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Abstract

Due to the fast-acting nature of ricin, staphylococcal enterotoxin (SEB), and Clostridium 

perfringens epsilon toxin (ETX), it is necessary that therapeutic interventions following a 

bioterrorism incident by one of these toxins occur as soon as possible after intoxication. Moreover, 

because the clinical manifestations of intoxication by these toxins are likely to be indistinguishable 

from each other, especially following aerosol exposure, we have developed a cocktail of chimeric 

monoclonal antibodies that is capable of neutralizing all three toxins. The efficacy of this cocktail 

was demonstrated in mouse models of lethal dose toxin challenge.
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The development of therapeutics directed against the Select Agents and Toxins poses 

significant and unique challenges. Foremost, the pathogens and toxins that are currently 

classified by the Centers for Disease Control and Prevention (CDC) as potential biothreat 
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agents are genetically, evolutionarily, and structurally diverse, thereby necessitating 

therapeutics tailored against each agent (Mantis et al., 2011). Second, many of these agents, 

but in particular the toxins, can induce morbidity and even mortality within a matter of 

hours, which means that therapeutic interventions treatments will likely be initiated in the 

absence of definitive etiologic diagnosis (Wolfe et al., 2013). In addition, the earliest clinical 

manifestations of many select agents and toxins are expected to be indistinguishable from 

each other, which in a clinical setting may necessitate the administration of combinations of 

therapies (2007).

Ricin toxin, staphylococcal enterotoxin B (SEB), and Clostridium perfringens epsilon toxin 

(ETX) are fast acting, highly toxic and potentially lethal agents for which there are currently 

no available countermeasures (Mantis, 2005). The toxins are from unrelated sources and 

share no obvious functional domains or enzymatic activities (Table 1; Figure S1). Ricin 

toxin is a 65 kDa heterodimeric glycoprotein from the castor bean plant (Ricinus communis). 

The A subunit of ricin (RTA) is a ribosome-inactivating protein (RIP), while the B subunit 

(RTB) is a lectin that modulates toxin attachment and entry into mammalian cells. SEB is a 

28 kDa superantigen produced by Staphylococcus aureus that, when ingested, causes 

symptoms that are classically associated with food poisoning, including cramps, vomiting 

and diarrhea (Krakauer and Stiles, 2013). While oral exposure to SEB is debilitating, it is 

rarely fatal. This is in contrast to SEB aerosol exposure, which in non-human primate 

models results in pulmonary endema and systemic complications (Lindsay and Griffiths, 

2013; Mattix et al., 1995). Finally, ETX is a 33 kDa [.beta]-pore-forming toxin (PFT) 

secreted by Clostridium perfringens types B and D, which are economically important 

pathogens associated with enterotoxemia in several species of livestock (Stiles et al., 2013; 

Uzal et al., 2014). All three toxins cross epithelial barriers and can elicit mucosal and 

systemic damage following ingestion or inhalation (Mantis, 2005). Due to the capacity of 

these toxins to induce similar clinical signs, morbidity and mortality, and their recognized 

potential as biological warfare and bioterrorism agents, we reasoned that a tripartite 

antitoxin cocktail capable of neutralizing ricin, SEB, and ETX would be of significant 

medical benefit.

Neutralizing mAbs against ricin, SEB, and ETX have been previously described (Table 1); 

mAb PB10 is directed against ricin toxin (Sully et al., 2014), 19F1 against SEB (L.Zeitlin, 

manuscript in preparation), and 4D7 against ETX (Garcia et al., 2014; Hauer and Clough, 

1999). The murine variable domains of each of the mAbs were synthesized (Life 

Technologies; San Diego, CA) and grafted onto human IgG1 frameworks, and transformed 

into Agrobacterium tumefaciens, which were then used for vacuum infiltration of Nicotiana 

benthamiana using the rapid antibody-manufacturing platform (RAMP) based on 

magnICON (Giritch et al., 2006; Hiatt and Pauly, 2006). RAMP makes use of transgenic N. 

benthamiana (Strasser et al., 2008) in which plant-specific glycosyl-transferases have been 

inhibited by RNAi, so the resulting mAbs contain mammalian N-glycans. The resulting 

chimeric (c-) derivatives of PB10, 19F1, and 4D7 have each been shown to retain potent 

toxin-neutralizing activity and to passively protect mice against a cognate toxin challenge 

(Garcia et al., 2014; Sully et al., 2014).
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To examine the functional properties of a cocktail of plant-derived cPB10, c19F1, and c4D7, 

the three chimeric mAbs were combined at equimolar amounts and evaluated for toxin 

binding activity by ELISA and for toxin-neutralizing activities in cell-based cytotoxicity 

assays. We found that the binding profile of cPB10 as part of the tripartite cocktail was 

identical to cPB10 alone and its parenteral murine counterpart in terms of reactivity with 

RTA, ricin holotoxin, and its linear peptide epitope (Figure 1A,C). Moreover, the 50% 

inhibitory concentration (IC50) of cPB10 was the same whether cPB10 was tested by itself 

or combined with c19F1 and c4D7 (Figure 1B). The toxin-binding activities (data not 
shown) as well as toxin-neutralizing activities (Figure 1D,E) of c19F1 and c4D7 as a 

cocktail were also indistinguishable from the individual mAbs themselves. These data 

indicate that there is no evidence to suggest that the different chimeric mAbs interfere with 

each other's function activities.

We next evaluated the tripartite cocktail for the ability to passively protect mice against 

ricin, SEB, and ETX in well-established mouse models of toxin challenge. For ricin toxin, 

mice received 5 μg, 2.5 μg or 1.5 μg of cPB10, by itself or as part of the tripartite cocktail, 

and were then challenged with 10 x LD50 ricin (Figure 2A). As expected, control mice 

succumbed to ricin intoxication within 48 h. Protection afforded by cPB10 was dose-

dependent and was identical whether cPB10 was administered alone or in combination with 

c19F1 and c4D7, demonstrating that neither the anti-SEB or anti-ETX mAb interferes with 

cPB10. The reciprocal passive protection studies were done with the cocktail using mouse 

models of SEB and ETX intoxication. The SEB challenge model consisted of i.p. injection 

of 5 x LD50 SEB followed 4 h later by a potentiating dose of lipopolysaccharide (40 μg;List 

Biological Laboratories, Campbell, CA). Protection afforded by c19F1 was dose-dependent 

with complete survival observed in mice receiving 100 μg of c19F1, alone or in combination 

with c4D7 and cPB10 (Figure 2B). Finally, mAb c4D7 was able to fully protect mice when 

administered as part of the tripartite cocktail. The ETX challenge model involved i.p. 

administration of the cocktail to mice 24 h prior to intravenous injection of 3 x LD50 ETX, 

as described previously (Garcia et al., 2014). Control mice succumbed to toxin-induced 

death within 12 h, whereas cocktail-treated mice survived without showing any clinical 

abnormalities (Figure 2C). Additional control mice treated only with c4D7 also survived 

without showing any clinical abnormalities. These data demonstrate the potential of a 

mixture of cPB10, c19F1 and c4D7 to protect mice against lethal challenge doses of ricin, 

SEB, and ETX.

We next wished to further evaluate the tripartite antitoxin cocktail in a mucosal challenge 

model and as a possible therapeutic. We chose ricin toxin for these studies since cPB10 has 

been recently evaluated in respiratory tract challenge model and its therapeutic window has 

been established (Sully et al., 2014). Groups of mice received 120 μg, 60 μg or 20 μg of 

cPB10 in the context of the cocktail and then challenged with the same dose of ricin as 

above, but delivered via the intranasal (i.n.) route. Protection afforded by the tripartite 

cocktail was dose-dependent (Figure 3A); mice that received 120 μg cPB10 were protected 

from ricin challenge and experienced a transient reduction in blood glucose levels (Figure 
3B); half the mice that received 60 μg cPB10 were protected against ricin, whereas the 

control mice (no cPB10) or mice that received 20 μg of cPB10 experienced a rapid onset of 
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hypoglycemia and succumbed to toxin-induced death within 48 h. These data demonstrate 

cPB10 within the context of the cocktail is protective against respiratory tract challenge but 

that the amount of antibody required for protection was 10-20 times that required for 

systemic challenge. Because the exact LD50 for i.n. challenge is unknown, this requirement 

for increased dosing of mAb could be due to i.n. challenge being more lethal than systemic 

challenge or due to a need for higher mAb concentrations for protection on mucosal 

surfaces. In future studies, this observation will be validated in an aerosol challenge model 

as it may have important implications for ricin-based antibody prophylactics.

Finally, to assess the therapeutic potential of the tripartite cocktail, mice were challenged 

with 10 x LD50 ricin and then administered the cocktail at hourly intervals thereafter at 

amounts equivalent to 25 μg cPB10 per mouse (Figure 3C). In agreement with what we 

reported recently for cPB10 alone (Sully et al., 2014), the tripartite cocktail was able to fully 

rescue mice from toxin-induced death if administered within 4 h following challenge. It 

should be underscored that the mouse model is particularly stringent and that the actual 

therapeutic window in humans may in fact be greater than 4 h depending on the dose.

In summary, we have generated a cocktail of chimeric mAbs against three putative biothreat 

toxins derived from common, readily accessible plant (ricin) and bacteria (ETX and SEB). 

Due to their excellent safety profile and efficacy, mAbs are a rapidly growing class of 

therapeutic drugs (Reichert et al., 2005). Moreover, passive immunization with antibodies 

has been shown to be effective against a wide variety of toxins (Froude et al., 2011; Wang et 

al., 2013). We therefore envision that the chimeric mAbs (or fully humanized derivatives) 

could be used as a means of providing passive immunity to first responders, laboratory staff 

or military personnel in the event that they may be at risk of toxin exposure. As alluded to 

above, future improvements to the cocktail may include humanization of the mAbs and the 

engineering of point mutations in the Fc gamma chain constant regions that result in 

extended serum half-life with the possibility of using the cocktail as a prophylactic and 

provide passive protection for greater than six months (Robbie et al., 2013; Zalevsky et al., 

2010). Such a cocktail would constitute a significant resource within the public health and 

biodefense community.

We also envision the possibility that the cocktail could be used as a post-exposure 

therapeutic, although it is important to underscore that in this study we have only examined 

the potential of the tripartite cocktail to rescue mice following ricin challenge. We did not 

investigate whether the combination of cPB10, c19F1 and c4D7 had any therapeutic activity 

against SEB or ETX. Indeed, rescuing an individual following C. perfringens ETX exposure 

may be a particularly formidable challenge considering that the toxin exerts its effects on 

host cells virtually instantaneously. In the ETX-challenge model employed in this study, 

control mice succumbed to intoxication with 12 h, indicating that the therapeutic window (in 

rodents, at least) is likely to be very narrow. However, as is the case for ricin and SEB, the 

actual therapeutic potential of any antibody against ETX is going to be dependent on the 

amount and route (i.e., systemic versus mucosal) of toxin exposure. From the results of our 

limited in vitro and in vivo analysis of the combination of cPB10, c19F1 and c4D7 

antibodies, we can only speculate that the tripartite cocktail has therapeutic utility in humans 

in an actual clinical setting.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Ricin, staphylococcal enterotoxin (SEB), and Clostridium perfringens epsilon 

toxin (ETX) are biothreat toxins

• We developed a cocktail of chimeric monoclonal antibodies (mAbs) that 

neutralizes all three toxins

• Chimeric mAbs were expressed using a robust plant-based platform

• The tripartite cocktail also passively protected mice against ricin, SEB, and ETX 

in relevant challenge models

• These studies represent a major advancement towards a broad antitoxin 

antibody-based therapeutic
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Figure 1. Toxin binding and neutralizing activities associated with the chimeric mAbs in the 
context of the tripartite cocktail
The tripartite cocktail was assessed for specificity for ricin (panels A-C), SEB (panel D) 

and ETX (panel E). (A) cPB10 (alone or in cocktail) reactivity with ricin holotoxin and 

subunits by ELISA. Nunc Maxisorb F96 microtiter plates (ThermoFisher Scientific) were 

coated by overnight incubation with 1 μg/ml ricin, RTA, RTB or BSA. Plates were 

developed using horseradish peroxidase (HRP)-labeled goat anti-human IgG (Invitrogen) 

and 3,3’,5,5’ tetramethylbenzidine (Kirkegaard & Perry Labs, Gaithersburg, MD), as 

described (Sully et al., 2014). (B) Toxin-neutralizing activity of cPB10. Serial dilutions (in 
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triplicate) of cPB10, alone or the cocktail were mixed with ricin (10 ng/ml) and then applied 

to Vero cells, as described (Sully et al., 2014). Cell viability was assessed 48 h later; (C) 

cPB10 (alone or in cocktail) reactivity with RTA-peptide array. Overlapping 18-mer 

peptides spanning the length of RTA (O'Hara et al., 2013) were used to coat Nunc Maxisorb 

F96 microtiter plates (ThermoFisher Scientific) before being probed with cPB10. ELISA 

plates were developed as described in panel A. Peptide A11 (RTA residues Y91-F108) co 

corresponds to PB10's known epitope (Vance and Mantis, 2012). (D) The neutralizing 

activity of c19F1 was determined using peripheral blood mononuclear cells (PBMCs) and 

SEB toxin, as described (Karauzum et al., 2012). The resulting inhibition of INF-[.gamma] 

production by c19F1 or the antibody cocktail were indistinguishable (E) ETX neutralizing 

assays were performed by incubating ETX with indicated concentrations of c4D7, alone or 

in the context of the cocktail. Neutralizing assays were done using Madin-Darby Canine 

Kidney (MDCK II) cells, as described (Garcia et al., 2014; Robertson et al., 2011). ETX was 

obtained from BEI Resources (Manassas, VA).
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Figure 2. Protection afforded by the tripartite mAb cocktail in mice upon challenge with ricin, 
SEB and ETX
The tripartite mAb cocktail was assessed for the ability to protect mice against ricin (panels 
A, D-F), SEB (panel B) and ETX (panel C). All studies involving mice were done in strict 

compliance the Institutional Animal Care and Use Committees (IACUC) at the Wadsworth 

Center, Iowa State University, and University of California, Davis. (A) BALB/c mice 

(female, 6-8 weeks of age; Taconic Labs, Hudson, NY) were housed under conventional, 

specific pathogen-free conditions. cPB10, alone or in the cocktail was administered to mice 

(n=10/group) by intraperitoneal (i.p.) injection 24 h prior to challenge with 10x LD50 ricin 
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(~2 μg mouse; Vector Laboratories, Burlingame, CA), also by i.p. injection. Survival was 

monitored over a period of five days. (B) To evaluate c19F1, the chimeric mAb alone or in 

the context of the cocktail was mixed with SEB (1 μg) for 1 hr and then injected into 

BALB/c mice (Karauzum et al., 2012). Four hours later the animals received a potentiating 

dose of lipopolysaccharide (40 μg; List Biological Laboratories, Campbell, CA) and were 

monitored for survival for 5 days. (C) To evaluate c4D7, the chimeric mAb in the context of 

the cocktail was administered to female BALB/c mice by i.p. injection, as described 

previously (Garcia et al., 2014). Twenty-four hours later, the animals were challenged by 

intravenous injection 3xLD50 ETX.
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Figure 3. Mucosal protection and therapeutic potential of the tripartite cocktail against ricin 
toxin
(A-B). Capacity of cPB10 to protect against intranasal ricin challenge. The tripartite cocktail 

was administered to mice (n=8 mice per group) by intraperitoneal (i.p.) injection 24 h prior 

to intranasal 10 x LD50 ricin challenge. Mice were monitored for survival (panel A) and 

morbidity (panel B), as determined by blood glucose levels (Sully et al., 2014); (C) Groups 

of BALB/c mice (n=8 per group) were challenged with 10 x LD50 ricin and then 
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administered (by i.p. injection) the tripartite cocktail (25 μg of cPB10/mouse) at indicated 

times (hours). Survival was monitored for five days.
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Table 1

Characteristics of SEB, ETX and ricin toxin and their respective mAbs.

Toxin kDa Toxin Class mAb Reference

SEB 28 super antigen 19F in preparation

ETX 33 β-pore forming 4D7 (Garcia et al., 2014)

Ricin 65 ribosome-inactivating PB10 (Sully et al., 2014)
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