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Abstract

Purpose of review—Aldosterone and the mineralocorticoid receptor contribute to resistant 

hypertension and cardiovascular mortality, and mineralocorticoid receptor antagonists effectively 

reduce these complications. Their use is limited in certain populations with a higher risk of 

hyperkalemia or renal dysfunction. This review will highlight recent developments in extra-renal 

mineralocorticoid receptor research and the development of novel mineralocorticoid receptor 

antagonists.

Recent findings—Tissue-specific knockout-out models provide definitive evidence that 

vascular mineralocorticoid receptor directly contributes to hypertension and vascular remodeling, 

independent of renal effects. Several non-steroidal mineralocorticoid receptor antagonists are in 

pre-clinical development or early-stage clinical trials. Several non-steroidal MR antagonists have 

demonstrated preserved cardiovascular benefit with a reduced incidence of hyperkalemia in pre-

clinical studies.

Summary—Novel, potent non-steroidal MR antagonists are in development, although their 

effect on cardiovascular and adverse drug events requires further investigation.

Keywords

Aldosterone; Mineralocorticoid receptor; hyperkalemia

Introduction

Syndromes of mineralocorticoid excess led to the discovery of aldosterone in the 1950’s, 

and the genetic characterization of monogenic hypertension has repeatedly demonstrated the 

importance of aldosterone and renal sodium reabsorption in the genesis of hypertension. 

Recent studies have changed our view of traditional MR activation to include actions of 

aldosterone and the mineralocorticoid receptor in extra-renal tissues such as vascular smooth 

muscle and cardiomyocytes. Traditional MR antagonists are effective treatment for 

congestive heart failure and resistant hypertension [1–4], but the risk posed by hyperkalemia 

and renal dysfunction limits broad application in the clinical setting. Because MRAs are 
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beneficial even in high risk individuals [5], withholding this therapy could deprive patients 

with the greatest need of effective treatment. It remains to be seen if next-generation MRAs 

can minimize these risks while maintaining their cardiovascular benefits, but recent drug 

developments show promise towards achieving this goal [6, 7].

Pathologic consequences of extra-renal MR activation

Aldosterone is critical for maximal renal sodium reabsorption during volume depletion and 

for urinary potassium excretion during potassium excess. These effects are mediated 

primarily by MR activation in the distal nephron segments, which increases epithelial 

sodium channel (ENaC) expression and activity. In the cardiovascular system, the 

mineralocorticoid receptor is expressed in cardiomyocytes, vascular endothelium, and 

vascular smooth muscle where it contributes to injury independent of renal effects. 

Administration of aldosterone plus high salt diet induces cardiac hypertrophy with 

perivascular inflammation and fibrosis via MR activation, suggesting a direct effect of 

aldosterone and MR activation in extra-renal tissues independent of blood pressure.

In the Randomized Aldactone Evaluation Study (RALES), spironolactone reduced 

cardiovascular mortality and rehospitalization rates by ~30% in patients with severe 

congestive heart failure [2]. The selective MR antagonist eplerenone also reduced 

cardiovascular mortality by 17% in patients with acute myocardial infarction complicated by 

heart failure [1]. These benefits occurred in the absence of blood pressure reduction, 

stimulating further research to determine the mechanism of extra-renal MR- induced injury. 

Using Cre recombinase technology, investigators have demonstrated that MR activation 

within vascular smooth muscle, cardiomyocytes, and monocytes/macrophages directly 

contributes to adverse cardiovascular consequences [8–11]. Tissue-specific MR deletion in 

smooth muscle cells (SMC) prevents age-related blood pressure elevation and vascular 

remodeling [10] and prevents injury-induced vascular SMC hypertrophy [8]. After 

experimental myocardial infarction, cardiac-specific MR inactivation reduced cardiac 

hypertrophy, diastolic dysfunction, and pulmonary edema [12].

Traditional MR antagonists

Spironolactone is the prototypical steroidal MRA, but has non-selective progesterone 

receptor agonistic and androgen receptor antagonistic activity (Table 1). This non-selectivity 

contributes to the unwelcome side effects of gynecomastia, menstrual irregularities, and 

decreased libido, respectively. Spironolactone causes breast pain or gynecomastia in males 

in a dose- and time-dependent manner, with an incidence of ~10% after 25 mg daily, and as 

high as 52% after 150 mg daily over two years [2, 20]. Clinically approved MRAs are 

structurally similar spirolactones, possessing a γ-lactone ring at the C17 position and various 

substituents attached to the C7 steroid carbon [21]. Eplerenone is the most selective MR 

antagonist without significant progesterone or androgen activity, but at expense of potency 

compared to spironolactone (Table 1).

Although the off-target side effects are reduced during eplerenone versus spironolactone 

treatment [22], side effects related to renal MR inhibition limit their use in patients at high 

risk for hyperkalemia. Those with heart failure with the highest risk of mortality also carry 
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the highest risk for hyperkalemia, namely those with diabetes and renal dysfunction. The 

incidence of hyperkalemia during MR antagonism is relatively low in highly controlled 

clinical trial settings [1, 2, 5, 23, 24], but application to broader populations without close 

monitoring has been associated with increased hospitalization rates for hyperkalemia [25]. 

In general practice, spironolactone was discontinued in 33% of patients with heart failure, 

primarily due to hyperkalemia (10%) and worsening renal function (10%) [26]. Although a 

decline in renal function is relatively common in patients with ischemic events complicated 

by heart failure, the cardiovascular benefits of MR antagonism persist [5, 27]. Therefore, 

MR antagonists are needed which would allow administration to patients with the highest 

risk of hyperkalemia, such as those with chronic kidney disease, diabetes, and elevated 

baseline potassium or the elderly. Non-steroidal MR antagonists are being developed with 

these goals in mind.

Over the past decade, pharmaceutical companies launched drug-discovery programs for non-

steroidal MRAs using various high-throughput screening methods, which has led to the 

identification of several drug classes which possess MRA activity [13, 16–19, 28, 29]. 

Review of published patent applications demonstrates that additional compounds have been 

identified but not yet published in the scientific literature. Compounds with detailed 

pharmacologic potency and demonstrated in vivo effectiveness will be discussed further 

(Figure 1).

Dihydropyridine-derived MR antagonists

Dietz et al. demonstrated that most clinically approved dihydropyridine calcium channel 

blockers possess the ability to block aldosterone-induced MR activation in vitro using 

luciferase reporter assays [30]. The effect of nimodipine, felodipine, and nitrendipine were 

particularly effective, achieving complete inhibition, although at suprapharmacologic 

concentrations. The concentration at which nimodipine achieve 50% inhibition (i.e., the 

IC50) was within the range achieved in humans using standard clinical dosing. Nifedipine 

was somewhat less effective, while amlodipine possessed the lowest potency. The IC50 for 

nifedipine was 0.7 nM, although a maximum concentration of only 0.3 nM is typically 

achieved after chronic oral administration of 90 mg of sustained-release nifedipine (package 

insert). The predominant clinical effect of these agents is produced by their calcium channel 

blocking effect, rather than MRA activity. Other studies have confirmed the MRA activity 

of calcium channel blockers at micromolar concentrations, but also suggest that they non-

selectively inhibit multiple nuclear receptors [17].

Modification of these existing compounds has aided the development of novel non-steroidal 

MRAs, some of which have proven effective in preclinical and clinical trials. Using the 

dihydropyridine structure, compounds have been modified to remove calcium channel 

inhibitory activity and to increase MR selectivity, pharmacokinetic suitability, 

bioavailability [31]. One compound, (R)-7d met these requirements and was used in further 

in vivo studies. When given to Dahl salt-sensitive rats at 60mg/kg/day, compound (R)-7d 

attenuated salt-induced hypertension to the same extent as eplerenone.
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Fagart et al. similarly identified dihydropyridines as MRAs using a high-throughput 

screening method, and characterized BR-4628 as a selective non-steroidal MR antagonist, 

although with still some PR agonist activity. The independent discovery and optimization of 

multiple dihydropyridine compounds provides further proof of concept that dihydropyridine 

derivatives can function as MRAs. BR-4628 was also active in vivo when given orally to 

rats, as measured by the urinary sodium to potassium ratio [17]. In pre-clinical studies, 

BR4628 prevented DOCA/salt-induced kidney injury independent of hypertension in vivo 

[32], and prevented fibrotic cardiomyocyte remodeling in vitro [33].

Further drug optimization has led to the development of BAY94-8862, which is more potent 

(IC50 18 nM) and has no measurable activity at the PR, AR, GR, or ER in vitro [16]. This 

compound increased the urinary sodium/ratio and demonstrated evidence of cardiovascular 

benefit in preclinical studies. BAY94-8862 has become the first non-steroidal to advance in 

clinical trials (the minerAlocorticoid Receptor antagonist Tolerability Study (ARTS) to 

investigate whether it can be safely used in high-risk subjects with heart failure, reduced 

ejection fraction <40% (HFREF), and renal dysfunction [34, 35].

The initial phase I study enrolled subjects in part A with mild renal insufficiency (eGFR 60–

90 mL/min/1.73m2 by the MDRD equation) in a randomized, placebo-controlled parallel 

trial (n≥16 each arm) to BAY94-8862 (either 2.5, 5.0, or 10 mg daily) or placebo for 4 

weeks to assess safety. The drug was well tolerated in this initial phase study, with mildly 

elevated potassium in 1 subject that did not require treatment or discontinuation. In part B, 

the study enrolled 393 subjects with moderate renal insufficiency (eGFR 30–60 mL/min/

1.73m2) randomized to either BAY94-8862 (either 2.5, 5.0, or 10 mg daily), placebo, or 

open-label spironolactone for 4 weeks. Spironolactone was given 25mg daily for 14 days, 

and then increased to 50mg daily if serum potassium remained <4.8 mEq/L. BAY94-8862 

increased serum potassium at 4 weeks in a dose-dependent manner, but to a lesser degree 

than spironolactone and produced no more renal dysfunction than placebo. It also did not 

alter blood pressure or plasma aldosterone to the same extent as spironolactone. At the same 

time, urine albumin/creatinine and circulating N-terminal B-type natriuretic peptide 

appeared to improve to a similar degree during BAY94-8862 10mg daily. Based on these 

results, this drug has entered phase II studies for the treatment of diabetic nephropathy.

Pyrazoline-derived compounds

Using a high-throughput screening method, a pyrazoline compound has been discovered to 

have MR antagonist activity [13, 15]. Pyrazoline-related compounds had previously been 

described to bind to other steroid nuclear receptors, and chemical optimization led to the 

identification of PF-03882845. This compound is highly selective for the MR without 

significant effects on the AR, PR, or GR in vitro. PF-03882845 effectively reduced blood 

pressure in Dahl salt-sensitive rats, preventing renal injury assessed by histology and 

albuminuria to the same or greater extent at 40 mg/kg/day compared to eplerenone [15]. 

There was a trend for serum potassium to increase to a lesser extent during PF-03882845 

treatment. Although this compound reached clinical testing for diabetic nephropathy, early 

studies were terminated due to “poor recruitment and a shift in business strategy” 

(ClinicalTrials.gov NCT01488877). Further refinement of this compound also led to the 
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identification of compound (R)14c, which has improved MR potency, selectivity over PR, 

and increased solubility compared to PF-03882845 [13]. Compound (R)14c increases the 

urinary sodium/potassium ratio in rats, suggesting effective MR antagonism in vivo, 

although its effect on cardiovascular and renal injury has not yet been proven.

Sulfonamide-derived Benzoxazinethiones

Further evidence that non-steroidal MRAs can prevent cardiovascular injury is provided by 

the sulfonamide SM-368229 [19, 36, 37]. SM-368229 reduced blood pressure, ventricular 

hypertrophy, and renal injury in spontaneously hypertensive rats and in aldosterone treated 

rats without increasing serum potassium [36, 37]. Further studies in potassium-loaded rats 

demonstrated no increase in serum potassium during chronic SM-368229 administration 

[36].

Can the risk of hyperkalemia be separated from cardiovascular benefit of 

MRAs?

Clinical applicability of MRAs to patients with renal dysfunction is limited due to 

hyperkalemia, and if new agents can achieve similar cardiovascular benefits with a reduced 

hyperkalemia risk, this would significantly expand the target population. It is well-known 

that aldosterone increases urinary potassium excretion which causes hypokalemia in the 

setting of inappropriate aldosterone excess.

A number of mechanisms have been proposed by which non-steroidal MRAs could avoid 

the risk of hyperkalemia [6]. Spironolactone and eplerenone accumulate in renal to a greater 

extent than cardiovascular tissue, and several publications have suggested that the novel 

drug has a more balanced tissue distribution. However, this alone may not prevent the risk of 

hyperkalemia. Aldosterone also affects potassium handling via extra-renal effects in skeletal 

muscle and/or other tissues. Aldosterone and the MR directly affect skeletal muscle 

potassium transport in chronic adaptation to high potassium diet [38–40]. Other 

mineralocorticoids such as deoxycorticosterone (DOCA), but not glucocorticoids, also 

stimulate skeletal muscle potassium uptake which is prevented by MR antagonism with 

spironolactone [40].

Another mechanistic possibility is differential effects on co-activators in different tissues. 

Steroidal MRAs and BR-4628 bind in the ligand binding domain of the MR, although 

BR-4628 has a bulky side chain which induces conformational changes. These changes can 

alter recruitment of co-activators and co-repressors, thus altering the stability, nuclear 

translocation, and activation. Similar molecular mechanisms are responsible for selective 

estrogen receptor modulators. More research is needed to identify tissue-specific MR 

partners which contribute to cardiovascular injury, along with further drug modification. 

However, these findings indicate the future possibility of selectively modifying 

cardiovascular MR responses while minimizing risk of renal complications.
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Conclusions

The critical challenge for non-steroidal MRAs will be to maintain cardiovascular 

effectiveness of non-steroidal MRAs, namely for heart failure and resistant hypertension, 

while reducing side effects. If successful, the decreased risk of hyperkalemia could expand 

the use of these agents into populations at high risk of complications, such as those with 

renal insufficiency. This could further expand a role for these agents in diabetic 

nephropathy. Although spironolactone in addition to standard care effectively reduces 

proteinuria in diabetic nephrophathy [41], its effectiveness in reducing progression to death, 

dialysis, or need for transplantion has not, and likely will not be determined. A significant 

proportion of patients with diabetic nephropathy progress to renal failure or die of 

cardiovascular complications. Furthermore, diabetic renal disease is the leading cause of 

renal failure, which is among the costliest diseases in the United States health care system. 

Therefore, reduction in the number of patients requiring dialysis would have significant 

clinical and cost benefits. The initial studies of non-steroidal MRAs are being conducted in 

patients with diabetic nephropathy, a population with markedly elevated risk of 

cardiovascular complications.
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Key points

• Although the renal mineralocorticoid receptor stimulates sodium reabsorption 

and potassium excretion and contributes to hypertension, activation of the MR 

in extra-renal tissues also contributes to the pathogenesis of cardiovascular 

injury.

• Tissue-specific MR knockout animals have demonstrated an important role for 

extra-renal MR in learning, vascular injury, and potassium homeostasis.

• Selective non-steroidal MR antagonists have been recently developed and 

demonstrate effectiveness in early clinical trials
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Figure 1. 
Heading: Non-steroidal Mineralocorticoid receptor antagonists

Legend: The chemical structures of selected non-steroidal MRAs are representative of 

dihydropyridine (BAY-94-8862), Pyrazoline (PF-03882845), and Benzoxazinethione 

(SM-368229) derivatives.

Source: Original
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