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Synergistic Effect of Interleukin-6 and Hyaluronic Acid on Cell 
Migration and ERK Activation in Human Keratinocytes

Wound healing is initiated and progressed by complex integrated process of cellular, 
physiologic, and biochemical events, such as inflammation, cell migration and 
proliferation. Interleukin 6 (IL-6) is a multifunctional cytokine, and it could regulate the 
inflammatory response of wound healing process in a timely manner. Hyaluronic acid (HA) 
is an essential component of the extracellular matrix, and contributes significantly to cell 
proliferation and migration. The purpose of this study was to investigate the effects of IL-6 
or/and HA on the cell migration process in human keratinocytes. Combining IL-6 and HA 
significantly increased the cell migration in scratch based wound healing assay. The 
phosphorylation of extracellular-signal-regulated kinase (ERK) was significantly increased 
after 1 hr of IL-6 and HA treatment, but the phosphorylation of p38 mitogen-activated 
protein kinase (MAPK) was not. We also found that significant increase of the NF-κB 
translocation from cytoplasm into nucleus after 1 hr of IL-6 or/and HA treatments. This 
study firstly showed that synergistic effects of combining IL-6 and HA on the cell migration 
of wound healing by activation of ERK and NF-κB signaling. Further studies might be 
required to confirm the synergistic effects of HA and IL-6 in the animal model for the 
development of a novel therapeutic mixture for stimulation of wound healing process.
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INTRODUCTION

Wound healing is initiated and progressed through a complex 
integrated sequence of cellular, physiologic, and biochemical 
events, such as inflammation, granulation, re-epithelialization 
and remodeling process. The abnormal process causes the non-
healing chronic wounds or the abnormal scar and keloid (1, 2). 
Many biological factors, such as growth factors and cytokines, 
are necessary for the multiplex steps of wound healing contrib-
uted to their roles in promoting migration of inflammatory cells, 
fibroblasts, and endothelial precursor cells into the wound site 
(3, 4). The migration of keratinocytes is essential for wound re-
epithelialization and re-establishment of skin remodeling (5). 
Activated keratinocytes could secret various multifunctional 
cytokines that affect to the activation of inflammatory cells dur-
ing wound healing process (6-8). One of them, interleukin-6 
(IL-6) is a multifunctional cytokine that regulate the immune 
response and wound healing in a timely manner. It was report-
ed that IL-6 signaling pathway was involved in activation of cor-
neal wound healing and pathogenesis of keloid formation, re-

spectively (7, 9) In IL-6 deficient mice, IL-6 showed crucial roles 
in wound healing by regulating leukocyte infiltration, angio-
genesis, and collagen accumulation (10). An interesting study 
has shown that the signaling and regulating pathways of IL-6 
differ between macrophages and myocytes. It appears that un-
like IL-6 signaling in macrophages, which is dependent upon 
activation of the NF-κB signaling pathway, intramuscular IL-6 
expression is regulated by a network of signaling cascades, in-
cluding the Ca2+/NFAT and glycogen/p38 MAPK pathways (11, 
12). Human keratinocytes also have IL-6 receptors. We thought 
that the IL-6 might be an important regulator in the successful 
wound healing process. 
  Hyaluronic acid (HA) is a large glycosaminoglycan and a ma-
jor extracellular component of skin, where it is involved in tis-
sue repair. It has unique physicochemical properties and non-
immunogenicity is promising for plastic surgery and therapeu-
tic medical applications (13, 14). HA serves as an integral part 
of the extracellular matrix of basal keratinocytes in epidermis 
and involves the proliferation and migration of keratinocytes in 
the re-epithelialization process (12, 15). HA has crucial func-
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tions in epidermis that its free-radical scavenging functions due 
to and its role in keratinocyte proliferation and migration for 
the re-epithelialization process. In addition, studies on HA in-
sufficient to causes increased scarring of wound healing such 
as keloid (1, 16). In contrast, the HA-rich fetal wound allows for 
scarless healing (17).
  Intercellular adhesion molecule-1 (ICAM-1), CD44 and re-
ceptor for HA-mediated motility (RHAMM) were identified as 
major cell receptors for HA. ICAM-1 is a ligand for integrin, and 
CD44 can interact with collagens before their HA binding was 
discovered (14). The HA also contributes to tissue remodeling, 
proliferation and migration of cells, and participates in many 
interactions with cell surface receptors, notably those including 
its primary receptors, CD44 and RHAMM. The RHAMM also 
interacts with ERK to sustain basal motility, and RHAMM is nec-
essary for CD44-midiated skin wound healing (18, 19). Activa-
tion and phosphorylation of ERK relate to cell migration during 
wound healing (20). It is involved in many cellular processes by 
interact to CD44 and ICAM-1.
  The purpose of this study was to investigate the effects of IL-6 
and/or HA on wound healing process in human keratinocytes 
cell lines (HaCaT). In this study, we firstly evaluated the com-
bining effect of IL-6 and HA on the cell migration in scratch bas
ed wound healing assay with HaCaT cells. We further demon-
strated that activation of ERK and NF-κB might involve in the 
cell migration of wound healing process. 
 

MATERIALS AND METHODS

Cell culture and reagents
HaCaT cells of a human keratinocyte cell line were generously 
provided by Dr. JH Pak (Asan Institute for Life Sciences, Seoul, 
Korea) and cultured in Dulbecco’s modified Eagle medium 
(DMEM; Invitrogen, Carlsbad, CA, USA) containing 10% fetal 
bovine serum (FBS; Gibco, Grand Island, NY, USA) and 1% strep-
tomycin/penicillin (Lonza, Rockland, USA) with 5% CO2 at 37°C 
incubator (Sanyo, Osaka, Japan). High molecular weight HA 
(Shiseido Sodium Hyaluronate, MW: 1.46 MDa, Viscosity: 2.3 
M3/kg) was purchased from Shiseido Co., Ltd (Kakegawa, Japan). 
Recombinant human IL-6 was purchased from YbdY Biotech-
nology (Seoul, Korea).

MTT assay
Cell viability and proliferation was determined more than 3 times 
using 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium 
bromide (MTT) reagent (Invitrogen, Carlsbad, CA, USA). Brief-
ly, cells were placed in 96-well plates and incubated for 24 hr at 
37°C under 5% CO2, at which point 100 μL of 0.5 mg/mL MTT 
solution was added to each well and incubated for 4 hr at 37°C. 
Formazan absorbance was read at 490 nm using a GENios ELI-
SA reader (TECAN, Mannedorf, Switzerland). 

Cell-based scratch assay
The cell-based scratch assay has been previously described 
(21). In brief, HaCaT cells were cultured in a 6-well culture plate 
for 24 hr up to 90%-100% confluences of the base was filled. 
Scratched wound lines on the upside of cultured cells were cre-
ated by 200 μL yellow micropipette tip. The scratched cells were 
washed with PBS after removal of culture media. And then the 
cells cultured for 0, 24, 48 hr with IL-6 (0.5 ng/mL) and HA (0.1 
mg/mL) with 1% FBS. The wound area measured from the im-
age taken with a microscope (Olympus, Tokyo, Japan) by Image 
J program (NIH, USA) at 3 different sites from each wound area 
of gaps. Three different sites of wound area were measured and 
averaged from four independent experiments.

Western blot analysis
Protein extracts were prepared from HaCaT cells using PRO-
PREPTM Protein extraction solution. Bbicinchoninic acid (BCA) 
was used to quantify total protein amount (Pierce, Rockford, 
USA). The 50 μg of lysates were separated by Bolt 4%-12% Bis 
Tris Plus Gel (Invitrogen, Carlsbad, CA, USA) and transferred 
by iBlot system (Invitrogen, Carlsbad, CA, USA). Rabbit poly-
clonal antibody against to ERK, phosphorylated ERK, p38 and 
phosphorylated p38 (Cell Signaling Technology, Beverly, MA, 
USA) were used at a dilution of 1:1,000 for Western blot, respec-
tively. The protein signals were visualized using LAS system 
(Fujifilm, Tokyo, Japan). To confirm equality of loading, mem-
branes were reanalyzed for β-actin expression.

Immunocytochemistry
HaCaT cells were plated and cultured on 10 mm cover slips in 
12-well plate. After treatment of IL-6 or/and HA for 1 hr, the treat
ed cells were fixed in 4% of paraformaldehyde, and then permea
blized in 0.1% Triton X-100 for 30 min. The cells were incubated 
with a primary antibody overnight at 4°C, and a secondary anti-
body for 2 hr at room temperature. The primary and secondary 
antibody against NF-κB was used (1:500; Cell signaling Beverly, 
USA) and anti-rabbit IgG-Alexa 594 (1:1,000; Cell signaling Bev-
erly, USA), respectively. Nuclei were counterstained by Hoechst 
33342. The stained cells were observed on a microscope (AX-70, 
Olympus, Tokyo, Japan), and nuclear translocation of NF-κB 
was analyzed and quantified using the i-solution software (IMT 
i-solution, BC, Canada) by comparing the intensity of NF-κB 
positive signal with the tetramethylrhodamine isothiocyanate 
(TRITC) filter set in a nucleus compared with the intensity of a 
entire cell. The translocation ratio of NF-κB was average of fifty 
independent measurements conducted in triplicate. The ratio 
of the nuclear translocation of NF-κB was determined using the 
following equation (15):
  Ratio = (Nuclear intensity-background intensity)/ 
                      (Cytoplasmic intensity-background intensity)
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Statistics analysis
Student’s t-test was used to compare the data (mean ± SEM), 
and P value less than 0.05 was regarded as statistically significant.
 

RESULTS

Effects of IL-6 and HA on the viability of HaCaT cells
To investigate whether IL-6 and HA effects on the viability of 
HaCaT cells, we determined the viability of various concentra-
tion of IL-6 and HA using the MTT assay (Fig. 1). There was no 
significant difference of cell viability in all treated concentra-
tions of IL-6 (0.1-1.0 ng/mL) and HA (0.05-0.2 mg/mL). Thus, 
we used middle concentration of IL-6 (0.5 ng/mL) and HA (0.1 
mg/mL) for following experiments, respectively. 

Effects of IL-6 and HA on the migration of HaCaT cells
The cell-based scratch assays with HaCaT cells were performed 
to understand the healing mechanisms by which cell migration 
was contributed by IL-6 and/or HA (Fig. 2). Treatments of 0.5 
ng/mL of IL-6 and 0.1 mg/mL of HA significantly increased cell 
migration and wound closure compared to control group (P <  
0.001). The wound closure of cell migration significantly increas
ed as IL-6 (71.8% ± 3.1%, P < 0.001) and HA (75.4% ± 2.6%, P <  
0.001) compared to control group (55.6% ± 1.7%) at 24 hr, and 
also IL-6 (82.8% ± 3.3%, P = 0.008) and HA (91.4% ± 2.6%, P <  
0.001) compared to control group (55.6% ± 1.7%) at 48 hr, re-
spectively. In addition, combining IL-6 and HA treated group 
synergistically enhanced the cell migration at 24 hr (81.0% ±  
2.7%, P = 0.042) and 48 hr (95.8% ± 1.6%, P = 0.004) compared 
to IL-6 group, respectively.

Activation of ERK and p38 by treatments of IL-6 and HA
To investigate the underlying mechanisms associated with IL-6 

and HA, we determined the phosphorylation of ERK and p38 
using the Western blot analysis. HaCaT cells were treated with 
IL-6 or/and HA for 1 hr and 24 hr, respectively. Phosphoryla-
tion of ERK were significantly increased by combining IL-6 and 
HA treated group comparing control group (P = 0.009), but not 
IL-6 or HA for 1 hr (Fig. 3). However, there was no significant 
difference of p38 phosphorylation in all treated groups (Fig. 4). 
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Fig. 1. The viability analysis of IL-6 and HA in HaCaT cells. There was no significantly difference in all treated groups. HaCaT cells were incubated with indicated concentrations 
of IL-6 (A; 0.1-1.0 ng/mL) and HA (B; 0.05-0.2 mg/mL) in 1% FBS containing DMEM for 24 hr. Absorbances were measured at 530 nm using ELISA reader. Data are present-
ed as the means±SEM of three experiments.

Fig. 2. Effects of IL-6 and HA on the migration of HaCaT cells. In scratch based wound 
healing assay, IL-6 treated group and HA treated group significantly increased cell 
migration compared to control group at 24 and 48 hr, respectively. Additional, com-
bining IL-6 and HA treated group significantly increased cell migration compared to 
control and IL-6 treated group at 24 and 48 hr, respectively. Cultured HaCaT cells on 
culture dished were scratched with a pipette tip. Data are presented as the means±
SEM of three experiments. P-values compared to the control group (*P < 0.001; †P = 
0.008) and the IL-6 group (‡P = 0.042; §P = 0.004).
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Nuclear translocation of NF-κB by treatments of IL-6 and HA
Nuclear translocation of NF-κB was significantly increased in 
IL-6 (2.1-fold, P < 0.001), HA (1.4-fold, P = 0.002) and combin-
ing IL-6 and HA treated group (1.8-fold, P < 0.001) compared to 
control group, respectively (Fig. 5). There was no synergistic ef-
fect of combining IL-6 and HA treated group in the NF-κB trans-
location. 

DISCUSSION

Wound healing is composed of three principal phases: inflam-
matory, proliferative, and remodeling. The inflammatory phase 
initiates at the time of injury and lasts usually for 2 days. This 
early phase begins with reaction of hemostasis, and links to in-
flammatory response. Platelets form the initial thrombus and 
release several chemokines and growth factors. They induce the 
chemotaxis and activation of neutrophils and macrophages, 
which work together to remove bacterial debris, damaged cells 
and necrotic tissue from the wound. Macrophages then become 
the prominent cell of this phase and secret various cytokines 
and growth factors for alterations of cellular environment in 
wound. The inflammatory phase may vary in length by several 

factors such as infection, malnutrition, or other exogenous fac-
tors. The early stage of wound healing is related with various 
extracellular matrix, such as collagens, elastins, and HAs. They 
are regarded as a conductive environment for migration of cells 
into this temporary wound matrix. 
  Thus, we expected that IL-6 and HA treatment could promote 
the cell migration and activation of wound healing model. Con-
tributions of IL-6 and HA to cell migration may attribute to its 
physiological functions as described above, as well as its direct 
interactions with cells. It have been reported that IL-6 and HA 
are involved in wound healing and its biological properties de-
pend on its concentrations (7, 22, 23). We found that an under-
lying signaling affect associated with IL-6 and HA is synergisti-
cally activated ERK, which promotes keratinocyte migration. 
The observed synergistic effect of IL-6 and HA at 24 hr in HaCaT 
cell lines is agreeable with the understanding that wound heal-
ing processes is mediated cell migration by ERK activation (24). 
The ERKs are multifunctional protein kinase intracellular sig-
naling molecules. They regulate the activation of meiosis of germ 
cells, mitosis of somatic cells, and differentiation of precursor 
cells. Various growth factors, cytokines, infections, G protein-cou
pled receptors, and carcinogens could activate the ERKs pathways. 
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Fig. 3. Phosphorylation of ERK by treatments of IL-6 and HA in HaCaT cells. (A) HaCaT cells were treated with IL-6 and HA for 1 hr. Phosphorylation of ERK was significantly in-
creased by combining IL-6 and HA treated group. (B) HaCaT cell lines were treated with IL-6 and HA for 24 hr. Phosphorylated ERK was no significant difference for 24 hr all 
treated groups. Phosphorylation and total protein expression of ERK were detected by Western blot analysis. Densitometry analysis of ERK phosphorylation is showed as fold 
change versus control at 1 hr (C) and 24 hr (D). Data are presented as the means±SEM of three experiments. *P = 0.009 compared to the control group.
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Fig. 4. Phosphorylation of p38 by treatments of IL-6 and HA in HaCaT cells. HaCaT cells were treated with IL-6 and HA for 1 hr (A) and 24 hr (B). There was no significant dif-
ference of phosphorylation of p38 in all treated groups. Phosphorylated and total p38 protein was detected by Western blot analysis. Densitometry analysis of p38 phosphoryla-
tion is showed as fold change versus control at 1 hr (C) and 24 hr (D). Data are presented as the means±SEM of three experiments. 
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Fig. 5. Immunocytochemistry of NF-κB in HaCaT cells after treatments of IL-6 and HA. (A) HaCaT cells were labeled to visualize NF-κB (Alexa 594; red) and nucleus (Hoechst; 
blue) by Immunocytochemistry. (B) Fluorescent microscopic images were captured and analyzed with i-solution software. Fluorescent intensities of NF-κB were calculated on a 
ratio of NF-κB intensity of nucleus to whole cell boundary. Fluorescent intensities are expressed as fold of control group. Data were expressed on the mean±SEM of to the in-
dividual cells. P values compared to the control group (*P < 0.001; †P = 0.002).
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  Focal adhesion kinase (FAK), a non-receptor tyrosine kinase 
controlling cellular signaling pathways of cell migration, is in 

interacted with ERK pathway of the wound healing processes 
(20, 25). In addition, FAK/ERK-dependent pathway required for 
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fibroblast engraftment in the decellularized mouse lung (26). In 
this study, the proliferation and phosphorylation of p38 MAPK 
were not significantly different in IL-6 and/or HA treatment, re-
spectively. These data suggest that prompt ERK activation by com
bining IL-6 and HA at 1 hr would promote migration of HaCaT 
cells in wound healing process. We thought that enhancement 
of cell migration by IL-6 and/or HA may be related to the nucle-
ar translocation of NF-κB. Taken together, these data indicate 
that combining of IL-6 and HA enhances wound healing by cell 
migration but not cell proliferation. Several observations were 
reported that HA interact to the CD44 and RHAMM receptors 
for ERK-mediated migration of the wound healing processes 
(27-29). The signaling pathway of this synergistic effect is not 
clearly defined in this study. Further studies might be required 
to validate the synergistic effect of IL-6 and HA on promoting 
cell migration in the FAK/ERK pathway and the animal models. 
Recently, interesting findings was reported that HA receptor of 
Stabilin-2 interacts with HA regulates ERK phosphorylation in 
arterial-venous differentiation (24). 
  NF-κB is one of fundamental transcription factor for cellular 
response and survival. It is involved in cellular responses to sti
muli such as stress, cytokines, free radicals, ultraviolet irradia-
tion, oxidized LDL, and also inflammation (30). Incorrect regu-
lation of NF-κB has been linked to cancer, autoimmune diseas-
es, septic shock, viral infection, and improper immune devel-
opment (30, 31). In this study, we found that activation of NF-
κB by nuclear translocation from cytoplasm by IL-6 and/or HA 
compared to control group. However, the NF-κB activation is 
not directly correlated to the ERK phosphorylation at 24 hr by 
combining IL-6 and HA treatment. We could not show the ex-
act relationship between NF-κB and ERK in this study. It may 
be related to the various roles of ERK and NF-κB in different as-
pects of cell response and activation. Miyazaki et al. (32) showed 
that ERK was responsible for osteoclast survival, whereas NF-
κB regulated osteoclast activation for bone resorption.
  In conclusion, this is the first report that synergistic effects of 
combining IL-6 and HA on the cell migration of wound healing 
by activation of ERK and NF-κB. Thus, we suggest that combin-
ing of HA and IL-6 treatment could be used as an effective and 
therapeutic mixture for stimulation of cell migration in wound 
healing process. Further studies might be required to confirm 
the synergistic effects of HA and IL-6 in the animal model for the 
development of a novel therapeutic mixture of wound healing. 
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