barbazuk et al., 2007) between the commonly used inbred lines
B73 and Mo17. While these polymorphisms represent small ge-
nomic alterations, structural variations such as copy number var-
iations, presence-absence variations (PAVs), and chromosomal
rearrangements refer to segmental alterations of DNA >1 kb (Lai
et al., 2010; Olsen and Wendel, 2013). Between the inbred lines
B73 and Mo17, thousands of structural variants have been re-
ported (Springer et al., 2009; Swanson-Wagner et al., 2010). In
addition, inbred line-specific differences in content of repetitive
DNA (Kato et al., 2004) and of total genome size (Laurie and
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Bennett, 1985) have been detected further emphasizing the high
degree of intraspecific genomic divergence. To determine how
genomic variation translates to quantitative gene expression dif-
ferences, transcriptome surveys of various maize inbred lines have
been conducted (Hansey et al., 2012). This study reported not only
extensive sequence variation in annotated gene models between
21 inbred lines but also defined the variable part of the maize
transcriptome as opposed to the conserved section. Recent
studies support the concept of the pan-transcriptome consisting
of a core and a dispensable subtranscriptome in maize (Hirsch
et al., 2014; Marroni et al., 2014), which further illustrates the ex-
tensive intraspecific variation.

As demonstrated by syntenic comparison to the genomes of
other grass species, the lineage leading to maize experienced
a whole genome duplication 5 to 12 million years ago (Blanc and
Wolfe, 2004; Swigonova et al., 2004), which created two distinct
subgenomes each of which originally contained a complete set
of genes and regulatory sequences (Schnable et al., 2011). In
many cases, one of the two gene copies was lost from the genome
in a process known as fractionation; however 3000 to 5000 gene
pairs are retained in the modem maize genome (Schnable et al.,
2011). Therefore, the gene complement of maize can be divided into
three categories: pairs of duplicate genes shared by both sub-
genomes, single-copy genes present in only one subgenome, and
genes that cannot be assigned to a subgenome. The third category
is characterized by a lack of syntenic orthologs in the genomes of
other grass species, and most of these nonsyntenic genes are
created by single gene duplication mechanisms, likely after the
maize whole-genome duplication (Woodhouse et al., 2010).
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The structural genomic diversity of the maize inbred lines B73
and Mo17 is also reflected on the transcriptome level. In maize
roots, hundreds of genes were identified that were exclusively
expressed in one parental inbred line but not in the second
parent, whereas all these genes were expressed in both reciprocal
hybrids, a phenomenon termed single-parent expression (SPE;
Paschold et al., 2012). As a result, hybrids have hundreds more
active genes than their parental inbred lines (Paschold et al., 2012).

In longitudinal orientation, roots are structurally divided into the
root cap at the terminal end, a subterminal meristematic zone,
followed by the elongation and differentiation zones (Figure 1;
Ishikawa and Evans, 1995). Cells formed by mitotic divisions in
the meristematic zone are dislocated proximally into the elonga-
tion zone, where they start to elongate. The elongation zone partly
overlaps with the meristematic zone because cell elongation be-
gins in the meristematic zone (Ishikawa and Evans, 1995). Finally,
root cells transit into the differentiation zone where the various cell
types acquire their final functions. Hence, the cells along the
longitudinal axis of a root represent a gradient of cell differentia-
tion, with very young undifferentiated cells at the distal end near
the root tip and differentiated cells toward the proximal end of the
root. The differentiation zone can be spotted by the presence of
epidermal root hairs (Ishikawa and Evans, 1995).

In transverse orientation, the differentiation zone displays a
number of functionally diverse cell types that can be distinguished
by their anatomical features. The stele with the pericycle as its
outermost cell layer is connected to the multilayered cortical pa-
renchyma via a ring of endodermis cells. In maize, the stele con-
tains differentiated xylem vessels that function in water and
nutrient transport and primary phloem elements that function in the
transport of photosynthates. These elements of the vasculature
are embedded in parenchymal pith tissue (Hochholdinger, 2009).
The cortical parenchyma that surrounds the stele consists of the
endodermis, multiple layers of cortex tissue, and a single epider-
mal layer that connects the root to the rhizosphere (Hochholdinger,
2009). The epidermis, which is densely populated by tubular root
hairs, takes up nutrients, which are then either carried via the
cortex and xylem into the shoot or metabolized in the cortex of the
root (Marschner, 2011). Stele and cortical parenchyma (hereafter
referred to as cortex) can be separated mechanically without
damaging pericycle and endodermis cells allowing subsequent
analyses of these functionally diverse tissues (Saleem et al., 2009).

In this study, we globally surveyed the transcriptomes of four
functionally distinct tissues of young maize primary roots in the
inbred lines B73 and Mo17 and their reciprocal F1-hybrid progeny
via RNA-seq. These experiments revealed dynamic tissue-specific
patterns of SPE, which preferentially affected nonsyntenic genes.

RESULTS

RNA-seq Profiling of Four Root Tissues of Maize Inbred
Lines and Their Hybrid Offspring

In longitudinal orientation, maize primary roots display specialized
zones of development, including the meristematic zone, the elon-
gation zone and, as parts of the differentiation zone, stele and
cortex (Figures 1A and 1B), which can be mechanically separated
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Figure 1. Tissues of Young Maize Primary Roots Surveyed in This
Study.

(A) Primary root prior to tissue sampling.

(B) Color-coded schematic of the different tissues of a maize primary
root.

(C) Manually dissected primary root with separated meristematic zone,
elongation zone, cortex and stele.

(D) Schematic of separated primary root tissues. Upper numbers indicate
the total number of genes expressed in a tissue, while the smaller lower
numbers indicate the number of genes that were exclusively expressed in
a tissue (in any of the analyzed genotypes). In total, 27,347 genes were
expressed in at least one tissue. Red (S), stele; green (C), cortex; yellow/
orange (EZ), elongation zone; blue (MZ), meristematic zone.

(Figures 1C and 1D). The transcriptomes of these four distinct
tissues were surveyed in 2- to 4-cm primary roots of the maize
inbred lines B73 and Mo17 and their reciprocal hybrids B73xMo17
and Mo17xB73. Each tissue per genotype was analyzed in four
biological replicates (Supplemental Figure 1). RNA-seq of those 64
samples resulted on average in 9 million 100-bp reads per sample
(Supplemental Table 1). After quality trimming and removal of du-
plicate reads, 79 to 81% of all sequences mapped to the maize
reference genome (ZmB73_RefGen_v2; Supplemental Table 2). For
each of the four genotypes, 96% of the reads mapped to the fil-
tered gene set of maize (ZmB73 FGS_5B_FGSv2; Supplemental
Table 2), which comprises 39,656 high-confidence gene models.
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In total, 27,347 of the 39,656 high-confidence genes (69%)
were expressed in at least one tissue of at least one genotype
(Figure 1D). Among those, 23,444 genes (86%) were expressed
in the meristematic zone, 23,118 (85%) in the elongation zone,
25,166 (92%) in the cortex, and 24,644 genes (90%) in the stele
(Figure 1D). Moreover, 2149 genes were exclusively expressed
in only one of the four analyzed tissues (Figure 1D). While 120
genes representing 0.5% of all expressed genes in that tissue
(120/23,118) were only expressed in the elongation zone, several
hundred genes were exclusively expressed in cortex (954/25,166 2
3.8%), stele (534/24,644 2 2.2%) and meristematic zone
(541/23,444 2 2.3%).

Tissue-Specific Expression Complementation by SPE

SPE is an extreme instance of expression complementation in
which genes are expressed in only one parent but in both reciprocal
hybrid progeny. To assay for SPE in the four root tissues, activity of
all genes in all four genotypes [B73 (B), Mo17 (M), B73xMo17 (BxM),
Mo17xB73 (MxB)] was analyzed by a Bayesian data-augmented
Markov chain Monte Carlo approach (see Methods). The results
were summarized in four-way Venn diagrams (Figure 2). In each of
the four root tissues, the vast majority of genes (94 to 95%) were
expressed in all four genotypes (B_M_BxM_MxB). However, most
of the genes that were not expressed in all four genotypes displayed
SPE (Figure 2, square fields encircled by a bold black line). SPE_B
genes (B_BxM_MXxB) are expressed in B73 and in the reciprocal
hybrids, but not in Mo17, whereas SPE_M genes (M_BxM_MxB) are
expressed in Mo17 and the reciprocal hybrids, but not in B73. SPE
was detected in each of the four tissues and the number of SPE
genes was similar between tissues and ranged between 1037
(elongation zone) and 1287 (stele; Figure 2). Four genes switched
their SPE pattern between tissues (Supplemental Table 3) and were
not considered for further calculations because it is difficult to de-
termine if they have escaped our error rate correction or if they
indeed represent rare examples where SPE has switched between
different tissues. This resulted in 1096 genes showing SPE_B and
1245 genes showing SPE_M in at least one tissue. As a conse-
quence of complementation, both hybrids displayed in all four tis-
sues >440 active genes more than their inbred parents (Figure 2).
To determine how many SPE_B genes are the result of PAV,
i.e., these genes are not expressed in Mo17 because they are
absent from that genotype, SPE_B genes were compared with
a set of genes present in the B73 and absent in the Mo17 genome
(Paschold et al., 2012). Overall, 4.4% (48/1096) of the SPE_B
genes represent genomic PAVs (Supplemental Data Set 1).

Tissue-Specific Dynamics of SPE

To determine their tissue-specific dynamics, SPE patterns were
summarized in four Venn diagrams (Figure 3). This analysis re-
vealed that 20% (218/1096) of the SPE_B and 20% (250/1245) of
the SPE_M genes display this pattern constitutively in all four an-
alyzed tissues (Figures 3A and 3B). By contrast, 80% (1877/2341)
of all SPE patterns were tissue specific, i.e., not observed in all four
tissues. Among these, 67% (1225/1877) were detected in only one
of the four analyzed tissues (Figures 3A and 3B, groups C, MZ, EZ,
and S). For instance, 184 SPE_B and 210 SPE_M genes showed
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this particular expression pattern only in the cortex of young pri-
mary roots, while in the elongation zone, meristematic zone and
stele these genes did not display SPE (Figures 3A and 3B, left
corners). To determine if tissue-specific SPE is the result of ex-
clusive expression of these genes in these tissues, the number of
SPE genes that are only expressed in the tissues where they
display SPE was determined (Figure 3, smaller numbers in the
Venn diagrams). Together with the 468 SPE genes that displayed
SPE in all four tissues, a total of 55% (1294/2341) of all SPE genes
displayed SPE in all tissues in which they were expressed. How-
ever, the remaining 45% (1051/2341) of SPE genes displayed non-
SPE expression patterns in some or all of the remaining tissues. In
summary, while 55% of all SPE genes exhibited SPE in all tissues
in which they were expressed, 45% of all SPE genes displayed
complex tissue-specific regulation of SPE and non-SPE patterns.

Allele-Specific Contribution to SPE

To better understand the parental contribution to the SPE patterns,
the allele-specific expression of SPE genes was determined in hy-
brids. The aim of this analysis was to determine if parental alleles
that are not expressed in the inbred line are “reactivated” in the
hybrid. SPE_B genes, which are known to be PAVs (Supplemental
Table 3), were excluded from this analysis. Hence, for the remaining
genes, both parental alleles are present in the hybrid genome. For
this analysis >4 million SNPs previously called between B73 and
Mo17 were used (Paschold et al., 2012). These SNPs allowed dis-
tinction between the expressed parental alleles of 2049 SPE genes.
Allele-specific read mapping resulted in up to 197 tissue-specific
SPE genes in which the “silent” allele was reactivated in the hybrid
(Table 1). In a more conservative approach, an arbitrary threshold of
10 allele-specific reads per gene across the four replicates was
introduced. Applying this cutoff reduced the number of SPE genes
that expressed both alleles in the hybrids to between 0 and 4
(Table 1). This result indicates that most “silent” alleles remain in-
active in hybrids if putative mapping artifacts are neglected.

Evolutionary Implications of Tissue-Specific SPE Patterns

To survey the evolutionary origin of the genes that display tissue-
specific SPE, their assignment to maize subgenomes 1 or 2 was
determined. For each of these analyses, comparisons with all
39,656 genes of the filtered gene set and with all 27,347 genes
expressed in this analysis were performed. In total, 19,365 of all
39,656 high confidence FGS genes (49%) can be assigned to
one of the two maize subgenomes (www.skraelingmountain.com/
datasets/maize_indexed_by_subgenome.csv), which are the result
of an ancient genome duplication (Table 2). Among all expressed
genes 64% (17,402/ 27,347) were assigned to one of the two
subgenomes pointing to their ancient origin. The extent to which
this percentage exceeds the percentage of all FGS genes that can
be assigned to a subgenome (19,365/39,656 [49%]; Fisher’s exact
test, P < 0.001) suggests that evolutionary older (syntenic) genes
are expressed more frequently than nonsyntenic genes, which likely
emerged after the last whole-genome duplication of maize. By
contrast, only 18 to 25% of the SPE genes identified in the in-
dividual tissues were assigned to a subgenome, which is 2.6 to 3.6
times less than expected (Table 2). This pattern was statistically
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Figure 2. Genotype-Specific Expression Patterns in Four Different Maize Primary Root Tissues.

Transcriptomic expression complementation by SPE is dominant among the genes that are not expressed in all four genotypes (encircled by a bold
black line). SPE genes are expressed in only one parental line but both hybrids. Meristematic zone (A), elongation zone (B), cortex (C), and stele (D). The
different genotypes and number of genes of the various expression classes are indicated in each square field of the four-way Venn diagrams. The total
number of expressed genes per genotype and tissue are indicated at the border of each Venn diagram. Note that in each tissue, hybrids express more

genes than their parental inbred lines.

significant (Fisher’s exact test, P < 0.001) for the SPE genes of each
of the four tissues. Among the SPE genes that were assigned to
subgenomes, the ratio of genes assigned to subgenome 1 (62%)
and 2 (38%) was nearly identical to the ratio among all filtered gene
set genes assigned to a subgenome and to the ratio among all
expressed genes (Table 2).

In a previous analysis, 1124 genes that displayed a SPE pattern
were identified from whole primary roots (WPRs) of the same

genotypes (Paschold et al., 2012). Reanalysis of this data set using
the improved algorithm introduced in this study (see Methods) re-
sulted in 28,113 expressed genes and 946 SPE genes, 17,996
(64%) and 131 (14%) of which were assigned to subgenomes,
respectively (Table 2). Again, significantly fewer SPE-WPR genes
than expected were assigned to the subgenomes, indicating that
most SPE-WPR genes are not conserved at syntenic loci in other
species (Table 2; Fisher’s exact test, P < 0.001).
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Figure 3. Summary of SPE Genes Conserved between and Unique for Different Tissues in Four-Way Venn Diagrams.

(A) SPE_B genes expressed only in B73 and the two reciprocal hybrids.

(B) SPE_M genes expressed only in Mo17 and the two reciprocal hybrids. The larger numbers in each square field indicate all genes that display the
SPE pattern, and the smaller numbers below indicate how many of the SPE genes are expressed only in the tissue(s) in which they display SPE.

Functional Classification of SPE Genes

To identify overrepresented biological functions among the four
groups of tissue-specific SPE genes a Gene Ontology (GO) anal-
ysis was conducted. Only the biological processes “death” and its
subcategories “cell death,” “programmed cell death,” and “apoptosis”
were overrepresented in each of the four tissue-specific SPE
data sets. Among the four tissue-specific sets of SPE genes,
between 11 and 18 genes were assigned to these GO terms. These
genes overlap between tissues, which results in a total of 29 genes
assigned to the GO term apoptosis and the parent terms
(Supplemental Table 3). Eighteen of the 29 genes display SPE_B,
while 11/29 genes show SPE_M expression patterns, indicating
that both B73 and Mo17 are deficient in the expression of cell
death-related genes. The majority (24/29) of these genes cannot be
assigned to subgenomes, suggesting that they emerged after the last

whole-genome duplication. Many of them are suggested to encode
enzymes with nucleoside triphosphatase activity, which plays a role in
the degradation of nucleic acids (Supplemental Table 3).

DISCUSSION

The high degree of intraspecific genome diversity is one remarkable
feature of maize that has been studied in great detail (Springer
et al., 2009; Swanson-Wagner et al., 2010; Chia et al., 2012; Jiao
et al., 2012; Marroni et al., 2014). Recent studies investigated how
genomic diversity translates to intraspecific transcriptome diversity
(Stupar and Springer, 2006; Hansey et al., 2012; Hirsch et al., 2014),
which is fostered by the advent of high-throughput sequencing
technologies. Using RNA-seq as one of these approaches, this
study surveyed four primary root tissues of maize for gene activity
in the inbred lines B73 and Mo17 and their reciprocal hybrids.
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Table 1. Biallelic Expression of SPE Genes in the Reciprocal Hybrids B73xMo17 and Mo17xB73

Subset of SPE Genes Expressing Both Parental Alleles

B73xMo17 Mo17xB73

Group of SPE No. of SPE No. of SPE Genes No. of SPE Genes with

Genes? Genes with SNPs SNPs, PAVs ExcludedP =1 Read =10 Reads =1 Read =10 Reads
SPE_B-MZ 510 399 374 73 0 74 0
SPE_M-MZ 581 525 - 116 2 132 4
SPE_B-EZ 472 381 356 70 0 62 0
SPE_M-EZ 565 502 - 134 2 124 2
SPE_B-C 599 475 451 95 0 97 0
SPE_M-C 661 611 - 176 3 197 2
SPE_B-S 607 488 457 107 1 117 1
SPE_M-S 680 611 - 183 2 169 3

An allele was considered to be expressed with either one read or 10 reads minimum. PAVs were excluded from all SPE_B genes.
2SPE_B, gene expressed in B73 and hybrids but not in Mo17; SPE_M, gene expressed in Mo17 and hybrids but not in B73. B, B73; M, Mo17; MZ,

meristematic zone; EZ, elongation zone; C, cortex; S, stele.

PPAVs (genes present in the B73 genome but absent from the Mo17 genome).

In general, between 94 and 95% of all genes active in the four
tissues were expressed in all four genotypes (Figure 2). This
number is similar to a recently published data set of whole pri-
mary roots of the same developmental stage in which 97% of all
active genes were expressed in each of the four genotypes
(Paschold et al., 2012). Remarkably, as in whole roots, the major
proportion of the genes not expressed in every genotype displayed
SPE, indicating that a gene is only expressed in one parental inbred
line but is expressed in both reciprocal hybrids (Paschold et al.,
2012). SPE represents a special instance of complementation on
the level of gene expression. On the transcriptomic level, the
concept of complementation implies that the combination of two
distinct genomes leads to the activity of many genes in hybrids that
are only active in one parental inbred line. Support for this hy-
pothesis has been reported for whole roots where the hybrid with
the lower number of active genes expressed 352 more genes than
the inbred line with higher number of active genes (Paschold et al.,
2012). This study went one step ahead and increased the resolution
to the level of individual root tissues. The bidirectional comparison
of four genotypes and four primary root tissues revealed not only
hundreds of tissue-specifically expressed genes but also hundreds

of SPE genes in each tissue. Similar to what has been reported in
whole roots (Paschold et al., 2012) both hybrids expressed more
genes in each individual tissue than either parent. Comparing the
hybrid showing fewer expressed genes with the parental line dis-
playing more expressed genes this increase ranged between 444
(meristematic zone) and 558 (stele) additional active genes.

To allow for comparison of the SPE genes of this tissue-specific
data set with the results of the previously published whole root data
set, we reanalyzed the whole root data (Paschold et al., 2012) with
the improved SPE annotation algorithm used in this study. This
approach reduced the number of whole root SPE genes from 1124
to 946 and increased the difference to the 2341 genes displaying
SPE in at least one root tissue. Because both data sets were
generated by the same laboratories, following the same experi-
mental design, data analysis pipelines, and statistical procedures,
the discrepancy between whole roots and individual tissues is likely
the result of biological differences, not of technical artifacts or
variations. Among all tissue-specific SPE genes, 55% display SPE
in all tissues in which they are expressed while 45% displayed SPE
in at least one tissue and general expression (i.e., the gene is ex-
pressed in each of the four genotypes) in at least one other tissue.

Table 2. SPE Genes of the Individual Root Tissues and Their Assignment to Maize Subgenomes

No. of Genes No. of Genes Assigned to Subgenomes % Subgenome 1 % Subgenome 2 %
FGS genes? 39,656 19,365 49 12,190 63 7,175 37
Expressed genes PRT 27,347 17,402 64 10,962 63 6,440 37
Expressed genes WPR 28,113 17,996 64 11,343 63 6,653 37
SPE class
SPE total 2,341 696 30 429 62 267 38
SPE_C 1,260 310" 25 197 64 113 36
SPE_S 1,287 294+ 23 184 63 110 37
SPE_EZ 1,037 226 22 156 68 71 31
SPE_MZ 1,091 199" 18 113 57 86 43
SPE WPR 946 131 14 87 66 44 34

In addition to our tissue-specific analysis (PRT), a published WPR data set (Paschold et al., 2012) was reanalyzed using the same method as in this
study. Fisher’s exact test was used to determine if more or less SPE genes than expected are assigned to subgenomes (**P < 0.001).

®Filtered gene set of maize B73.




SPE genes with such dynamic tissue-specific expression patterns
are unlikely to be identified as SPE genes from complete organs
because the SPE patterns are masked by the general expression of
these genes in other tissues. This notion is supported by the ob-
servation that between 70% (SPE_B) and 52% (SPE_M) of all
whole-root SPE patterns overlap with tissue-specific SPE patterns
that are exclusively expressed in the tissues where they display
SPE. This indicates that a large portion of the SPE genes identified
from whole roots lack tissue-dependent gene expression dynam-
ics. Alternatively, some of the SPE genes identified from whole
roots might be expressed in each tissue, but the expression level of
one particular tissue exceeds that of the others. Hence, the plas-
ticity of SPE patterns is conditioned by the tissue-specific regula-
tion of gene expression, indicating that a silenced allele of a SPE
gene in an inbred line is not per se silenced in all tissues. This
should not be confused with general tissue specificity of gene
expression (Brady et al., 2007) as it refers to activity/ inactivity of
genes in particular tissues. SPE, on the other hand, refers to
genotype-specific gene activity and different alleles of a gene
in two inbred lines.

Genotype-specific activity was detected for hundreds of ex-
pressed genes and most of these differences were complemented
in the reciprocal hybrids. Only a minor proportion of these transcript
variations were caused by differences in the genomic sequence (i.e.,
by genomic PAVs). This suggests that most of the genes are
physically present in the genome but that they are inactivated. This
inactivity can be caused by changes in the genomic sequence of the
considered gene (cis-modification) or by alterations of proteins such
as transcription factors regulating the activity of these genes (trans-
maodification) (Wittkopp et al., 2004). Most of the inbred line-specific
differences in gene activity are complemented in the hybrids and the
analysis of allele-specific gene expression levels revealed, by ap-
plying a conservative cutoff threshold, only a minor degree of re-
activation of inactive alleles in the hybrids. This implies predominant
cis-regulation of the SPE genes and genomic differences leading to
transcriptional variation between inbred lines. Omission of any cutoff
threshold resulted in biallelic expression of dozens of SPE genes in
the hybrids. This observation needs to be treated with caution be-
cause the majority of these genes express the second allele at levels
below 10 reads per transcript. When mapping such small read
numbers to SNP positions, sequencing errors are more likely to
result in mapping errors ultimately leading to false positives
(Macmanes and Eisen, 2013). To account for this uncertainty,
we set an arbitrary threshold cutoff of 10 reads

Phylogenetic analyses of the SPE genes identified in different
root tissues were conducted to elucidate their evolutionary origin.
The maize genome was duplicated several times during evolution
including a whole-genome duplication (autopolyploidization) ~5 to
12 million years ago (Blanc and Wolfe, 2004; Swigonova et al.,
2004), which separated maize from its close relative, Sorghum
bicolor (Paterson et al., 2009). In modern maize, the result of this
most recent whole-genome duplication can be surveyed by
comparing the duplicated maize and the unduplicated Sorghum
genomes. Such comparisons enable the identification of recog-
nizable homoeologs and the assignment of a considerable pro-
portion of all current maize genes to one of the two subgenomes
that resulted from this genome duplication (Schnable et al., 2011).
To determine if the phylogenetic origin of a gene conditioned its
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contribution to intraspecific transcriptome diversity, all genes that
displayed SPE patterns were analyzed for their assignment to
subgenomes. In total, 49% (19,365) of all maize genes were as-
signed to subgenomes 1 or 2 (Schnable et al., 2011). The remaining
51% likely emerged more recently, e.g., by modular rearrangement
of protein encoding domains (Kersting et al., 2012), by the trans-
position of existing genes (Freeling et al., 2008), or by exon shuffling
from helitrons and other transposons leading to fusion genes
(Barbaglia et al., 2012). Among the 27,347 genes expressed in this
study, 17,402 (64%) genes were assigned to one of the two sub-
genomes. This implies that in general ancient genes are more fre-
quently expressed than nonsyntenic ones and is consistent with
the observation that this same population of old genes is highly
enriched in genes with visible mutant phenotypes (Schnable and
Freeling, 2011). Since these genes have survived more than
5 million years of natural selection they likely have crucial functions
in maize development. While ancient genes are overrepresented
among all expressed genes they are significantly underrepresented
among the SPE genes. Only between 18 and 25% of all SPE genes
in the four tissues can be assigned to subgenomes 1 or 2. The
number of nonsyntenic genes (i.e., genes not assigned to any
subgenome) might be inflated by false positives caused by an-
cestral genes present in one or both maize subgenomes but lost
from the genome of Sorghum, by genes apparently present at
nonsyntenic locations only as a result of assembly errors in either
maize or Sorghum, or by gene prediction errors. However, these
false positives, if any, are expected to be equally common among
all expressed genes including both SPE and non-SPE genes, so
any bias introduced would be toward proportions of nonsyntenic
genes among these two categories. In fact, we observed the op-
posite pattern. These results imply that a disproportionate number
of SPE genes emerged after the separation of maize from Sorghum
and the subsequent duplication of the maize genome.

Recently emerged genes might be less likely to play essential
roles during the early stages of seedling development. Maize was
domesticated from its ancestor teosinte only ~10,000 years ago
(Doebley et al., 2006), resulting in the so-called landraces, which in
turn have been improved during recent decades to generate elite
inbred lines. However, SPE genes are likely unrelated to domes-
tication and improvement as they were neither under nor over-
represented (data not shown) among genes found to be under
selection during these processes (Hufford et al., 2012).

The observation that F1-hybrids complement gene expres-
sion patterns of contrasting parental inbred lines and express
more genes could have implications for the manifestation of
heterosis, which describes the increased vigor of hybrid plants
compared with the average of their parental inbred lines (Shull,
1908) and is of enormous economic relevance in maize breeding
(Duvick, 2005). There is consensus that heterosis requires genetic
variation between the parents leading to highly heterozygotic hy-
brids and that heterosis is conditioned by the action of many loci
(reviewed in Schnable and Springer, 2013).

It has been suggested that genotypic differences, such as
polymorphisms, the number and distribution of repetitive sequen-
ces, gene copy number variation, or PAV contribute to heterosis
(Zhang et al., 2008; Lai et al., 2010; Swanson-Wagner et al., 2010).
Moreover, it has been demonstrated that despite the consensus
that all organs have the same complement of the nuclear genome,
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the degree of heterosis largely varies for different tissues or phe-
notypic traits (Flint-Garcia et al., 2009). This observation suggests
that heterosis is associated with tissue-specific gene activity, which
in turn is conditioned by genetic variation. Tissue-specific SPE
patterns as they are reported from this study support this hypoth-
esis; however, it is likely that several other processes contribute to
heterosis (Schnable and Springer, 2013).

In line with this concept, one could hypothesize that the ability
to express ~2% more genes than their parental inbred lines
provides a phenotypic advantage to hybrid plants. Their evolu-
tionary young age argues against SPE genes encoding essential
proteins and rather suggests that these genes encode proteins
having redundant functions thus making the respective biological
processes more robust, e.g., in stress situations.

The finding that apoptosis-related genes, which are involved in
several developmental processes in roots (Fukuda, 1996; Buckner
et al., 1998; Drew et al., 2000), are overrepresented among the
SPE genes supports this hypothesis. Hybrids might benefit from
the complementation of these deficiencies, e.g., by improved
regulation of programmed cell death.

In summary, SPE is observed for hundreds of genes in very
dynamic tissue-specific patterns. Many genes display SPE only
in certain tissues while they show general expression in other
tissues, which underpins the subtle regulation of these expres-
sion patterns and tightly controlled transcriptomic plasticity in
root tissues. Finally, most of the SPE genes are not conserved at
syntenic loci in the genomes of other grasses such as Sorghum,
suggesting that in the maize genome, the average SPE gene is
evolutionarily younger than the average expressed gene. These
findings imply a role for SPE genes in the manifestation of het-
erosis in maize, which needs to be further analyzed in the future.

METHODS

Plant Material and Growth Conditions

Seeds of the maize (Zea mays) inbred lines B73 and Mo17 and the two
reciprocal hybrids B73xMo17 and Mo17xB73 were germinated in paper rolls
in distilled water as previously described (Hoecker et al., 2006). For each
genotype, 18 paper rolls each containing 10 kemels were prepared. All
material was germinated in a single 10-liter bucket in which the 72 paper rolls
were randomly arranged. Primary roots of 2 to 4 cm length were harvested 4 d
after germination. Even at this very early developmental stage, many hybrid
primary roots were longer than those of their parental inbred lines. To avoid
differential gene expression patterns based simply on root length, pools of
roots having the same lengths (2 to 4 cm) were selected for all genotypes and
replicates. From each root, four different tissues were sampled (Figure 1). First,
3 mm of the root tip was collected, which corresponded to the terminal root
cap and the subterminal meristematic zone (Dembinsky et al., 2007). Second,
the zone adjacent to the root tip up to the part of the root where root hairs
became visible was separated, which basically corresponds to the elongation
zone. Finally, we separated the beginning of the root hair zone up to the
coleorhiza, which is connected to the differentiation zone. In the differentiation
zone, cortex and stele were mechanically separated without damaging
pericycle and endodermis cells (Saleem et al., 2009). For each tissue, 14 roots
were pooled for each of the four biological replicates per genotype.

RNA Isolation and Sequencing Library Construction

The pooled primary root tissues were ground under liquid nitrogen and
RNA was isolated as previously described (Winz and Baldwin, 2001). RNA

quality was assayed via agarose gel electrophoresis and a Bioanalyzer
(Agilent Technologies). Only samples with an RNA integrity number
(Schroeder et al., 2006) = 7.2 were used for downstream analyses. The
cDNA libraries for sequencing-by-synthesis were constructed according
to the protocol of the manufacturer (lllumina). The 64 samples were loaded
on two flow cells in a predefined order (Supplemental Table 1). The ex-
periment was randomized according to a split plot design. Four con-
tiguous lanes of a flow cell were regarded as a complete block, so there
were four complete blocks (biological replicates), distributed across two
flow cells with eight lanes each. The four tissues were randomized within
each block (set of four lanes). A lane was considered as a main plot. For
the same tissue, the four genotypes were allocated to each lane, so the
genotypes correspond to subplots of the design. The different tissues for
the same genotype in a block originated from the same plants. Cluster
generation and sequencing (100 bp, single read) was performed as per the
instructions of the manufacturer (Genome Analyzer lIx; lllumina).

Analysis of Raw Sequencing Data, Read Mapping, and
Allele-Specific Read Calling

Sequencing was performed on the GAllx genome analyzer equipped with
on-instrument sequencing control software SCS Version 2.8 and real-time
analysis RTA1.8.7. The genome analyzer data analysis pipeline OLB
version 1.8.0 was used for base calling and run statistics on all 16 lanes.
On average, a raw cluster density of 387,145 clusters per tile was achieved,
yielding between ~3.25 and ~3.76 Gb per lane after sample post filtering
(see Supplemental Figure 1 and Supplemental Table 1 for sample allocation
and sequencing performance per lane).

The maize B73 reference genome (Schnable et al., 2009) was indexed
using GMAP_BUILD (k-mer size of 15 and step size 3) and all high-quality
reads were aligned to the whole reference genome using the short reads
aligner GSNAP (http://research-pub.gene.com/gmap/, version 2012-01-11).
Only reads uniquely mapping to the B73 reference genome (Schnable et al.,
2009) with a maximum of two mismatches out of 36 bp and with at most 5-bp
tails for every 76 bp were extracted and subsequently analyzed. In addition,
redundant reads mapping at the same starting coordinate and mapping
orientation (stacked reads) were removed from the set of uniquely mapping
RNA-seq reads. The remaining reads of all samples were projected to the
filtered gene set (http://ftp.maizesequence.org/release-5b/filtered-set/,
release 5b.60) of the B73 reference genome derived from maize genome
sequencing project using a Perl script. Allele-specific gene expression was
analyzed with a set of 4,034,683 SNPs (identified between the B73 and Mo17
genotypes via 123SNP software, which is available for download from http://
schnablelab.plantgenomics.iastate.edu/software. B73-Mo17 SNPs were
called by aligning B73 RefGen_v2 sequences and Mo17 sequences retrieved
from GenBank Sequence Read Archive records (accession numbers
SRA009756, SRA049859, SRA048055, SRA053592, and SRA050451) and
maizegdb (http://ftp.maizegdb.org/MaizeGDB/FTP/Mo17/).

The allele-specific reads were extracted from the reads uniquely pro-
jected onto the FGSv2 and associated with any B73-Mo17 SNP using
a customized Perl script. Since the mapping procedure presented here did
not allow for quantifying sequence reads mapping to repeats throughout the
genome, only uniquely mapping genes were considered. In addition,
transcript isoforms of a given gene locus could not be distinguished.

Detection of Expression Complementation and Functional Analysis

Classification of the gene-wise transcriptional activity (presence/absence)
for each genotype was determined by a hierarchical Bayesian latent class
model using Markov Chain Monte Carlo methods, similar to Paschold
et al. (2012). We again modeled read counts via the mean-dispersion
parameterization of the negative binomial distribution, using the median
read count multiplied by the exon length (in kilobases) of the specific
transcript as an offset value for normalization. Expression was modeled
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log-linearly, with overall gene and gene-specific genotype effects, which
we assumed were both normally distributed. To account for the split-plot
design, random normally distributed plot effects were also included in the
model. Each gene was assumed to have its own unique dispersion pa-
rameter, which was treated as random from a common log-normal dis-
tribution. To account for falsely mapped reads, we included a fixed
background error rate estimated from the data. The model was defined
using MCMC software JAGS (Plummer, 2003) and fit in R using the R2jags
library package (Su and Yajima, 2011). Due to the size of such a model
under the full data, we initially trained the model on a representative
subset (4000 total) of the genes, each selected at random. We ran two
Markov chains at a total of 15,000 iterations each, treating the first 10,000
as a burn-in and then thinning the remaining iterations by saving every 5th
iteration, resulting in posterior sample parameter traces of length 1000.
We analyzed the posterior sample to verify that the model had converged
by visually inspecting the mixture of the chains and using posterior
checking procedures from the coda output diagnostics package
(Plummer et al., 2006) in R. We then applied Monte Carlo integration under
the learned posterior distributions of the hyperparameters to obtain gene-
wise posterior probabilities of each possible state vector over the entire
set of genes, conditional on the observed read counts. Classification of
each gene was determined by the maximum posterior predictive prob-
ability of a given state vector. Separate model fits were run for each
analysis. PAVs were called as previously described (Paschold et al., 2012).
The GO of specific genes and the overrepresentation of GO terms were
conducted using the single enrichment analysis of the AgriGo platform
(http://bioinfo.cau.edu.cn/agriGO/analysis.php).

Accession Numbers

Raw sequencing data are stored at the Sequence Read Archive (http://
www.ncbi.nim.nih.gov/sra) under accession number SRP029742.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Distribution of 64 Samples across 16 Lanes
on Two Flow Cells for RNA-seq.

Supplemental Table 1. Summary of the Sequencing Output of the 64
Primary Root Tissue Samples.

Supplemental Table 2. Summary of the Sequencing Output after
Trimming of the Reads, Mapping Them to the Maize Genomic Sequence,
Removal of Redundant Reads, and Determination of Reads in the Gene
Space of the Maize Genome.

Supplemental Table 3. Summary of the SPE Genes Assigned to the
GO Term Apoptosis.

Supplemental Data Set 1. Summary of All Expressed Genes and
Their Distribution across Tissues, Presence-Absence Variations, and
Their Assignment to Subgenomes.
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