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Summary

The log-rank test has been widely used to test treatment effects under the Cox model for censored 

time-to-event outcomes, though it may lose power substantially when the model’s proportional 

hazards assumption does not hold. In this paper, we consider an extended Cox model that uses B-

splines or smoothing splines to model a time-varying treatment effect and propose score test 

statistics for the treatment effect. Our proposed new tests combine statistical evidence from both 

the magnitude and the shape of the time-varying hazard ratio function, and thus are omnibus and 

powerful against various types of alternatives. In addition, the new testing framework is applicable 

to any choice of spline basis functions, including B-splines and smoothing splines. Simulation 

studies confirm that the proposed tests performed well in finite samples and were frequently more 

powerful than conventional tests alone in many settings. The new methods were applied to the 

HIVNET 012 Study, a randomized clinical trial to assess the efficacy of single-dose Nevirapine 

against mother-to-child HIV transmission conducted by the HIV Prevention Trial Network.
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1. Introduction

The HIVNET 012 Study is a randomized clinical trial conducted by the HIV Prevention 

Trial Network (HPTN) between 1997 and 2001 (The HIVNET/HPTN Group, 2003). It 

showed an astounding prevention benefit for a short course of nevirapine (NVP) versus 

zidovudine (AZT) among HIV infected pregnant women in Uganda: NVP was associated 
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with a 41% reduction in relative risk of mother-to-child transmission (MTCT) of HIV-1 

through to the age of 18 months (Jackson et al., 2003).

Besides the prevention benefit, it was also important for this study to assess whether or not 

the NVP would eventually improve the newborn’s 18-month survival. As shown in Figure 

1(a), Kaplan-Meier curves indicate that the NVP group appears to have better infant 

survival. However, the log-rank test does not show statistical significance (p-value: 0.147). 

Although the lack of significance could be due to insufficient sample size, the power of the 

log-rank test may also be compromised if the proportional hazards assumption does not 

hold. We plot the log-log-transformed estimated cumulative hazard functions in Figure 1(b), 

which demonstrates that the two Kaplan-Meier curves indeed appear to get closer as time 

progresses. This suggests that the hazard ratio is not constant over time.

In the HIVNET 012 Study, NVP was only given once to the mothers at labor onset and once 

to the babies within 72 hours of birth, while AZT was given to the mothers from labor onset 

to delivery and to the babies twice daily for 7 days after birth. It was not expected that the 

NVP effect would sustain throughout the 18 months of follow-up. In addition, even if the 

babies were born uninfected, they could be infected after birth via breastmilk because the 

ratio of HIV-susceptible cells to total breastmilk cells increases over time. Therefore, one 

would predict the risk reduction of 18-month infant mortality to vary over time. If so, it is 

important to develop appropriate statistics to test whether there is any infant survival benefit 

from NVP while allowing for nonproportional hazards.

As alluded to above, the power of log-rank test, or the score test based on the partial 

likelihood for the Cox proportional hazards model (Cox, 1972), depends on the alternative 

assumption of proportional hazards. They may lose power if the assumption does not hold, 

as in the HIVNET 012 Study example. This paper aims to develop flexible testing 

procedures for potentially time-varying treatment effects for censored time-to-event data.

To be specific, we consider an extended Cox proportional hazards model as follows:

(1)

Here, λ(·|X, Z) is the hazard function for the p-dimensional covariate vector X ∈  and the 

treatment indicator Z ∈ , and λ0(·) is the baseline hazard function. The superscript T is for 

vector (matrix) transpose. Moreover, β is the time-independent regression parameter of the 

same p-dimension for X, and θ(·) is the time-varying coefficient for Z that is assumed to be a 

smooth function of time. When θ(t) is constant, model (1) reduces to the usual Cox model. 

Under model (1), we are interested in testing the null hypothesis that Z has effect at any time 

while adjusting for X, i.e., H0: θ(t) = 0 for any t ≥ 0.

There have been several approaches in the statistical literature for hypothesis testing 

involving θ(·) in (1). For example, Self (1991) and Wu and Gilbert (2002) considered 

adaptively weighted log-rank tests, assuming parametric forms of θ(·) to be polynomial 

functions. For nonparametric or semiparametric approaches, Gray (1994) applied B-spline 

bases to approximate θ(·) with a careful manual choice of tuning parameters, such as degrees 
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of freedom and number of knots. Nevertheless, the choice of tuning parameters would 

depend on the functional shape of true θ(·) and was generally unknown; different choices of 

tuning parameters could affect power considerably and lead to different p-values. Other 

approaches may resort to direct nonparametric estimation of θ(·), as seen in O’Sullivan 

(1988), Hastie and Tibshirani (1990), Zucker and Karr (1990), Sleeper and Harrington 

(1990), Kooperberg et al. (1995), Brown et al. (2007), and references therein. This work is 

useful in understanding the overall shape of θ(·). Although asymptotic properties are 

developed for an estimated θ̂(t) at a specific time t, they are usually not intended for testing 

the global null H0: θ(t) = 0 for any t ≥ 0.

The null hypothesis of interest is related to but fundamentally different from H0,PH: θ(t) = c 

for some constant c ∈ . In fact, H0,PH is exactly equivalent to the proportional hazards 

assumption, with testing procedures including Pettitt and Bin Daud (1990), Gray (1994) and 

Lin et al. (2006). Specifically in Lin et al. (2006), θ(·) was approximated by smoothing 

spline bases, and the authors proposed a score test for H0,PH that does not involve tuning 

parameters. Nevertheless, we would like to emphasize that these approaches test a different 

null hypothesis from the proposed test, and are thus not comparable with our work. The 

differences between our work and other previous literature are further clarified in Section 

3.5.

In this article, we aim to develop proper testing methods specifically for the null hypothesis 

H0: θ(t) = 0 for any t ≥ 0 under model (1), based on spline representation of the hazard ratio 

θ(t). The rest of the paper is organized as follows. In Section 3, we study the extended Cox 

model and derive the proposed statistics. Extensive Monte-Carlo simulations studies are 

presented in Section 4 with various choices of θ(t) to evaluate a finite sample performance 

of our score statistics. We also apply our proposed statistics to compare the 18-month infant 

survival rates of the HIVNET 012 Study. We conclude in Section 5 by summarizing our 

results and discussing relevant issues and future directions.

2. The extended Cox model

Throughout this paper, we assume the extended Cox model as in (1). Our aim is to develop 

powerful and omnibus hypothesis testing procedures for H0: θ(t) = 0 for any t ≥ 0. When θ(·) 

is constant, model (1) reduces to the usual Cox proportional hazards model. Nevertheless, 

θ(t) can be quite flexible. It allows the hazard ratio between two treatment groups to change 

over time for any given X. Some properties regarding this model are summarized as follows:

Property—Denote the cumulative hazard function by . Let θ(0) = θ0 and 

assume that limt→∞ θ(t) = θ1 < ∞. Then

1. limt→0 log{Λ(t | X, Z)/Λ0(t)} = XTβ + Zθ0, and

2. limt→∞ log{Λ(t | X, Z)/Λ0(t)} = XTβ + Zθ1.

Proof of this property is straightforward. Based on this, when θ(·) is monotone, θ0 and θ1 

define the lower and upper boundaries of the relative risk in cumulative hazard functions 

adjusted for X. For example, when θ(t) = 0.7 exp(−t), the hazard ratio for Z is 0.7 at t = 0, but 
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gradually reduces to zero as time progresses. More examples of θ(·) are shown in Figure 2. 

Self (1991) and Wu and Gilbert (2002) considered special parametric submodels, where the 

shape θ(·) is represented by a family of polynomial functions indexed by a few parameters to 

account for early or late effects.

2.1 Spline representations of θ(t)

We assume that the collected data consist of n independent and identically distributed (iid) 

copies of (Y, Δ, X, Z), where Y is the minimum of time to event T and censoring time C, i.e., 

Y = min(T, C), Δ = I(T ≤ C) is the event indicator, X is the vector of covariates other than the 

treatment indicator Z, namely {(Yi, Δi, Xi, Zi), i = 1, 2, …, n}. Let  denote 

the ordered observed failure times, i.e., ordered statistics of {Yi: i = 1, 2, ···, n, and Δi = 1}, 

where  is the number of observed failure time points.

To model the time-varying treatment effect flexibly, we consider representing θ(t) by fixed 

knots B-splines or smoothing splines, i.e.,

(2)

where Bk(t) forms a set of basis functions. Note that the methods development below works 

for both B-spline or smoothing spline approaches, and our experience is that the 

performance of the two approaches are comparable as long as the number of knots are 

reasonably dense. If one is using fixed knots B-splines, the number of basis function K is 

fixed and depends on the number of knots and the order of polynomials. For the smoothing 

spline approach, on the other hand, the number of basis functions depends on the sample 

size and the order of polynomials, i.e., K = r + m − 1.

Since the partial likelihood involves θ(t) evaluated at the observed failure time 

only, we define , where 1 ∈ ℝr is a vector whose elements 

are all 1, θ = (θ1, …, θK)T ∈ Θ ⊂ ℝr and B is a r × K matrix whose (i, j) element is .

2.2 Penalized likelihood

The spline representation introduces K parameters (θ1, ···, θK) for the hazard ratio function to 

allow flexibility. However, with a large degree of freedom, the model could overfit and the 

power to detect deviations from the null may be low. One strategy to avoid overfitting is to 

introduce a penalized partial likelihood function by penalizing the roughness of θ(t), e.g., in 

the form of ∫ {θ′(t)}2dt. It can be shown that the penalty term is a quadratic function of θ,

where Σ is a K × K matrix whose (i, j) element is , which is fully determined 

by the choice of splines. Thus, the penalized partial log likelihood function is defined by
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(3)

where τ is a tuning parameter that controls smoothness of θ(t), and ℓP is the partial 

likelihood corresponding to hazard ratio function θ(t),

Note that τ controls the level of smoothness of θ(t) and thus the effective degree of freedom. 

When τ is small, the penalized partial likelihood encourages solutions that are close to the 

Cox proportional model with df = 1 for treatment effect. When τ is large, the effect of 

penalty is negligible and the model involves K + 1 parameters for the treatment effect, e.g., 

df = K + 1. Under this model, the null hypothesis can be represented as H0: θk = 0, , k ∈ {0, 

1, ···, K}. Gray (1994) used B-splines and studied asymptotic properties of Wald, score and 

likelihood ratio tests for fixed tuning parameter τ. For the choice of tuning parameter, they 

suggested choosing a suitable degree of freedom (henceforth denoted df) and finding τ to 

achieve the desired df. However, in practice, the choice of suitable df is subjective, and the 

power performance depends on the tuning parameter.

To construct tests that do not depend on tuning parameters, one can exploit the connection 

between the penalized splines and random effects models (Ruppert et al., 2003). Note that 

the second term of (3) is proportional to the logarithm of a multivariate normal density with 

mean zero and the covariance matrix τΣ−1. Hence, one can treat θ as “random effects,” and 

integrate θ out with respect to the multivariate normal density to obtain the marginal partial 

log likelihood

(4)

We use this marginal likelihood as our objective function to derive the score statistics. In 

fact, since τ is the variance component for the random effects, setting τ = 0 shall lead to θ = 

0. As a result, testing H0 is equivalent to H0: θ0 = 0, τ = 0. Note that this mixed effect model 

representation holds for both B-splines and smoothing splines.

Remark 1—Lin et al. (2006) considered a smoothing splines approach, where the log 

hazard ratio θ(t) can be represented by
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where δj and θk are spline coefficients, {1, t, ···, tm−1} is a set of basis functions for (m − 1)th 

order polynomials, and , where x+ = x ∨ 0 = 

max{x, 0}. The choice of m in (2) depends on a pre-specified level of smoothness. If one 

chooses m = 1, the time-varying coefficient (2) is simplified as , 

where R(t, s) = min{t, s}. It can be shown that matrix B is exactly the same as Σ in this case.

Remark 2—There are several key differences between Lin et al. (2006) and our work. 

First, they are interested in testing the proportional hazards assumption, , which is 

a different null hypothesis. Thus, our approach and theirs are not directly comparable. 

Second, their null hypothesis involves the variance component parameter only, where ours 

involves an additional fixed effects parameter θ0. Statistically, as will be seen later, our work 

involves addressing challenges to combine score tests for both θ0 and τ, due to some non-

standard properties for the variance component τ. Third, our approach here is not limited to 

the smoothing splines approach, and it works for other choices of basis functions such as B-

splines.

3. Proposed test statistics

The aim of this paper is to propose “omnibus” testing procedures for potentially time-

varying treatment effects, without making parametric assumptions on the shape of the 

hazard ratio. The idea is to combine evidence from both the average magnitude and shape of 

the hazard ratio function and construct test statistics that are powerful under both 

proportional hazards (henceforth denoted PH) and various non-PH alternatives.

3.1 A two-stage test

In the literature, there were developments on hypothesis testing procedures for the 

proportional hazards assumption, e.g., Lin et al. (2006), denoted by TLZD. If one aims to test 

treatment effect H0 while accounting for potential non-proportionality, a natural strategy is 

to construct a two-stage procedure as follows (henceforth denoted T2stg),

S1 apply the test TLZD for the PH assumption. Reject H0, if the p-value is less than 

a pre-determined significance level α1; otherwise, go to the second stage;

S2 apply the standard log-rank test for treatment effect. Reject H0 if the p-value is 

less than another pre-determined significance level α2.

This procedure is a straightforward extension of the log-rank test and TLZD. Note that S1 

tests the proportional hazards assumption, while S2 tests treatment effect given the 

proportional hazards assumption is plausible. The overall null hypothesis is rejected if either 

stage rejects the null. The overall type I error rate of this two-stage procedure depends on the 

correlation of two tests, but is bounded by α1 + α2 from above according to the Bonferroni 

inequality. The parameters α1 and α2 control how much type I error was assigned to the two 

tests. In practice, one can choose α1 = α2 = α/2 without prior information on the plausibility 

of proportional hazards, where α is the targeted overall significance level. The performance 

of this simple two-stage procedure will be compared with the standard log-rank test as well 

as other proposed methods discussed below.
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3.2 Score statistics

Next, we construct a few test statistics based on combining score statistics for θ0 and τ. 

Taking the derivatives of (4) with respect to θ0 and τ, one obtains

and

(5)

where β̂ is the maximum partial likelihood estimate of the Cox model without treatment 

effect, i.e., the maximizer of the partial likelihood ℓP (β, θ0 = 0, θ = 0). First, we look at the 

derivative with respect to θ0. Denote S(β, θ0, θ) = (∂/∂γ)ℓP (β, θ0, θ), the kth element of S(β̂, 

0, 0) is then . 

It can be shown that the covariance matrix of S(β, θ0, θ) is given by , 

where the Fisher information matrices are evaluated under the true parameter values. Thus, 

1TS(β̂, 0, 0) is in fact the usual partial likelihood score function evaluated under the null. The 

standard score test statistic for θ0 can be written as

which is a quadratic form of S(β̂, 0, 0) and converges to  due to rank(11T) = 1. Note here 

I0 = var{1TS(β̂, 0, 0)} = 1TV 1 is exactly the efficient Fisher information for θ0 under the 

Cox model. Thus, the standardized score test statistic TLR converges to a  distribution 

under the null hypothesis. Next, we look at the derivative with respect to τ. It has been 

shown that the variation of second term of (5) is negligible relative to the first term (Lin et 

al., 2006). The first term of (5) is a quadratic form of S(β̂, 0, 0). According to quadratic form 

theory, its limiting distribution is weighted sum of χ2’s, with weights determined by the 

eigenvalues of Σ. This suggests that the asymptotic behavior of the score function for τ is 

non-standard.

Remark 3—For the smoothing splines approach with first-order polynomials (Lin et al., 

2006), the term BΣ−1BT simplifies to Σ as B = Σ = BT in this case. They evaluated the score 
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for τ at (β = β̃, θ0 = θ0̃, θ = 0) instead, where β̃ and θ̃
0 are their maximum likelihood 

estimates under the Cox model, because they are testing a different null hypothesis .

3.3 Combine scores for θ0 and τ

To test H0: θ0 = 0, τ = 0, since the null hypothesis involves both θ0 and τ, one needs to 

combine score functions with respect to θ0 and τ (denoted as Uθ0 and Uτ, respectively), 

which reflect information from the average magnitude and shape of the hazard ratio 

function, respectively. Under regularity conditions, score functions for multiple parameters 

follow multivariate normal distribution asymptotically, and the standard approach is 

constructing linear combination of Uθ0 and Uτ weighted by the square root of the joint 

Fisher information matrix. However, this procedure does not work here, due to non-standard 

properties in testing variance components.

As discussed above, the parameter τ = 0 is on the boundary of its parameter space under the 

null. The dominating term of the score function with respect to τ converges to a weighted 

sum of ’s, instead of a Gaussian distribution. To overcome these challenges, we propose 

methods of combing two score functions to construct test statistics. Note that Uθ0 and Uτ are 

linear and quadratic forms of S(β̂, 0, 0), respectively. We propose combinations of them that 

are quadratic forms of S(β̂, 0, 0), whose asymptotic distribution can be derived conveniently.

The first test statistic T1 is constructed by taking the sum of Uτ and ,

(6)

where Î0 is an estimate of the efficient information for θ0 in the usual Cox model. Note that 

T1 is also a quadratic form of S(β̂, 0, 0), and thus its limiting distribution can be easily 

calculated. It converges to a weighted sum of ’s, with weights determined by eigenvalues 

of the matrix M1=BΣ−1BT + (Î0)−111T. Using the Satterthwaite approximation, the limiting 

distribution can be further simplified. Our score statistic rejects the null hypothesis H0 at the 

nominal level α if  where  is a 100(1 − α) percentile of the  random 

variable with degree of freedom v. Here, k1 = tr(M1V M1V)/tr(M1V), and v1 = {tr(M1V)}2/

tr(M1V M1V), where V = ∂2ℓP {β̂, (θ0, θT) = 0}/∂γ∂γT. The details on deriving the limiting 

distribution and its approximations are discussed in Appendix A.

The test statistic T1 is a sum of two quadratic forms. However, these two parts are not 

independent, and taking the sum directly may not be optimal in terms of power, with 

potential power loss depending their correlation. We propose to remove the projection of Sτ 

on Sθ0, so that the modified score statistics for τ (denoted by subscript “mPH”, i.e., modified 

test for PH) is asymptotically independent to the score statistics for θ0. Let

(7)
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where W = Ir×r−V 11T/{1TV 1}. The matrix W is constructed so that WS(β̂, 0, 0) and 1TS(β̂, 

0, 0) are asymptotically independent (see Appendix C). Note that TmPH is also a quadratic 

form of S(β̂, 0, 0) that reflects evidence on proportionality, on the direction that is orthogonal 

to the average magnitude of hazard ratio. The degree of freedom of TmPH depends on 

realizations of the data, and can be calculated by tr(V−1WTBΣ−1BTW).

We now construct the second test statistic by taking the sum of TLR and TmPH,

(8)

The test statistic T2 is also a quadratic form, and we can obtain the approximate asymptotic 

distribution according to Appendix A. Our score statistic T2 rejects the null hypothesis H0 at 

the nominal level α if  where k2 = tr(M2V M2V)/tr(M2V), v2 = {tr(M2V)}2/

tr(M2V M2V), and M2 = WTBΣ− 1BTW + (Î0)−111T.

Remark 4—More generally, one can consider the family of linear combinations of TLR and 

TmPH, e.g., using test statistics

(9)

where ρ determines the weights from two parts. The test statistic T(ρ) becomes the standard 

log-rank test when ρ = 0, and the modified test for proportionality when ρ = 1. The proposed 

test T2 corresponds to ρ = 0.5. The optimal choice of tuning parameter ρ is not clear and we 

plan to investigate this family of test statistics in the future. Our simulation studies suggest 

that T2 performs well in terms of power in finite samples.

3.4 Combination procedures based on p-values

We also explored a few other methods to combine information, e.g., Koziol and Perlman 

(1978), taking advantage of the fact that TLR and TmPH are asymptotically independent. For 

example, two commonly used procedures for combining independent tests are based on p-

values, Fisher’s and Tippett’s procedures. Specifically, let PLR and PmPH denote p-values 

from TLR and TmPH respectively. The test statistics for Fisher’s procedure is

Under H0, it can be shown that T3 follows , and thus p-values can be calculated by 

, where  is the cumulative distribution function of . We reject the null 

when  at significance level α. On the other hand, Tippett’s procedure rejects the 

null when either PLR or PmPH is small, i.e., the test statistic is the minimum of two p-values
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Under (asymptotic) independence of two tests, one can show that the formula for p-values 

for the combined test is P4 = 1 − (1 − T4)2. At significance level α, the rejection region is 

given by T4 < 1 − (1 − α)1/2.

Note that the two-stage test T2stg described in Section 3.1 can also be viewed as a 

combination procedure based on p-values. However, the proposed T3 and T4 combines two 

test statistics that are asymptotically independent, while the two statistics of T2stg are 

possibly correlated. The finite sample performance of these procedures will be evaluated in 

simulation studies.

3.5 Connection with previous literature

In the literature, there are two existing approaches most relevant to our proposed methods: 

Gray (1994) and Lin et al. (2006). However, there are substantial differences between their 

work and our proposed tests.

First, Gray (1994) used B-splines to model θ(t) and proposed Wald, score and likelihood 

ratio statistics based on penalized partial likelihood for fixed values of tuning parameter. 

Their approach is applicable to several hypothesis testing problems, including testing time-

varying treatment effect H0 (see Section 4 of their paper). However, it depends on a tuning 

parameter that controls the effective degree of freedom of splines. The tuning parameter 

affects the power of these tests substantially and is often difficult to choose in practice. If we 

use the same B-spline approach, our work can be viewed as extensions of Gray (1994) 

through a mixed effects model framework. In contrast, our proposed tests are automatic 

procedures that do not depend on tuning parameters, and are shown to be as or more 

powerful in finite samples (see the next section).

Second, Lin et al. (2006) proposed smoothing spline based score tests in extended Cox 

models. They discussed several hypothesis testing problems, including testing the 

proportional hazards null H0,PH : θ(t) = θ0 versus an alternative model with a time-varying 

hazard function. From a random effects model perspective, their null hypothesis can be 

represented via the variance component, i.e., H0,PH : τ = 0. Although our development 

adapts some technical arguments from Lin et al. (2006), we target a different null hypothesis 

H0 : θ(t) = 0, or equivalently H0 : θ0 = 0, τ = 0. Their approach is applicable only when the 

null hypothesis is represented via the variance component τ only, thus excluding the 

problem of testing H0. Other than the fundamental differences in the null hypotheses of 

interest, the primary challenge of extending their approach to our problem is how to 

combine information from θ0 and τ, and this is not straightforward given the non-standard 

nature of variance components. We proposed a few approaches to combine score statistics 

for θ0 and τ, and this is one of the main contributions of this paper from a methodological 

perspective.

4. Numerical Studies

4.1 Simulations

To study the finite sample performance of the proposed tests, survival data of sample sizes n 

= 100 and n = 500 were generated from the extended Cox model (1) with a binary treatment 
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indicator and no additional covariates. The baseline hazard function was a constant function, 

i.e., λ0(t) = 1. The censoring distribution was the uniform distribution on [0, c] where c was 

chosen to yield censoring probability 30% for each scenario. We conducted extensive 

simulation studies with various choices of θ(t), corresponding to different shapes of hazard 

ratio functions. The shapes of θ(t) are shown in Figure 2, most of which were considered by 

Gray (1994) and Lin et al. (2006) up to scale changes.

For each simulated dataset, we compared our methods with the log-rank test (denoted TLR), 

the two stage procedure with α1 = α2 = 0.025% as described in Section 3.1 (denoted T2stg), 

and the score statistic of Gray (1994) with pre-selected degree of freedom (denoted 

with K knots and degree of freedom df). For the score statistic of Gray (1994), we 

considered four choices, with the number of knots K = 10 and 20, and degrees of freedom df 

= 1.5 and 5. The performances of the likelihood ratio and Wald statistics of Gray (1994) are 

similar to the score statistic, and thus we only reported results for their score statistics. We 

also reported power from the modified test for proportionality, TmPH, since it is a valid test 

for H0 with a correct type I error. However, we do not mean to compare its performance 

with other tests directly, as TmPH summarizes evidence from non-constant shape of the 

hazard ratio only; rather our intention is to gain insights of how each method combines 

information from the magnitude and shape of the hazard ratio. We implemented the 

proposed test statistics T1, T2, T3, T4 using both B-splines with K = 20 knots and smoothing 

splines. The results were similar, and we only report the latter.

Table 1 summarizes results from our simulations. In terms of type I error, all test statistics 

maintained the nominal level of size (α = 0.05) approximately under the null hypothesis H0. 

In terms of power, none of the test statistics is optimal in detecting all types of alternatives. 

It is well known that the log-rank test is most powerful for treatment effect under the PH 

assumption, but may lose power otherwise. The aim of our work is to propose new 

“omnibus” tests that do not lose much power compared to log-rank under the PH assumption 

and also have decent power to detect non-PH alternatives.

We now compare power of various test statistics under both PH alternatives and a wide 

variety of non-PH alternatives. When the PH assumption holds and the true model is the 

Cox model (H0,PH), the log-rank test was the most powerful as expected. Gray’s score tests 

performed well, particularly with low degree of freedom (df = 1.5), but lost power 

substantially with higher degree of freedom (df = 5). The proposed linear combination 

statistics T1 and T2 have slightly lower power compared to the log-rank test, but the 

differences are small. The proposed p-value based statistics T3 and T4 are less powerful than 

the linear combination tests from simulations.

Under non-PH alternatives, there is no universally best test according to Table 1. First, we 

compare power performance between two proposed statistics T1 and T2. Under several 

scenarios (L, Q, E1, Expit, Log2), T1 has slightly higher power than T2 by around 2% and 

6%. On the other hand, T2 outperforms T1 in other settings (E2, Log1, S, C), but generally 

with a more substantial power gain that varies between 7% to as high as 38% (Log1). Thus, 

the statistic T2 is considered “omnibus” in the sense that it has decent power against all types 

of alternatives and is our preferred choice, while T1 is prone to very low power to detect 
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certain types of alternatives. The substantial power gain of T2 is likely due to the fact that 

the latter exploits orthogonality between information on the magnitude and shape of the 

hazard ratio function.

Next, we compare the proposed score statistic T2 versus the log-rank test (TLR), the modified 

PH test (TmPH) and the two-stage procedure (T2stg) under non-PH alternatives. Under many 

settings, T2 outperforms both TLR and Ttwo−stg. For example, under alternative curve Log2 

and a sample size of 500, the power for T2 is 61.4%, much higher than both TLR (44.9%) and 

T2stg (55.7%). Under some alternatives (E1, E2, Expit), the power of T2 is lower than the 

log-rank test TLR but only by very slight margins. Thus, the proposed test T2 is generally 

comparable to or more powerful than TLR, since it combines information from the shape of 

hazard functions. The proposed test can potentially pick up evidence of treatment effects 

even if both TLR and TwoStg fail to suggest so. We also compared T2 versus Gray’s score 

tests. The power of Gray’s score tests varies with tuning parameters, especially with the 

degree of freedom, which needs to be prespecified and can affect power performance 

considerably. Their score tests with low df (  and ) perform well when the hazard 

function is close to a constant or linear function but poorly otherwise, while the opposite 

holds for the tests with high df (  and ). The proposed test T2 is often comparable or 

close to Gray’s statistics with the “better” choice of df in terms of power, and sometimes 

outperform all of them under certain alternatives (Log1 and C).

To summarize, the proposed test statistics, especially the preferred T2, demonstrate decent 

power performances under various alternative hypotheses in simulations. Other testing 

procedures, such as the log-rank test, the two-stage procedure and Gray (1994)’s score tests, 

are often powerful against certain alternatives but may lose power substantially against 

others. In addition, T2 does not depend on tuning parameters, making it an omnibus and 

desirable testing procedure to use in practice.

4.2 Application to HIVNET 012 Study

We demonstrate our proposed methods by analyzing our motivating example of infant 

survival in the HIVNET 012 Study mentioned in Section 1. In our data set, 310 women were 

assigned to the NVP group and 306 women to the AZT group. We exclude the second twins 

or more and stillbirth babies from the analysis. Mean CD4+ counts at the baseline for 

mothers in both groups were 482 and 465 (p = .41); mean log RNA viral copies with base 10 

at visit 101 were 4.35 and 4.39 (p = .59); mean birth weights were 3080 kg and 3197 kg (p = 

0.001), respectively. The total follow-up time is 18 months. The HIV-1 transmission risk 

and risk of death at the end of the study is 14.9 % and 23.5% (p = 0.007), and 9.3% and 

12.7% (p = .18).

As we discussed in Section 1, the log-rank test does not show significance (p = 0.145), with 

estimated hazard ratio 0.701 (95 % CI: 0.43–1.13). However, the lack of statistical 

significance may be due to the fact that the log-rank test is not powerful when the PH 

assumption does not hold, which seemed to be the case in this application (Figure 6).
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Next, we applied alternative tests, including weighted log-rank test, Gray’s test and the 

proposed tests. For weighted log-rank tests, we used weights corresponding to the Peto-Peto 

modification of the Wilcoxon statistic (Peto and Peto, 1972) considering the drug effect 

gradually disappeared over time, but the result is not significant (p = 0.125). We also tried 

weights from the Gρ family (Harrington and Fleming, 1982) with different ρ’s, but the usual 

choice of ρ between 0 and 1 did not yield a significant result. Gray’s score tests yielded 

different results depending on tuning parameters such as degrees of freedom and numbers of 

knots. Specifically, p-values corresponding to df = 1.5, 3 and 5 are 0.073, 0.032 and 0.057, 

respectively, with K = 10 knots, and are 0.069, 0.032 and 0.053, respectively, with K = 20 

knots. These results may be confusing to practitioners since different df led to different p-

values, and it is not clear which df one should choose for this specific application. The 

proposed test T2 suggested significant treatment effects (p = 0.015). To confirm the 

proportionality of the hazard ratio, we also applied the test and obtained p-value (p = 0.013), 

which suggested that the hazard ratio is time-varying and that the log-rank test is not optimal 

in this setting.

5. Discussion

We developed spline based score tests for time-varying treatment effects in an extended Cox 

model. The proposed approach is designed to test treatment effects when the proportional 

hazards assumption may not hold. These test statistics do not depend on tuning parameters 

and are easy to compute since they only require fitting the null model (Cox model). 

Simulation studies suggested that our methods gained power substantially compared to the 

log-rank test when the proportional hazards assumption does not hold.

There are some connections between the proposed tests and the widely used weighted log-

rank test. As shown in Appendix B, the family of quadratic form tests Q = STUS, which 

include the weighted log-rank test, Lin et al.’s proportionality test and the proposed tests, are 

equivalent to a linear combination of several weighted log-rank tests with weights 

determined by the eigenvectors of the matrix U. The weighted log-rank test (when U has 

rank 1) is powerful when the chosen weights are close to the true hazard ratio functions, but 

may lose power substantially otherwise. In contrast, the proposed tests combine several 

plausible weighted log-rank tests, some of which reflect information on the smoothness of 

the hazard ratio function, and thus provide omnibus testing procedures that are powerful to 

detect a variety of alternatives.

There are a few areas for future research. As discussed in Section 2.2, one main challenge is 

how to combine scores for parameters θ0 and τ, given the non-standard nature of variance 

components testing. While the two proposed statistics are natural choices, they are not 

necessarily optimal in terms of power. There may be other ways to combine the score 

statistics. For example, one may explore the family of linear combinations and find an 

optimal weight within this family, or even identify the optimal statistics among nonlinear 

combinations if possible. The proposed methods can also be applied to other models and 

setting to detect a nonlinear trend. Although we focused on an extended Cox model, our 

method can be extended to other models such as an additive hazards models. Finally, one 

could also consider generalized Wald or partial likelihood ratio type approaches, as 
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suggested by the reviewers. These approaches require first obtaining an estimate θ̂(t), which 

depends on the choice of the smoothing parameter τ. The tuning parameters are often chosen 

by adaptive approaches such as cross validation, and it is challenging to account for the 

uncertainty of choosing τ in the inference for θ(t). The (generalized) likelihood ratio test has 

been developed for linear mixed models (Fan et al., 2001; Crainiceanu and Ruppert, 2004), 

but not on generalized linear mixed models for discrete outcomes and mixed models for 

censored time-to-event data. Actually this is one of the main reasons that score tests are 

more popular in hypothesis testing for nonlinear mixed models.

One reviewer raised an interesting question of deriving a method to differentiate three 

hypotheses: the null, constant or truly time-varying effect of treatment. Two step procedures 

will be needed to accomplish this, as standard hypothesis testing is designed to distinguish 

two hypotheses only. For example, one can first apply the test of Lin et al. (2006), which 

differentiates “null or constant effect” vs. time-varying effect. If the null was not rejected in 

the first step, then apply the log-rank test to further differentiate null vs. constant effect. 

Alternatively, one can first apply the proposed test statistics, which differentiates null vs. 

“constant or time-varying effect.” If the null was rejected, then apply the test of Lin et al. 

(2006) to further differentiate constant vs. time-varying effect.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The HIVNET 012 Study: estimated Kaplan-Meier curves for two treatment arms and their 

transformation by log negative log.
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Figure 2. 
Functional shapes of hazard ratio θ(t) that were used in simulations. We considered nine 

hazard functions, including linear (L), quadratic (Q), exponential (E1, E2), inverse-logistic 

(Expit), logarithm (Log1, Log2), step (S) and cosine (C) functions. Their specific functional 

forms are specified in Table 1.
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