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Abstract
Alcoholic liver disease (ALD) is the commonest cause 
of cirrhosis in many Western countries and it has a 
high rate of morbidity and mortality. The pathogen-
esis is characterized by complex interactions between 
metabolic intermediates of alcohol. Bacterial intestinal 
flora is itself responsible for production of endogenous 
ethanol through the fermentation of carbohydrates. 
The intestinal metabolism of alcohol produces a high 
concentration of toxic acetaldehyde that modifies gut 
permeability and microbiota equilibrium. Furthermore 
it causes direct hepatocyte damage. In patients who 
consume alcohol over a long period, there is a modifi-
cation of gut microbiota and, in particular, an increment 
of Gram negative bacteria. This causes endotoxemia 
and hyperactivation of the immune system. Endotoxin 
is a constituent of Gram negative bacteria cell walls. 

Two types of receptors, cluster of differentiation 14 and 
Toll-like receptors-4, present on Kupffer cells, recognize 
endotoxins. Several studies have demonstrated the 
importance of gut-liver axis and new treatments have 
been studied in recent years to reduce progression of 
ALD modifying gut microbiota. It has focused attention 
on antibiotics, prebiotics, probiotics and synbiotics.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Alcoholic liver disease; Bacterial transloca-
tion; Dysbiosis; Prebiotics; Probiotics; Synbiotic; Gut 
microbiota; Endotoxin

Core tip: A close anatomical and functional relationship 
between gut and liver exists. Blood circulated in the 
portal vein transfers various toxic compounds for filtra-
tion by liver. Endotoxin is a lipopolysaccharide derived 
from the cell wall of Gram negative bacteria presents 
in the intestine, which is absorbed from intestinal epi-
thelium and transported to the liver and Kupffer cells 
through the portal vein. A qualitative (dysbiosis) and 
quantitative (bacterial overgrowth) alteration of in-
testinal microbiome are the causes of an increase of 
endotoxins and subsequently, liver damage. The new 
treatments try to contrast dysbiosis and bacterial over-
growth decreasing evolution of alcohol liver disease.
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INTRODUCTION
Alcoholic liver disease (ALD) is the cause of  a high rate 
of  morbidity and mortality worldwide. It is the common-



est cause of  cirrhosis in many Western countries[1]. It ac-
counted for 3.8% of  all deaths in 2004[2]. ALD consists 
of  several types of  disease such as fatty liver (steatosis), 
steatohepatitis, fibrosis, cirrhosis and ultimately hepato-
carcinoma (HCC). Steatosis is reversible with alcohol ab-
stention, but it is considered a risk factor for progression 
to fibrosis and cirrhosis[3,4]. 

The metabolism of  alcohol is also regulated by intes-
tinal bacteria (“bacteriocolonic” metabolism of  ethanol). 
In 1984 Bode et al[5] demonstrated a qualitative and quan-
titative significant difference between flora in people with 
alcoholism and gut microflora of  a control group. Intes-
tinal homeostasis is influenced by several factors such as 
gut motility, gastric acidity, immunological defence fac-
tors, bile salts, and colonic pH[6]. 

The liver strategic position confers it with the impor-
tant role of  translating physiological and pathological 
processes within the gastrointestinal tract into metabolic 
and immunologic outcomes[7].  

PATHOGENESIS OF ALCOHOLIC LIVER 
DISEASE
Alcoholic steatohepatitis (ASH) and severe ALD occur in 
approximately 30% of  heavy drinkers[8]. The pathogen-
esis of  ALD is a dynamic and unknown process charac-
terized by several interactions that involve the immune 
system and metabolic intermediates of  alcohol. The poor 
understanding of  these interactions contrasted with the 
progress in developing specific treatments for ALD[9-11]. 
Ethanol metabolism-associated oxidative stress, abnormal 
methionine metabolism, ethanol-mediated induction of  
leakage of  gut endotoxins, and activation of  Kupffer cells 
are all involved in the pathogenesis of  ALD[12-14]. 

The fermentation of  carbohydrates made by bacte-
rial intestinal flora is itself  responsible for production 
of  endogenous ethanol. This is strongly enhanced in the 
presence of  gut dysmotility (e.g., from obesity, diabetes, 
or chronic alcohol use) or an excess of  carbohydrates in 
the diet[15]. The intestinal oxidation of  alcohol results in 
increasing concentrations of  acetaldehyde[16,17], the first 
and most toxic product of  ethanol metabolism responsi-
ble for alteration of  intestinal permeability (gut leakiness) 
and microbiota homeostasis. 

Apart from the liver, several organs contribute to 
ethanol metabolism resulting in acetaldehyde produc-
tion, such as the pancreas, gastrointestinal tract, heart 
and brain[18-20]. Acetaldehyde is produced by bacterial 
alcohol dehydrogenase[21] and metabolised by aldehyde 
dehydrogenase in the colon[22]. In a recent study Kwon 
et al[23] evaluated the role of  aldehyde dehydrogenase 2 
deficiency in mouse in the progression of  alcohol liver 
disease. They showed the role of  acetaldehyde in hepatic 
inflammation and fibrosis. 

Acetaldehyde is itself  responsible for mitochondrial 
dysfunction and altered acetaldehyde metabolism that 
leads to its accumulation. It determines direct hepato-
cyte damage forming adducts with proteins and DNA 

by the interactions with amino, hydroxyl, and sulfhydryl 
groups[24]. Acetaldehyde is also responsible for increased 
paracellular intestinal permeability because of  a redistri-
bution of  tight junction proteins (occluding and ZO-1) 
and adherent junction (E-cadherin and β-catenin) pro-
teins inhibiting their phosphorylation by protein tyrosine 
phosphatase[25-27] (Figure 1).

The leakiness of  gut activates the transcription of  
nuclear factor kappaB (NF-κB) gene and over-expression 
of  nitric oxide (NO) synthesis. 

 NO is synthesized from L-arginine by nitric oxide 
synthases (NOS). Three isoforms of  nitric oxide syn-
thases exist: neuronal NOS (nNOS), endothelial NOS 
(eNOS), defined as constitutive NOS (cNOS), and in-
ducible NOS (iNOS)[28]. NO production by cNOS is 
responsible for epithelial cell barrier integrity[29,30]. Other-
wise NO produced by iNOS occurs in inflammation and 
it may contribute to aggravate integrity of  the intestinal 
barrier[31].

iNOS is expressed in endothelial cells, hepatocytes, 
macrophages, neutrophils, and many other cell types[32]. 
An increased expression of  iNOS and consequent pro-
duction of  NO is responsible for an augmented nitration 
and oxidation of  tubulin. This leads to a decreased stabil-
ity of  tubulin and damage of  the microtubule cytoskel-
eton with disruption of  barrier function. Besides, the 
increased synthesis of  NO results in oxidative stress in 
hepatocytes[33,34]. 

Epidermal growth factor (EGF) contrasts this proc-
ess, promoting growth and differentiation of  gastroin-
testinal mucosa. EGF stabilizes the cytoskeleton through 
down regulation of  activity of  iNOS[35,36].

INTESTINAL MICROFLORA
The intestinal microflora changes after fetal development 
and the major changes occur after weaning[37]. The micro-
biota is composed by more than 500 species of  bacteria; 
some of  them are fixed in the intestine, while the others 
only pass through the intestine[38]. According to the study 
by Neish, 109 CFU/mL and 1012 CFU/mL of  bacteria 
may be found, respectively, in the terminal ileum and co-
lon. Gram negative bacteria and anaerobes are dominant 
species in the intestinal lumen which are estimated to be 
100 to 1000 times more than aerobic ones. Bacteroides, 
Porphyromonas, Bifidobacterium, Lactobacillus, Clostridium and 
Escherichia coli (E. coli) are the most frequent ones[39]. The 
intestine also provides residence to more than 15 species-
level bacteria phylotypes and in a healthy state they have 
a symbiotic relationship with its host. However, in each 
person, the pattern of  the microorganism population is 
unique and different[40] (Table 1). 

There is a close anatomical and functional relation-
ship between the gut and the liver known as the gut-liver 
axis and in patients with liver cirrhosis, the intestinal bal-
ance is compromised.

Blood circulating in the portal vein transfers various 
toxic compounds such as bacteria and their derivatives 
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(ethanol, ammonia, and acetaldehyde) for filtration by 
liver and modulates Kupffer cells activity and cytokine 
production. The increase of  pathogen-associated mo-
lecular patterns and accumulation of  metabolites in the 
liver can cause the liver harm. In return, the liver secretes 
bile acids to the intestine and modulates its activities[41]. 

Alterations in the type and amount of  microorgan-
isms are important elements in the dysfunctions of  the 
liver; in fact liver disease causes quantitative (bacterial 
overgrowth) and qualitative (dysbiosis) changes in the in-
testinal microflora[42]. 

Dysbiosis is the alteration of  intestinal homeostasis. 
Several studies have shown the role of  continuous etha-
nol assumption in the breakdown of  this balance. Bull-
Otterson et al[43] studied the temporal effects of  chronic 
ethanol consumption on commensally intestinal bacte-
ria in a mouse model. They demonstrated that alcohol 
consumption over a long period elevates the growth of  
Gram negative bacteria and causes a decrease of  both 
Bacteriodetes and Firmicutes, and an increase of  Actinobacteria 
and Proteobacteria. Proteobacteria are Gram negative bacteria 
and include several pathogenic species such as Salmonella, 
Helicobacter, Vibrio and Escherichia, one of  the main bac-
teria in the gut. Similar results were obtained by Mutlu et 
al[44]. They noted higher levels of  Proteobacteria and lower 
abundance of  Bacteroidetes in subjects with chronic alcohol 

consumption.  
The breakdown of  microbiota balance is responsible 

for different negative consequences (endotoxemia, trans-
location of  lipopolysaccharides) that leads to hyperactiva-
tion of  the immune system.

LPS is a constituent of  the wall of  Gram-negative 
bacteria[45] which induces macrophages to release proin-
flammatory cytokines, such as IL-1β and tumour necrosis 
factor (TNF)[46]. 

Endotoxin is a LPS, a component of  the outer mem-
brane Gram negative bacteria present in the gut. Gen-
erally only a little part of  endotoxin is absorbed from 
the intestinal epithelial lining reaching the liver and the 
Kupffer cells inside the portal vein. In chronic alcohol 
consumption, bowel flora releases a bigger amount of  
endotoxins, responsible for the altered intestinal barrier 
and activation of  the inflammatory process that leads to 
the progression of  ALD[47], cirrhosis and HCC[48].

Hyper-permeability of  the intestine following alcohol 
consumption leads to endotoxemia, which is filtrated by 
the liver and triggers the proinflammatory pathways for 
causing ASH. 

Endotoxemia is responsible for elevated plasma lev-
els of  LPS-binding protein (LBP). The augmentation of  
endotoxins can prime and activate both hepatic and extra 
hepatic macrophages to overproduce inflammatory cy-
tokines such as TNF-α, IL-6, IL-1 and IL-8[12]. 

Systemic endotoxemia and the cytokines produced in 
the inflammatory process increase intestinal permeability 
altering tight junctions. This leads to endotoxins passing 
into the circulation, creating a vicious cycle[49,50]. 

ALD also results in quantitative alterations of  the 
intestinal microbioma. The small intestinal bacterial over-
growth (SIBO) is another cause of  bacterial transloca-
tion. 

To make a diagnosis of  SIBO, it is necessary to find 
≥ 1 × 103 bacteria (i.e., CFU) per mL of  proximal jeju-
nal aspiration[51]. Bacterial overgrowth is advantaged by 
intestinal stasis that permits the proliferation of  coliform 
bacteria[52]. Therefore, the bacteria generally recognized as 
SIBO are gram negative aerobes and anaerobes such as 
E. coli, Enterococcus spp. and Proteus mirabilis[53,54]. The main 
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Figure 1  Metabolism of alcohol. 

Table 1  Intestinal microbiota in the gastrointestinal 
compartments

Gastrointestinal tract Microbiota

Oesophagus Streptococcus, Prevotella, Veilonella
Stomach Streptococcus, Staphylococcus, Lactobacillus, 

Helicobacter pylori
Duodenum Streptococcus, Staphylococcus, Lactobacillus, 

Helicobacter pylori, Veilonella, Yeasts
Jeiunum Streptococcus, Staphylococcus, Lactobacillus, 

Helicobacter pylori, Veilonella, Yeasts
Ileum Bifidobacterium, Bacteroides, Veilonella, 

Clostridium, Enterobacteriacea
Colon Bacteroides, Bifidobacterium, Clostridium, 

Streptococcus, Ruminococcus, Peptostreptococcus, 
Eubacterium, Faecalibacterium
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stream signaling pathways responsible for activation of  
transcription factors such as NF-κB and activator pro-
tein-1 (AP-1). This process causes an increased inflam-
matory cytokine production such as interferon gamma 
(IFNγ), TNF-α, interleukin-6 (IL-6), IL-1, chemokines 
and reactive oxygen species[64,65].

Furthermore LPS/TLR4 promotes fibrogenesis by 
sensitizing hepatic stellate cells (HSCs). The sensitised 
HSCs induce NF-κB activation, up-regulate gene expres-
sion of  some chemokines (IL-8 and monocyte chemoat-
tractant protein-1) and promote transforming growth 
factor beta (TGFβ) release by Kupffer cells[66]. The acti-
vated TLRs can enroll adapter molecules like myeloid dif-
ferentiation factor-88 (MyD88)[67]. 

The CD14/TLR4 receptor complexes activate 
MyD88 dependent and MyD88 independent pathways 
that modulate survival and replication of  apoptosis 
cells[68]. Furthermore, the MyD88-signaling pathway leads 
to production of  oxidative stress and pro-inflammatory 
cytokines that causes hepatocellular damage[69-71].

The effects of  alcohol are exerted on organs different 
from liver too. Blanco et al[69,70] demonstrated the role of  
ethanol in neuroinflammation. They showed that ethanol 
can directly induce downstream iNOS expression and 
activation of  NF-κB through the translocation of  TLR4 
into lipid rafts. The activation of  NF-signalling is also de-
termined by acetaldehyde[71]. 

TREATMENT
Abstinence from alcohol is the foundation for treatment 
of  alcoholic liver diseases. In every stage of  liver damage, 
the cessation or marked reduction in alcohol consump-
tion has been demonstrated to improve the histology 
and/or survival of  patients[72]. 

In patients with elevated alcohol ingestion, high levels 
of  plasma endotoxin may be determined by: (1) excessive 
production of  endotoxin in the intestine through over-
growth of  intestinal bacteria; (2) gut permeability; and (3) 
delayed clearance of  endotoxin by Kupffer cells. Actually, 
the main treatments, such as antibiotics, prebiotics, pro-
biotics and synbiotics, try to prevent endotoxemia by 
inhibiting the intestinal Gram negative overgrowth and 
preserving intestinal permeability.

Antibiotic
Acute and chronic ingestion of  alcohol causes an in-
creased endotoxin plasma level in humans and mice 

causes of  SIBO are gastric achlorhydria, gastrocolic or 
coloenteric fistula and small intestine motility disorder[52]. 
Ethanol decreases intestinal motility which favours prolif-
eration of  luminal bacteria[16].

ROLE OF THE IMMUNE SYSTEM
Chronic ethanol consumption has been associated with 
immune suppression and increased morbidity and mor-
tality[55]. Alcohol ingestion alters both the innate and 
adaptive immune system. 

Ethanol increases the susceptibility of  the gastrointes-
tinal tract to bacteria through the suppression of  natural 
killer cell activity and antibody-dependent cell-mediated 
cytotoxicity by lymphocytes[56,57]. 

The host immune system has an important role in the 
defence of  the intestine. Several molecules are responsi-
ble for the limited expansion of  pathogenic microorgan-
isms, such as reactive oxygen species, IgA, β-defensins 
and cryptidins[39,58]. The innate immune system is also 
composed by Toll-like receptors (TLRs) that recognize 
specific pathogen-associated molecular patterns (PAMPs) 
such as LPS, lipoteichoic acid, peptidoglycan, unmethyl-
ated DNA and double-stranded RNA[59]. 

In humans 10 TLRs have been recognized. Multiple 
cells in the liver express significant levels of  multiple 
TLRs and have long been recognized to be critical deter-
minants in the pathogenesis of  cirrhosis[60,61]. Every type 
of  liver cell expresses specific TLR: TLR1 was found in 
hepatocytes, TLR2, 3, and 4 in stellate cells, bile duct epi-
thelium and particularly in Kupffer cells. Bile duct epithe-
lium expresses TLR5 too (Figure 2).  

Endotoxins produced in the body cause an inflamma-
tory reaction, activating Kupffer cells through their link 
with two types of  receptors, cluster of  differentiation 14 
(CD-14) and TLR-4. These receptors are both essential 
to determine liver injury, but they present different struc-
tures. CD-14 is a surface receptor without a cytoplasmic 
domain, while TLR4 is a transmembrane protein with a 
cytoplasmic domain that can be associated with a soluble 
protein, MD-2, through a not covalently link. 

CD14 binds LPS and this complex is recognized by 
TLR4. CD14 also has a soluble form that facilitates the 
transfer of  LPS to the TLR4/MD-2 receptor complex[62]. 
The association between LPS and CD14 is facilitated by a 
soluble shuttle protein, LPS-binding protein (LBP)[63].

LPS recognition by TLR4 on macrophages and other 
cell types in the liver determines activation of  down-
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Figure 2  Liver cell types and their receptors. TLR: Toll-like receptor.
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models[73,74]. Alcohol consumption causes changes in gut 
microbiota and it is associated with upper gastrointestinal 
bacterial overgrowth[75,76].

The antibiotic treatment controls large bowel bacterial 
overgrowth improving the prognosis of  ALD[77]. How-
ever, despite improvement of  liver function, prolonged 
use of  antibiotics alters gut flora and this may favour 
pathogenic bacterial colonization. 

Antibiotic treatment should be based on bacterial 
sensitivity testing to particular antibiotics, but this will 
require an excessive use of  culture therefore it should be 
targeted at those intestinal bacteria generally responsible 
for SIBO[78,79]. 

Several antibiotics are considered suitable against 
overgrowth of  Gram negative aerobes and anaerobes 
such as rifaximin, amoxicillin/clavulanate, metronidazole, 
ciprofloxacin, norfloxacin, and cephalexin. The fun-
damental role of  rifaximin in the treatment of  hepatic 
encephalopathy has been recently demonstrated, but it 
seems to have a role in treatment of  ALD too[80].  

The main advantage of  rifaximin is that it is not ab-
sorbed and therefore presents few side effects. Further-
more there is little evidence for resistance[57,81-83]. 

Prebiotics
Antibiotics produce quantitative alterations of  intestinal 
microflora whereas prebiotics act against dysbiosis. The 
prebiotics promote selectively the growth of  protective 
gut bacteria (Bifidobacteria and Lactobacilli) increasing the 
body’s natural resistance to invading pathogens[84]. 

Prebiotics are identified as “non digestible food in-
gredients that, when consumed in sufficient amounts, 
selective stimulate the growth and/or activity of  one or 
a limited number of  microbes in the colon, resulting in 
documented health benefits”[85]. 

They are complex carbohydrates that reach the small 
bowel because they cannot be metabolized by pancreatic 
and intestinal enzymes in gastrointestinal tract[86]. All pre-
biotics are resistant to gastric acidity but are susceptible to 
the metabolism by gut microbiota. While probiotics show 
strain specific beneficial effects, prebiotics of  the same 
family present similar properties, though their degree of  
polymerisation distribution linkage type may differ[87]. 

The most commonly commercialized prebiotics are 

lactulose, fructo-oligosaccharides (FOS) and galacto-oli-
go-saccharides (GOS). GOS are nondigestible oligosac-
charides derived from lactose, chains of  galactose mono-
mers that are naturally found in human milk. GOS, like 
other prebiotics, simulate pathogen binding sites present 
on the surface of  gastrointestinal epithelial cells inhibiting 
enteric pathogen adhesion and successive infection[86,88-91].

FOS is naturally present in vegetables such as onions, 
asparagus, wheat, artichokes etc. They modulate gut mi-
crobiota, prevent pathogens adhesion and colonization, 
induce anti-inflammatory effects and regulate lipid and 
glucose metabolism. These prebiotics can exercise these 
effects thanks to their structural resistance to mammalian 
digestive enzymes.

Probiotics
Actually probiotics are defined as “monocultures or 
mixed culture of  live microorganisms that, if  admin-
istered to a person, positively influence the host by 
improving the properties of  his/her own microflora”. 
Probiotics modulate intestinal microbiota, favouring an 
anti-inflammatory milieu that contrast bacterial transloca-
tion, endotoxin production and improve intestinal barrier 
integrity. 

The mechanisms by which probiotics exert their ef-
fects are largely unknown. Different actions have been 
reported in literature. They control inflammation reduc-
ing gut pH and compete with pathogens for binding and 
receptor sites[92-94]. To do this, they have to show specific 
characteristics, in particular they should be resistant to 
bile, hydrochloric and pancreatic juice in order to reach 
the small bowel (Table 2). Tolerating stomach and duo-
denum conditions, probiotics can stimulate the immune 
system and improve intestinal function via adherence and 
colonization of  the intestinal epithelium. 

The most common probiotics are lactose-fermenting 
Lactobacilli and Bifidobacteria. Lactobacillus strains, LAP5 and 
LF33 exert their effects by inhibiting the growth of  E. coli 
and Salmonella typhimurium in vitro[95]. Furthermore, other 
studies have demonstrated that Lactobacillus acidophilus 
strain NP51 reduces the number of  E. coli O157:H7 
in the fecal samples of  beef  cattle[96,97]. Bifidobacterium 
animalis MB5 and Lactobacillus rhamnosus GG protect 
intestinal cells from the inflammation caused by E. coli[98]. 
Finally it has been demonstrated that Lactobacillus GG, 
administered to rats, reduced plasma levels of  endotoxin 
and severity of  liver injury[99].

They have been reported to stabilize mucosal barrier 
function and modulate the gut microflora, limiting the 
growth of  pathogenic bacteria, by acidifying the gut lu-
men, competing for nutrients, and producing antimicro-
bial substances[100-103].

Developing nutritional practices, mucosal barrier re-
pairing, apoptosis prevention due to providing of  short 
chain acids, and improving intestinal epithelial viability 
are other probiotic effects which stabilize physiological 
luminal permeability together with lowering ammonia 
adsorption[104]. These functions alleviate tight junction 
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Table 2  Properties of ideal probiotic strains

Properties of ideal probiotic strains

Resistance to bile
Resistance to hydrochloric acid
Resistance to pancreatic juice
Ability to tolerate stomach and duodenum conditions and gastric trans-
port
Stimulation of the immune system
Improvement of intestinal function via adhering and colonizing the in-
testinal epithelium
Competition with pathogens
Modulation of permeability
Anticarcinogenic and antipathogenic activity
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disturbance by pathogens[105], and are essential agents for 
lowering bacterial translocation. BT is also affected by 
probiotics because of  their induction of  anaerobes and 
gram positive bacteria growth, limiting gram negative 
bacteria, and preventing pathogen adherence[101].

Controlling flora bacteria quantity can lead to de-
creased endotoxins and other toxic compounds derived 
from bacteria such as ethanol, phenol, indoles which 
cause injury to the liver. Decreased levels of  these sub-
stances in the liver result in lowering of  proinflammatory 
production such as TNF-α, IL-6, and IFNγ via down-
regulation of  NF-κB[106]. On the other hand, they can 
depress urease activity of  microflora bacteria followed by 
ammonia production and release into the portal system. 
Furthermore, probiotics decrease fecal pH value and 
reduce ammonia adsorption[107]. Therefore, probiotics 
determine an improvement in hepatic encephalopathy 
through a reduction of  bacterial ammonia reaching the 
portal vein. 

In 2010 Foster et al[108] demonstrated that probiotics 
effects on mental status were maintained during the wash 
out period. 

Synbiotic 
The synbiotic is a compound of  probiotics and prebiotics 
that exercises its beneficial effects stimulating the growth 
of  protective intestinal bacteria[102,103,109].

Prebiotics stimulate the growth of  beneficial bacteria 
(i.e., Bifidobacteria and Lactobacilli) in the gut and their ef-
fectiveness increases when they are used in association 
with probiotics[110,111]. On the other hand, the mixture of  
prebiotics and probiotics might enhance the survival and 
activity of  probotics. 

CONCLUSION
Several studies have demonstrated the central role of  
microbiota in the pathogenesis and development of  liver 
disease[65,112]. For this reason therapeutic strategies to 
control ALD are focussed on the gut microbiome. Obvi-
ously the beneficial effects of  probiotics depend upon a 
number of  factors such as the duration, frequency and 
quantity of  probiotics consumption and the health of  the 
patients at the beginning of  the treatment.

Probiotics have been shown to have several beneficial 
effects on intestinal function. They prolong remission 
in ulcerative colitis, maintaining and improving intestinal 
barrier integrity and stimulate mucosal immunity[113-116].

The treatment could prevent alcohol-induced gut 
leakiness and development of  AHS and the possible 
mechanisms are the reduction of  alcohol-induced intes-
tinal and systemic oxidative stress. Actually the beneficial 
effects of  probiotics in ALD are supported by numerous 
laboratory results and several studies have shown their 
potential, however, despite their demonstrated effects on 
intestinal barrier integrity, there is no high-quality clinical 
evidence. This is an important limit that does not always 
permit recommendation of  the use of  probiotics in clini-

cal practice[117,118]. 
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