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Malaria kills nearly 1 million people each year, and the protozoan parasite Plasmodium falciparum has become increasingly re-
sistant to current therapies. Isoprenoid synthesis via the methylerythritol phosphate (MEP) pathway represents an attractive
target for the development of new antimalarials. The phosphonic acid antibiotic fosmidomycin is a specific inhibitor of iso-
prenoid synthesis and has been a helpful tool to outline the essential functions of isoprenoid biosynthesis in P. falciparum. Iso-
prenoids are a large, diverse class of hydrocarbons that function in a variety of essential cellular processes in eukaryotes. In P.
falciparum, isoprenoids are used for tRNA isopentenylation and protein prenylation, as well as the synthesis of vitamin E, caro-
tenoids, ubiquinone, and dolichols. Recently, isoprenoid synthesis in P. falciparum has been shown to be regulated by a sugar
phosphatase. We outline what is known about isoprenoid function and the regulation of isoprenoid synthesis in P. falciparum,
in order to identify valuable directions for future research.

Severe malaria remains a threat to human health worldwide,
with over 250 million cases per year. Malaria is a leading cause

of death in children, with almost one million deaths each year (1,
2). Despite ongoing and intensive control efforts, malaria remains
endemic on five continents. Widespread resistance to former first-
line agents, most notably chloroquine, has severely limited ma-
laria control efforts (2). Currently, the recommended standard of
care for malaria infection is combination therapy using artemis-
inin-based therapeutics. However, decreased sensitivity to arte-
misinin has been recognized in the field, particularly in Southeast
Asia. The spread of artemisinin resistance threatens the progress
that has been made in control of malaria, particularly in sub-
Saharan Africa (3–5). New antimalarial agents, particularly agents
with novel mechanisms of action, are urgently needed.

Malaria is caused by infection with protozoan parasites in the
genus Plasmodium. Most cases of life-threatening malaria are at-
tributable to infection with a single species, Plasmodium falcipa-
rum, although P. vivax and P. knowlesi have also been associated
with severe disease (6–9). Plasmodium infection is transmitted
through the bite of anopheline mosquitoes (Fig. 1 depicts their life
cycle). Expelled from mosquito salivary glands, malaria sporozo-
ites first traffic to the liver, where 10 to 100,000 daughter parasites
are generated from a single invading cell. Upon egress from the
liver, the parasite enters the host bloodstream. There, the malaria
parasite begins an asexual cycle of growth and development within
erythrocytes. This intraerythrocytic cycle leads to the signs and
symptoms associated with malaria infection, including fever, ane-
mia, and multiorgan dysfunction due to vascular adherence of
parasitized red blood cells. New antimalarials must therefore tar-
get this pathogenic stage of parasite development. A small propor-
tion of asexual-stage parasites leave the asexual cycle and commit
to the production of sexual forms, known as gametocytes. Upon a
new blood meal, gametocytes return to the mosquito midgut,
where they complete sexual development and begin the life cycle
anew.

One cellular peculiarity of Plasmodium species, as well as other
apicomplexan parasites, such as Toxoplasma and Babesia species,
is the presence of an unusual plastid organelle, the apicoplast (Fig.
2A and B). The apicoplast is surrounded by four membranes,
suggesting an ancient secondary endosymbiotic event between a

protozoan parasite ancestor and red algae, similar to that of the
chloroplast (10–12). While the apicoplast was previously believed
to be of green algal origin, the recent discovery and genome se-
quencing of the alveolate Chromera velia has revealed C. velia as an
evolutionary link between apicomplexans and their red algal an-
cestors (11, 12). C. velia can potentially serve as a useful tool to
study the evolution of plastid pathways in apicomplexan parasites.
While photosynthetic capabilities have been lost over time, the
malaria parasite has retained some plantlike metabolic pathways
that hold particular value as targets for antimalarial drug develop-
ment, since these pathogen-specific processes are not present in
humans.

Key among apicoplast metabolic pathways is that of isoprenoid
biosynthesis. Isoprenoids comprise a very large and diverse group of
biomolecules derived from the sequential assembly of two 5-carbon
isomers, isopentenyl pyrophosphate (IPP) and dimethylallyl pyro-
phosphate (DMAPP). Chains of isoprene units are subsequently
modified through cyclizations, oxidations, reductions, and additions
to generate the array of over 25,000 isoprenoids found in nature (13).
In humans (as well as fungi, archeabacteria, cytoplasm of plants, and
other metazoans), the isoprenoid building blocks IPP and DMAPP
are produced through a mevalonate-dependent pathway from acetyl-
coenzyme A (CoA). The rate-limiting step in the mevalonate pathway
is the conversion of 3-hydroxy-3-methyl-glutaryl (HMG)-CoA to
mevalonic acid by the enzyme HMG-CoA reductase; this enzyme is
the target for the widely used statin class of cholesterol-lowering
drugs (14).

In Plasmodium species, IPP and DMAPP are produced via an
alternative biosynthetic route that does not utilize mevalonate
(15, 16). This pathway, also called the MEP (2-C-methyl-D-eryth-
ritol 4-phosphate) pathway or DOXP (1-deoxy-D-xylulose 5-
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phosphate) pathway, converts glyceraldehyde 3-phosphate and
pyruvate to IPP and DMAPP through seven enzymatic steps (Fig.
2C). At least two enzymes of this pathway catalyze rate-limiting
steps in IPP production: DOXP synthase (DXS) (EC 2.2.1.7, Plas-
moDB identifier [ID] PF3D7_1337200) converts glyceraldehyde
3-phosphate and pyruvate to DOXP, and DOXP reductoisomer-
ase (DXR) (EC 1.1.1.267, PF3D7_1467300) converts DOXP to
MEP (17, 18). The mechanism by which IPP and DMAPP are
exported from the apicoplast for use in the cytoplasm remains
unknown.

Given the structural diversity of isoprenoids, it is not surpris-
ing that these molecules serve diverse cellular functions. Plants in
particular elaborate an incredible range of specialized isoprenoid
end products, including pharmacologically active compounds like
paclitaxel (originally named taxol) (19) and artemisinin (20), as
well as terpenes, volatile isoprenoids that confer the characteristic
odors, flavors, and colors of plants. Other roles of isoprenoids
include regulation of cell growth and energy production, intracel-
lular signaling, and membrane structural support (15, 21, 22).
Recent reviews discuss apicoplast metabolism and, specifically,
isoprenoid synthesis, as drug targets in P. falciparum (23, 24).
Here, we address the key questions in the field: what isoprenoids
does the malaria parasite make, and why?

FOSMIDOMYCIN

An important reagent in the study of the MEP pathway has been the
selective MEP pathway inhibitor, fosmidomycin. Fosmidomycin is a
small, three-carbon phosphonate compound that was first identified

from Streptomyces lavendulae by its antibacterial properties (25).
Subsequent in vitro studies revealed that fosmidomycin competi-
tively inhibits DXR, the first dedicated enzyme of the MEP path-
way (26–28). The charged nature of fosmidomycin means that
this compound is typically excluded from cells unless actively im-
ported, which has limited its utility against many organisms, in-
cluding the apicomplexan Toxoplasma gondii (29) and the agent of
tuberculosis, Mycobacterium tuberculosis (30). Intraerythrocytic
malaria parasites elaborately remodel the host red blood cell, sig-
nificantly increasing the cellular uptake of many nutrients (31–
33). These so-called new permeability pathways likely facilitate the
uptake of fosmidomycin, as fosmidomycin is excluded from un-
infected red blood cells but inhibits the growth of Plasmodium and
a related, tick-borne intraerythrocytic apicomplexan pathogen,
Babesia divergens (34). It remains unclear what cellular machinery
is required for fosmidomycin uptake into P. falciparum cells.

Fosmidomycin is well validated as a specific inhibitor of DXR.
Analysis of MEP pathway intermediates in bacteria and P. falcip-
arum has established that fosmidomycin reduces the intracellular
levels of downstream MEP pathway metabolites and isoprenoid
products (35–37). In addition, the growth inhibitory effects of
fosmidomycin are chemically rescued in bacteria and malaria par-
asites through supplementation of the medium with IPP or un-
phosphorylated isoprenols (farnesol and geranylgeraniol). The
50% inhibitory concentration (IC50) for fosmidomycin increases
10-fold when the medium is supplemented with farnesol or gera-
nylgeraniol (35, 38). Supplementation of the medium with gera-
nylgeraniol also rescues protein mislocalization and the organelle
disruption effects of fosmidomycin treatment (39). Treatment
with high concentrations of fosmidomycin is not completely res-
cued by prenyl alcohol supplementation, perhaps due to the tox-
icity of these compounds at high concentrations (40).

In asexual parasites, the MEP pathway may be the only essential
function of the apicoplast organelle in which it resides. Treating par-
asites with inhibitors of apicoplast replication forces P. falciparum to
lose its apicoplast genome and structure. These parasites nonethe-
less survive when supplemented with exogenous IPP (38).

Small-molecule inhibitors that target apicoplast replication of-
ten result in a delayed-death phenotype in P. falciparum, in which
drug-treated parasites complete the first cell cycle after treatment
and arrest in the second (41). In contrast, fosmidomycin treat-
ment inhibits intraerythrocytic growth of P. falciparum during the
first cell cycle. Interestingly, fosmidomycin-treated parasites de-
velop within the red blood cell, begin hemoglobin digestion, and
initiate DNA replication prior to cell cycle arrest as multinucleate
schizonts (39). The requirement of the new permeability path-
ways mentioned above for fosmidomycin import into P. falcipa-
rum cells may explain this delayed action, as these pathways are
not fully developed until the trophozoite stage (31, 32). Liver-
stage parasites are also sensitive to fosmidomycin. Treatment of
liver-stage Plasmodium berghei inhibits the development of the
apicoplast and reduces the number of merosomes, the result of
liver-stage replication. Thus, the MEP pathway appears to be re-
quired for optimal growth in hepatocytes (29). Little is known
about isoprenoid synthesis in the gametocyte and mosquito stages
of the parasite life cycle, although proteomics studies have identi-
fied MEP pathway enzymes expressed in late gametocytes (42).

Below, we detail the isoprenoid products downstream from
IPP (Fig. 2C; Table 1) and what is known about their production
and/or function in P. falciparum.

FIG 1 Life cycle of Plasmodium falciparum. Infection begins with the injection
of sporozoites into the host bloodstream by the bite of an Anopheles mosquito.
Parasites multiply in the liver and are released back into the host bloodstream
as merozoites, where they begin the intraerythrocytic developmental cycle
(RBCs, red blood cells). Inside the erythrocyte, parasites grow into large tro-
phozoites. They eventually divide to become multinucleate schizonts, which
erupt from the host cell and reenter the blood as merozoites. A proportion of
these blood-stage parasites become gametocytes and are taken up by the mos-
quito vector, where they complete sexual replication.
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5-CARBON ISOPRENOIDS: DMAPP AND IPP

The most proximally produced compounds of the MEP pathway
are the end products and isoprenoid building blocks, isopentenyl
pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate
(DMAPP). In bacteria, DMAPP is used as a substrate for tRNA

isopentenylation (43). In this process, an isopentenyl group is
added to an adenosine in the tRNA, targeting the tRNA to the
ribosome and improving translation fidelity. Evidence suggests
that P. falciparum produces isopentenylated tRNAs, as its apico-
plast genome encodes four tRNAs that represent probable candi-

FIG 2 Synthesis of isoprenoid products in P. falciparum. (A) Electron micrograph of P. falciparum cell, with labels showing the red blood cell (RBC), nucleus (N),
food vacuole (FV), and apicoplast (Ap). Scale bar represents 500 nm. (B) The P. falciparum apicoplast is the site of isoprenoid synthesis by the MEP pathway. It
is surrounded by four membranes, indicative of secondary endosymbiotic origins. Scale bar represents 100 nm. (C) Isoprenoid products produced by P.
falciparum. Abbreviations used: phosphoenol pyruvate (PEP), dihydroxyacetone phosophate (DHAP), pyruvate kinase (PK), triose phosphate isomerase (TPI),
1-deoxy-D-xylulose 5-phosphate synthase (DXS), 1-deoxy-D-xylulose 5-phosphate (DOXP), DOXP reductoisomerase (DXR), fosmidomycin (FSM), 2-C-
methyl-D-erythriol 4-phosphate (MEP), MEP cytidyltransferase (IspD), 4-diphosphocytidyl-2-C-methylerythritol (CDP-ME), CDP-ME kinase (IspE),
4-diphosphocytidyl-2-C-methylerythritol 2-phosphate (CDP-MEP), 2-C-methyl-D-erythritol 2,4-cyclopyrophosphate (MEcPP), MEcPP synthase (IspF), (E)-
4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), HMB-PP synthase (IspG), HMB-PP reductase (IspH), dimethylallyl pyrophosphate (DMAPP),
isopentenyl pyrophosphate (IPP), isopentenyl pyrophosphate isomerase (IPPI), tRNA isopentenyltransferase (TIPT), tRNA methylthiolase (TMT), farnesyl
pyrophosphate synthase (FPPS), bisphosphate (BisP), geranyl pyrophosphate (GPP), polyprenol reductase (PPR), farnesyl pyrophosphate (FPP), octaprenyl
pyrophosphate synthase (OPPS), nerolidol (NER), farnesyl transferase (FTase), prenyltransferase inhibitors (PTI), geranylgeranyl transferase (GGTase), gera-
nylgeranyl pyrophosphate (GGPP), phytoene synthase (PS), phytoene desaturase (PD), norflurazon (NOR), dolichyl pyrophosphate (dolichyl-PP), 2-methyl-
6-phytyl-1,4-benzoquinol (MPBQ), and usnic acid (UA).
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dates for isopentenylation (44). P. falciparum encodes a homo-
logue of the Escherichia coli tRNA isopentenyltransferase MiaA
(EC 2.5.1.75, PlasmoDB ID PF3D7_1207600) (44). P. falciparum
also possesses a homolog of the isopentenyl-adenosine tRNA
methylthiolase MiaB (EC 2.8.4.-, PlasmoDB ID PF3D7_0622200),
an enzyme whose bacterial homologs participate in downstream
tRNA isopentenylation steps (44, 45).

As previously described, supplementation of medium with
farnesol or geranylgeraniol rescues fosmidomycin treatment of
malaria parasites. These isoprenols are presumed to be phos-
phorylated intracellularly by nonspecific kinases to generate
their cognate diphosphates, farnesyl pyrophosphate (FPP)
and geranylgeranyl pyrophosphate (GGPP). Fosmidomycin-
treated parasites supplemented with farnesol (15-carbon) or
geranylgeraniol (20-carbon) therefore do not have a known
source of 5- or 10-carbon isoprenoids but are still capable of
intraerythrocytic growth (35). These studies cannot rule out a
role for tRNA isopentenylation in maintaining apicoplast func-
tion, but they do suggest there may not be additional roles for
tRNA isopentenylation outside the maintenance of isoprenoid
biosynthesis within the apicoplast.

10-, 15-, AND 20-CARBON ISOPRENOIDS

MONOTERPENES

Condensation of two isoprene units produces the 10-carbon iso-
prenoid geranyl pyrophosphate (GPP). GPP is utilized by monot-
erpene synthases and monoterpene cyclases to produce 10-carbon
monoterpenes. Monoterpenes are the most abundant compounds
found in plant essential oils. Terpene mixtures such as citronellal

(citronella) and citral (lemon) are produced by plants to deter
herbivores (46). Some monoterpenes have been found to have
antimicrobial properties; thymol, a monoterpene component of
the essential oil in thyme, has been shown to decrease counts of
Salmonella enterica serovar Typhimurium and Staphylococcus au-
reus (47). To date, no studies have identified evidence of monot-
erpene synthesis in P. falciparum. Homology-based searches do
not identify potential monoterpene synthases or monoterpene cy-
clases in the P. falciparum genome, although this class of enzymes
is remarkably diverse (48).

SESQUITERPENES AND DITERPENES

FPP and GGPP are also used to produce sesquiterpenes and diter-
penes. In P. falciparum, the condensation of GPP and IPP (to
produce FPP) and of FPP and IPP (to produce geranylgeranyl
diphosphate [GGPP]) appears to be catalyzed by a bifunctional
FPP-GGPP synthase (PlasmoDB ID PF3D7_1128400) (49). The
crystal structure of the P. vivax enzyme has been solved (50, 51).
This bifunctional enzyme is sensitive to bisphosphonates, such as
zoledronate and risedronate (49). These compounds bind to bone
minerals and are traditionally used to inhibit bone resorption in
the treatment of diseases like osteoporosis (52). Metabolic-label-
ing studies using [14C]mevalonate, [14C]IPP, and [14C]DMAPP
validate FPP synthesis as the target of bisphosphonate inhibition
(53). Bisphosphonates, as well as their analogs, have been shown
to bind FPP-GGPP synthase in the active site of both the human
and parasite enzymes (51). Bisphosphonates compete with GPP
for binding, and their efficacy is enhanced by IPP stabilization of
the enzyme inhibitor complex (54, 55). Treatment with bisphos-
phonates inhibits parasite growth and decreases protein prenyla-

TABLE 1 Classes of isoprenoid products in P. falciparum

Isoprenoid class (no. of
carbons)

Present in
parasite? Role(s) in asexual stage Enzyme(s) (PlasmoDB ID[s]) Notable reference(s)

IPP, DMAPP (5) Yes tRNA isopentenylation tRNA isopentenyltransferase (PF3D7_1207600),
isopentenyl-adenosine tRNA methylthiolase
(PF3D7_0622200)

Monoterpenes (10) No
Sesquiterpenes, diterpenes

(15 and 20)
Yes Protein prenylation, vitamin E

synthesis
FPP-GGPP synthase (PF3D7_1128400), farnesyl

transferase (PF3D7_1242600 [� subunit] and
PF3D7_1147500 [� subunit]), geranylgeranyl
transferase type I (PF3D7_1242600 [�
subunit] and PF3D7_0602500 [� subunit]),
geranylgeranyl transferase type II
(PF3D7_1442500 [� subunit] and
PF3D7_1214300 [� subunit]), REP/GDI
superfamily members (PF3D7_1242800 and
PF3D7_1038100)

35, 49, 63, 64, 68, 78

Sterols (30) Yes, but taken
from host

Membrane stability 86, 87, 89, 90

Carotenoids (40) Yes Unknown, possibly response to
oxidative stress

Phytoene synthase (PF3D7_0202700) 104

Ubiquinone (40 and 45) Yes Electron acceptor in pyrimidine
synthesis

Dihydroorotate dehydrogenase
(PF3D7_0603300), octaprenyl pyrophosphate
synthase (PF3D7_0202700), 4-
hydroxybenzoate octaprenyltransferase
(PF3D7_0607500)

104, 113, 117, 120

Dolichols (55 and 60) Yes Protein modifications: dolichylation,
GPI anchors, O-and N-linked
glycosylation

Polyprenol reductase (PF3D7_1455900),
dolichyldiphosphatase (PF3D7_0805600),
GPI1 (PF3D7_0618900), dolichol phosphate
mannose synthase (PF3D7_1141600)

123, 124, 125, 130,
131, 134, 135
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tion (50, 51, 56–58). Partial rescue of parasite growth can be
achieved by the addition of FPP or GGPP to the culture medium,
indicating that bisphosphonates target FPP and GGPP synthesis
in P. falciparum (56).

P. falciparum utilizes sesquiterpenes and diterpenes for protein
prenylation. In protein prenylation, lipophilic farnesyl (15-car-
bon) and geranylgeranyl groups (20-carbon) are attached to C-
terminal cysteines, which results in protein association with mem-
branes. Prenylation is crucial for the function of a variety of
membrane-bound enzymes, such as the Ras, Rho, and Rab fami-
lies of small GTPases. Farnesyl transferase (EC 2.5.1.58, Plas-
moDB IDs PF3D7_1242600 [� subunit] and PF3D7_1147500 [�
subunit]) and geranylgeranyl transferase type I (EC 2.5.1.59, Plas-
moDB IDs PF3D7_1242600 [� subunit] and PF3D7_0602500 [�
subunit]) transfer FPP and GGPP moieties to the target protein
via recognition of a C-terminal CaaX motif (59). This motif is
composed of a cysteine (C), two aliphatic amino acids (aa), and
the C-terminal amino acid (X). These two prenyltransferases
share an � subunit but have distinct � subunits (60). Geranylgera-
nyl transferase type II (EC 2.5.1.60, Rab geranylgeranyltransferase,
PlasmoDB IDs PF3D7_1442500 [� subunit] and PF3D7_1214300
[� subunit]) utilizes a different mechanism of substrate recogni-
tion, which requires a Rab escort protein (REP) (61). The REP
binds Rab proteins, facilitates their prenylation, and delivers them
to their target membrane. REPs are part of the REP/GDI super-
family, which also includes GDP dissociation inhibitor (GDI)
proteins. GDI proteins are involved in cycling the Rab between
membranes and the cytosol (61). Two members of the REP/GDI
superfamily are found in the P. falciparum genome (PlasmoDB
IDs PF3D7_1242800 and PF3D7_1038100) (62). Further studies
are required to determine if these proteins function as REPs or
GDIs.

Protein prenylation appears to be an essential use of iso-
prenoids in P. falciparum, as the parasite is sensitive to chemical
inhibition of protein prenylation. Prenyltransferase inhibitors,
major candidates for anticancer therapy, have shown potent anti-
malarial activity (63–65). These include a number of peptidomi-
metics of the CaaX motif (63, 66, 67). Additionally, certain
monoterpenes have been shown to inhibit the growth of P. falcip-
arum via inhibition of prenylation (40, 68). Limonene has been
shown to inhibit the prenylation of 21- to 26-kDa proteins in
mammalian cell culture and in vitro (69–71). P. falciparum para-
sites treated with limonene are unable to progress from the ring to
the trophozoite stage (68).

Feeding P. falciparum with labeled [3H]FPP and [3H]GPP
identifies 21- to 24-kDa and 50-kDa prenylation target proteins
that are differentially labeled by FPP and GPP (68). Overall, it
appears that the majority of prenylated proteins are small and
preferentially geranylgeranylated in vivo, with the exception of a
single 50-kDa protein (63). Bioinformatic methods have been
used to compile a list of predicted prenylation targets in P. falcip-
arum (60). These include a number of GTP-binding proteins,
such as Rab2 and Rab11a.

A number of studies have identified specific prenylation targets
in P. falciparum. The localization of the small GTPase Rab7 to
endosomal vesicles was shown to be prenylation dependent. These
vesicles are predicted to participate in endosomal trafficking (72).
The SNARE protein Ykt6.1 of P. falciparum (PfYkt6.1) has been
shown to be a farnesyltransferase substrate in vitro, and its local-
ization is disrupted when lacking a CaaX motif, suggesting it is also

a prenylation target in vivo (73). Similarly, the P. falciparum ty-
rosine phosphatase PfPRL is a substrate for farnesylation in vitro
(74).

Inhibition of isoprenoid synthesis by fosmidomycin produces
prenylation phenotypes in P. falciparum. Similar to metabolic la-
beling, probing for prenylation using a prenylation-specific anti-
body identifies proteins of 21 to 24 kDa and 50 kDa (39, 68).
Prenylation of these targets is reduced in fosmidomycin-treated
parasites, confirming that prenyl groups are indeed products of
the MEP pathway. The P. falciparum geranylgeranyltransferase
substrates PfRab5a and PfRab5c mislocalize from hemoglobin-
containing vesicles to the host cell membrane upon treatment
with fosmidomycin, and this mislocalization correlates with
changes to food vacuole morphology and integrity. Proper local-
ization is restored by geranylgeraniol supplementation (39). Ge-
ranylgeraniol supplementation also substantially rescues growth
inhibition by fosmidomycin, suggesting that geranylgeranylation
may be the only essential form of protein prenylation in P. falcip-
arum (35, 38).

The group of compounds collectively known as vitamin E (to-
copherols and tocotrienols) function as antioxidants and mem-
brane stabilizers (75–77). Recently, a metabolic labeling study us-
ing [3H]FPP and [3H]GPP identified de novo vitamin E synthesis
by P. falciparum. Parasite growth is sensitive to usnic acid, an
inhibitor of vitamin E biosynthesis. Growth is partially rescued by
�-tocopherol, indicating that vitamin E synthesis is essential in
malaria parasites (78).

In plants, the homogentisic acid head group of vitamin E is
synthesized via the shikimate pathway. This head group is then
prenylated with phytyl diphosphate (20-carbon) or geranylgera-
nyl diphosphate to generate 2-methyl-6-phytyl-1,4-benzoquinol,
the first committed intermediate for the synthesis of tocopherols
and tocotrienols. This prenylation is catalyzed by homogentisate
prenyltransferases (EC 2.5.1.115 and EC 2.5.1.116) (79). As no
obvious homogentisate prenyltransferase homologs exist in the P.
falciparum genome, further work will be required to understand
the mechanism by which the parasite synthesizes vitamin E.

STEROLS

Sterols are 30-carbon isoprenoids that are ubiquitous among eu-
karyotes and are utilized for a variety of cellular functions. In
particular, cholesterol is essential for membrane architecture in
eukaryotes, and its production is tightly regulated (80, 81). Cho-
lesterol is also a precursor for signaling molecules, such as sex
steroids and mineralocorticoids in mammals and brassinosteroids
in plants. Squalene synthase (EC 2.5.1.21) commits the isoprenoid
pathway to sterol biosynthesis by converting two molecules of FPP
to squalene; squalene then serves as the backbone for subsequent
modifications (82).

The animal host synthesizes cholesterol de novo and is also able
to import it from dietary sources (83). Radioactive labeling exper-
iments show no evidence for cholesterol biosynthesis in P. falcip-
arum (84, 85). Homology searches do not identify a squalene syn-
thase in the P. falciparum genome. Instead, Plasmodium spp.
appear to obtain cholesterol from the host cell. P. knowlesi was
shown to import host-derived 14C-labeled cholesterol, and cellu-
lar uptake by the host cell itself was also increased upon infection
with malaria parasites (86–88). P. falciparum import of cholesterol
has been studied within hepatocytes, a site of high cholesterol
synthesis and parasite replication early in infection. Inhibition of

Minireview

1352 ec.asm.org Eukaryotic Cell

http://ec.asm.org


host cell isoprenoid synthesis decreases sterol levels in the liver-
stage parasite (89). While cholesterol is essential for the mainte-
nance of parasite membrane stability (90), these studies suggest
that cholesterol synthesis does not occur in P. falciparum and is
therefore not an essential function of de novo isoprenoid synthesis
by the parasite.

CAROTENOIDS

Carotenoids are 40-carbon isoprenoids derived from the conden-
sation of two GGPP molecules by phytoene synthase (EC 2.5.1.32,
PlasmoDB ID PF3D7_0202700). Carotenoids are synthesized by
plants and algae, as well as some bacteria and fungi. In plants,
algae, and photosynthetic bacteria, carotenoids like carotene, ly-
copene, xanthophyll, and lutein function in photosynthesis and
protect against free radical damage (91–95). In plants, carotenoid
synthesis occurs in the chloroplast (96, 97). Fungi also utilize car-
otenoid pigments for protection against free radicals (98, 99). In
animals, which cannot synthesize carotenoids, dietary carotenoids
are used for the synthesis of vitamin A (91). An exception is found
in insects that have acquired carotenoid synthesis from fungi
through lateral gene transfer (100, 101). Commercial synthesis of
carotenoids is of interest for their use as nutraceuticals, dietary
supplements, and pigments (102, 103).

Carotenoids have recently been detected in the intraerythro-
cytic stages of P. falciparum; schizonts contain the highest concen-
trations, indicating that carotenoid synthesis begins in the ring
stage and builds during the schizont stage (104). Geranyl pyro-
phosphate serves as a substrate for carotenoid synthesis by phy-
toene synthase (EC 2.5.1.32, PlasmoDB ID PF3D7_0202700).
Phytoene is then converted to carotenoid products by phytoene
desaturase (EC 1.3.99.30, locus unknown). P. falciparum is sensi-
tive to the small molecular herbicide norflurazon, which inhibits
phytoene desaturase. Norflurazon treatment causes an accumula-
tion of phytoene and a decrease in carotenoid content. Inhibition
by norflurazon can be partially rescued with lycopene (104).
While carotenoids serve important functions in plants, algae, bac-
teria, and fungi, it is not yet known what physiological role they
play in Plasmodium. As in other organisms, they may play a role in
the cellular response to oxidative stress.

In plants, the phytohormone abscisic acid is also produced
from carotenoid intermediates (105). The Plasmodium relative
and apicomplexan parasite, Toxoplasma gondii, has been shown to
produce abscisic acid to control calcium signaling for processes
like protein secretion and parasite egress. The abscisic acid re-
sponse genes identified in T. gondii are conserved in P. falciparum,
but it is not known whether P. falciparum also synthesizes this
isoprenoid product. The route for abscisic acid synthesis from
isoprenoid precursors in apicomplexan parasites remains un-
known, as no clear biosynthetic route is readily identified bioin-
formatically (106).

COENZYME Q (UBIQUINONE)

In most eukaryotes, mitochondria are the site of energy genera-
tion through oxidative phosphorylation. Within the mitochron-
drial matrix, the tricarboxylic acid cycle uses 2-carbon metabolites
generated from the breakdown of glucose, amino acids, and fatty
acids to produce high-energy electron carriers. In the inner mito-
chondrial membrane, the electron transport chain uses high-en-
ergy electrons to harness energy in the form of ATP. In the mito-
chondria of asexual Plasmodium parasites, however, the electron

transport chain is not a primary source of ATP and the parasite
instead relies on glycolysis for most of its ATP production (107).
Indeed, little of the parasitic glucose supply is completely oxi-
dized, and glucose is instead excreted as lactic acid (108, 109).
Additionally, the parasites show relatively little oxygen consump-
tion, consistent with minimal respiration (110). However, ATP
generation by the electron transport chain may be essential for
parasite stages within the mosquito host, where extracellular glu-
cose levels are lower and the parasite cannot rely solely on glycol-
ysis for ATP production (111, 112).

In asexual-stage parasites, the electron transport chain op-
erates to provide a continuous supply of reduced coenzyme Q.
Coenzyme Q, or ubiquinone, typically functions as an electron
acceptor in the electron transport chain. It is maintained in
asexual Plasmodium parasites as an electron acceptor for dihydro-
orotate dehydrogenase (DHODH) (EC 1.3.98.1, PlasmoDB ID
PF3D7_0603300), an enzyme required for pyrimidine synthesis.
DHODH is essential for survival, as the parasite is incapable of
pyrimidine salvage, and small molecules targeting DHODH have
potent antimalarial activity (39, 113–116). Ubiquinone levels have
been shown to peak at the beginning of schizogony and are sensi-
tive to fosmidomycin treatment (36).

Synthesis of coenzyme Q requires the addition of an isoprenyl
side chain to a benzoquinone ring. The parasite possesses an oc-
taprenyl pyrophosphate synthase (EC 2.5.1.90, PlasmoDB ID
PF3D7_0202700) that is capable of synthesizing these side chains.
This multifunctional enzyme produces 40-carbon, 45-carbon,
and 55-carbon isoprenoid products and has been shown to also
have phytoene synthase activity (104, 117). The addition of these
isoprenoids to 4-hydroxybenzoate is performed by 4-hydroxy-
benzoate octaprenyltransferase (EC 2.5.1.39, PlasmoDB ID
PF3D7_0607500) (118, 119). Labeling studies in P. falciparum
identify coenzyme Q isoforms coenzyme Q8 and Q9, which have 8
and 9 isoprene units (40-carbon and 45-carbon), respectively, in
their side chains (120, 121). Incorporation of labeled FPP results
in the detection of coenzyme Q8, and incorporation of labeled
GGPP detects coenzyme Q9 (120). In another study using labeled
p-hydrobenzoic acid, coenzyme Q8 was found to be the dominant
form of coenzyme Q (121).

Nerolidol, a sesquiterpene alcohol, was found to inhibit the
synthesis of the isoprenyl side chain destined for coenzyme Q,
likely because of its structural similarity to FPP. Treatment with
nerolidol inhibits the intraerythrocytic development of P. falcipa-
rum (117, 120).

DOLICHOLS

Dolichols are long-chain hydrocarbon compounds made of
various numbers of isoprene units. In the form of dolichyl
phosphate or pyrophosphate, dolichols are essential for the
transfer of sugars onto proteins, i.e., dolichylation, O-linked
glycosylation, N-linked glycosylation, and the production of
glycophosphatidylinositol (GPI) anchors, which are essential
for successful infection (122).

Multiple studies have demonstrated the presence of dolichols
and their intermediates in P. falciparum, specifically, those com-
posed of 11 and 12 isoprene units (55 and 60 carbons). Labeling
experiments demonstrate that these dolichols are formed from
FPP and GPP, respectively (123, 124). As expected, dolichol syn-
thesis is also sensitive to fosmidomycin treatment (37).

Dolichyl pyrophosphate is produced from IPP by a polyprenol
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reductase (EC 1.3.1.94) and from GGPP via a dehydrodolichol pyro-
phosphate intermediate. Dolichyl pyrophosphate is then converted
to dolichyl phosphate by dolichyldiphosphatase (EC 3.6.1.43).
Dolichyl phosphate is utilized for glycosylation and synthesis of GPI
anchors. P. falciparum possesses homologs of both polyprenol re-
ductase (PlasmoDB ID PF3D7_1455900) and dolichyldiphospha-
tase (PlasmoDB ID PF3D7_0805600).

Posttranslational addition of dolichols to proteins has been
demonstrated in P. falciparum. Labeling using [3H]FPP and
[3H]GGPP identified a dolichol with 11 isoprene units attached to
21- to 28-kDa protein(s). The target proteins and enzyme(s) re-
sponsible for dolichylation of proteins in P. falciparum remain
unknown (124).

P. falciparum synthesizes GPI anchors for protein modification
(125). The parasite is sensitive to known inhibitors of GPI synthe-
sis, such as the mannose analogue 2-deoxyglucose (126, 127).
Studies have identified a number of parasite proteins as targets for
GPI addition, including merozoite surface antigens, a serine pro-
tease, and a heat shock 70 protein (128, 129). Merozoite surface
antigens appear to be the primary targets of GPI anchor addition
and are of great interest as antigens for vaccine development
(130). The enzyme GPI1 (EC 2.4.1.198, PlasmoDB ID PF3D7_
0618900) transfers N-acetylglucosamine to phosphatidylinositol
in GPI biosynthesis. The P. falciparum GPI1 homolog was shown
to complement a yeast gpi1 mutant, confirming its function (131).
Dolichol phosphate mannose synthase (EC 2.4.1.83, PlasmoDB
ID PF3D7_1141600) catalyzes the addition of sugar moieties in
both GPI anchor glycosylations and N-linked glycosylations. The
P. falciparum enzyme has been shown to be of a novel clade dis-
tinct from animal or yeast synthases of the same type (132).

While GPI anchors appear to constitute most of the glycosyla-
tion in P. falciparum, there is also evidence for O- and N-linked
glycosylation of proteins (133–135). The presence of N-linked gly-
cosylation has long been debated (136, 137). However, the para-
site is sensitive to tunicamycin, an inhibitor of N-linked glycosy-
lation (135), and parasite proteins have been shown to be capable
substrates of N-linked glycosylation when expressed in heterolo-
gous systems (138).

REGULATION OF ISOPRENOID SYNTHESIS

MEP pathway regulation has been thoroughly studied in
plants, which utilize a large variety of isoprenoids for signaling
and environmental interactions (139–141). However, little is
known about regulation of the MEP pathway in P. falciparum.
Given the variety and essentiality of isoprenoid products in P.
falciparum, it is likely that isoprenoid synthesis by the MEP path-
way is regulated to control the product availability of IPP and
DMAPP. Two ATPs and 3 NADPHs are consumed for the pro-
duction of each IPP molecule from glucose (142). The cell likely
regulates this pathway to optimize energy consumption. A better
understanding of MEP pathway regulation in the parasite will
facilitate new strategies to inhibit the MEP pathway and may con-
tribute an improved understanding of MEP pathway regulation in
other plastid-possessing eukaryotic pathogens.

Regulation of the MEP pathway may operate at the level of
gene expression, protein activity, or metabolite availability. Stud-
ies in Arabidopsis thaliana have identified an RNA processing pro-
tein, Rif10, which posttranscriptionally regulates the levels of
MEP pathway enzymes (143). However, studies in P. falciparum
have indicated that the transcript levels of MEP pathway enzymes

do not change significantly upon chemical inhibition of the MEP
pathway, suggesting that modulating transcript levels is likely not
a primary mechanism of MEP pathway regulation in the parasite
(37). In the asexual intraerythrocytic cycle, the transcript levels of
MEP pathway genes peak in the late trophozoite stage (144). It is
possible that the expression levels of MEP pathway genes may
respond to other environmental and cellular cues, but other per-
turbation studies have yet to uncover such regulation (145).

There is evidence for regulation of the MEP pathway by
MEP pathway metabolites. A recent study identified a feed-
forward mechanism of MEP pathway regulation in E. coli. The
MEP pathway enzyme 2-C-methyl-D-erythritol 2,4-cyclodiphos-
phate synthase (EC 4.6.1.12, PlasmoDB ID PF3D7_0209300) is
activated by the upstream intermediate MEP (146). Additionally,
IPP and DMAPP have been shown to cause feedback inhibition of
the rate-limiting enzyme DXS in Populus trichocarpa (147). Fur-
ther study is required to determine whether similar regulatory
mechanisms exist in P. falciparum.

A recent study has identified a novel regulator of the MEP
pathway in P. falciparum. Its HAD1 (PfHAD1) (PlasmoDB ID
PF3D7_1033400), a sugar phosphatase member of the haloacid
dehalogenase-like hydrolase (HAD) superfamily, was shown to be
a negative regulator that acts upstream from the MEP pathway.
Loss of PfHAD1 results in resistance to fosmidomycin and in-
creased levels of MEP pathway metabolites, primarily DOXP.
PfHAD1 appears to utilize cellular sugar phosphates upstream
from the MEP pathway. PfHAD1 is predicted to restrict the avail-
ability of precursors to the apicoplast-localized MEP pathway
(148).

CONCLUSION

While gaps remain in our understanding of isoprenoid biology in
P. falciparum, it is clear that isoprenoids are essential and diverse
in the malaria parasite. The efficacy of fosmidomycin and the re-
cent screening for apicoplast inhibitors demonstrates that apico-
plast biology and, specifically, isoprenoid synthesis are promising,
druggable targets for the development of new antimalarials (149).
Therefore, developing a complete understanding of the biology
and regulation of the MEP pathway should be a priority for the
field. This may identify additional drug targets and will inform
future antimalarial development. For example, targeting MEP
pathway regulation may prove synergistic in combination thera-
pies with direct MEP pathway enzyme inhibitors, such as fos-
midomycin.

The discovery of PfHAD1 as a negative regulator of isoprenoid
precursor synthesis has begun to expand our understanding of the
regulation of this essential pathway. Whether PfHAD1 itself will
be a useful antimalarial target will depend on whether PfHAD1 is
required for parasite growth during human infection, which re-
mains unknown. Parasite strains selected for fosmidomycin resis-
tance lose PfHAD1 function, and this loss is necessary for resis-
tance. However, the loss of PfHAD1 is not the only genetic change
found in these strains, and other changes may be required for
parasites to tolerate the loss of PfHAD1 (148). Alternatively,
PfHAD1 function may be dispensable under laboratory culture
conditions but necessary for development in vivo. The strong se-
quence conservation of PfHAD1 in P. falciparum field isolates
suggests that it likely plays an important role in the cell, but further
studies are required to demonstrate whether this is the case. Inac-
tivating alleles of PfHAD1 were readily obtained during in vitro
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culture with fosmidomycin. If PfHAD1 is not essential during
natural infection, this locus may represent an important bio-
marker for clinical resistance to fosmidomycin, its analogs, or
other MEP pathway inhibitors as they are developed.

PfHAD1 belongs to the Cof-like hydrolase subfamily (InterPro
accession number IPR000150) of the haloacid dehalogenase-like
hydrolase (HAD) superfamily (150). Two additional members
of this subfamily exist in the P. falciparum genome, PfHAD2
(PlasmoDB ID PF3D7_1226300) and PfHAD3 (PlasmoDB ID
PF3D7_1226100), whose functions are unknown. PfHAD2 and
PfHAD3 protein sequences possess 25 to 30% identity and ap-
proximately 50% similarity with PfHAD1, which is typical for
enzymes within this subfamily. Sequence homology predicts that,
like PfHAD1, they also utilize sugar phosphates as substrates. On-
going studies are needed to evaluate whether these PfHAD1 ho-
mologs also function as regulators of isoprenoid synthesis or regula-
tors of other essential biosynthetic processes in P. falciparum.

The malaria parasite, Plasmodium falciparum, is relatively slow
growing and difficult to genetically manipulate. Classical genetics
in this organism have been hampered by the regulatory and ethical
challenges raised by the need for primate infection. The rise in
modern next-generation sequencing technologies has been an
enormous technical advance in genetic studies of nonmodel or-
ganisms, including P. falciparum. The presence of PfHAD1 ho-
mologs in other organisms that utilize the MEP pathway, such as
bacteria and plants, demonstrates that P. falciparum can be a use-
ful model eukaryote for study of the isoprenoid metabolism. Since
PfHAD1 homologs are closely conserved in organisms containing
the MEP pathway (eubacteria, algae, and plants) but are absent in
organisms that do not utilize the MEP pathway (archaea, fungi,
and animals), HAD homologs may be regulators of the MEP path-
way in multiple systems (148). Perhaps sugar phosphatase mem-
bers of the HAD superfamily coevolved alongside the energetically
expensive MEP pathway, in order to regulate substrate availability
and control energy consumption when downstream products are
not required.

Other MEP pathway-utilizing and HAD-containing organisms
are used to produce commercially important isoprenoids. These
products include pharmaceuticals (such as paclitaxel and artemis-
inin), food additives (such as lycopene), fragrances, and biofuel
precursors (151–155). Because complex isoprenoids are challeng-
ing to synthesize chemically, there is great interest in increasing
and optimizing bioproduction of these compounds. Antimalarial
drug development is naturally of critical importance in the ma-
laria field. However, as we advance our understanding of iso-
prenoid biology and regulation in malaria parasites, we may also
gain insight into fundamental aspects of MEP pathway biology
that will have impacts on the diverse disciplines touched by this
ancient cellular process.
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