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Adhesion Molecule-Mediated Hippo Pathway Modulates
Hemangioendothelioma Cell Behavior

Masayuki Tsuneki, Joseph A. Madri

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA

Hemangioendotheliomas are categorized as intermediate-grade vascular tumors that are commonly localized in the lungs and
livers. The regulation of this tumor cell’s proliferative and apoptotic mechanisms is ill defined. We recently documented an im-
portant role for Hippo pathway signaling via endothelial cell adhesion molecules in brain microvascular endothelial cell prolif-
eration and apoptosis. We found that endothelial cells lacking cell adhesion molecules escaped from contact inhibition and ex-
hibited abnormal proliferation and apoptosis. Here we report on the roles of adherens junction molecule modulation of survivin
and the Hippo pathway in the proliferation and apoptosis of a murine hemangioendothelioma (EOMA) cell. We demonstrated
reduced adherens junction molecule (CD31 and VE-cadherin) expression, increased survivin and Ajuba expression, and a reduc-
tion in Hippo pathway signaling resulting in increased proliferation and decreased activation of effector caspase 3 in postconflu-

ent EOMA cell cultures. Furthermore, we confirmed that YM155, an antisurvivin drug that interferes with Sp1-survivin pro-
moter interactions, and survivin small interference RNA (siRNA) transfection elicited induction of VE-cadherin, decreased
Ajuba expression, increased Hippo pathway and caspase activation and apoptosis, and decreased cell proliferation. These find-
ings support the importance of the Hippo pathway in hemangioendothelioma cell proliferation and survival and YM155 as a

potential therapeutic agent in this category of vascular tumors.

umors derived from endothelial cells span a broad range of

lesions, from benign hemangiomas, including capillary and
cavernous hemangiomas, lymphangiomas, and vascular ectasias,
and intermediate-grade lesions, including Kaposi sarcomas and
hemangioendotheliomas, to malignant lesions, including angio-
sarcomas and hemangiopericytomas (1, 2). Whether benign, in-
termediate, or malignant, these lesions share a feature of robust
proliferation at some stage during their development, although
their regressive behaviors vary widely. Hemangioendotheliomas
are defined as proliferations arising from endothelial cells exhib-
iting behavior intermediate between highly malignant angiosar-
comas and benign hemangiomas (3). Hoak et al. isolated heman-
gioma tissue from the 129/] mouse strain that in many ways
mimicked the presentation of Kasabach-Merrit syndrome and de-
veloped an animal model of this condition (4). Following this,
tumor tissue was able to be passaged from mouse to mouse, and
endothelial cells derived from the tumor tissue gave rise to heman-
gioendotheliomas when reinjected into mice and were able to be
serially passaged up to 40 times (5). Obeso et al. later isolated and
characterized endothelial cells from this tumor and established a
cell line (EOMA) (6).

In this report, we examined the proliferation, apoptosis,
morphological, cell adhesion, and Hippo pathway parameters,
comparing wild-type brain microvascular endothelial cells (7,
8) with EOMA cells, both of which were derived from murine
sources. We documented significant differences in prolifera-
tion, apoptosis, contact inhibition, adhesion molecule and ma-
trix metalloprotease (MMP) expression, and Hippo pathway
component expression and localization (nuclear Yes-associ-
ated protein [YAP], cytoplasmic phospho-YAP [P-YAP], and
Ajuba) and their modulation by treatment with the survivin
inhibitor YM155 and survivin small interference RNAs
(siRNAs). The importance of the Hippo pathway and its com-
ponents and its potential as a therapeutic target are discussed.
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MATERIALS AND METHODS

Cell culture. Murine hemangioendothelioma (EOMA) cells were ob-
tained from Robert Auerbach (University of Wisconsin, Madison, WI) (6,
9). Brain endothelial cells (BEC) were isolated from cerebral microvessels
of C57BL/6 wild-type BEC (WT-BEC) and CD44 knockout BEC
(CD44KO-BEC) mice [B6.129(Cg)-Cd44tmlHbg/J] (The Jackson Labo-
ratory, Bar Harbor, ME), as described previously (7). CD31 knockout
endothelial cells were isolated from brain (CD31KO-BEC) as described
previously (10). EOMA and endothelial cells were cultured on 1.5% gel-
atin (catalog no. G8-500; Thermo Fisher Scientific Inc., Waltham, MA)-
coated plates in endothelial cell medium (Dulbecco’s modified Eagle’s
medium [DMEM] with high glucose [Life Technologies, Grand Island,
NY] containing 10% fetal bovine serum [FBS], 2 mM 1-glutamine, 0.1
mM nonessential amino acids, 1 mM sodium pyruvate, 10 mM HEPES
[pH 7.4], 10> M B-mercaptoethanol, 100 U/ml penicillin, and 100 pg/ml
streptomycin [Life Technologies]) in 8% CO, at 37°C (8). Cells were used
between passages 21 and 23 and cultured under normoxic (20% O,) con-
ditions.

Cell proliferation analysis. We demonstrated growth curves of WT-
BEC and EOMA cells. Each cell line was plated at 3,000 cells per well in
96-well plates (n = 4 each). At 24, 48, 72, 96, 120, 144, and 168 h after
plating, the wells were washed with phosphate-buffered saline (PBS) (pH
7.4). After freeze-thawing, wells were treated with 200 wl of dye/cell lysis
buffer by using a CyQUANT cell proliferation assay kit (Life Technolo-
gies). After incubation at room temperature for 5 min, sample fluores-
cence was measured by using the Wallac 1420 fluorescence microplate
reader (PerkinElmer Inc., Turku, Finland) with filters for 485 nm (8). For
proliferation rate analysis, initial and secondary proliferation rates were
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FIG 1 EOMA cells exhibit a loss of contact inhibition and reduced apoptosis compared to wild-type brain microvascular endothelial cells (WT-BEC). (A)
Morphological analysis of WT-BEC and EOMA cells plated at high cell density (top, confluent; middle, 72 h postconfluence; bottom, 144 h postconfluence) using
Hoffman interference reflection microscopy. EOMA cells (right) were not contact inhibited, exhibiting overgrowth and cyst and tube formation (denoted by
white dashed lines), in contrast to WT-BEC (left), which were contact inhibited. Bar = 200 pm. (B) Growth curves of WT-BEC and EOMA cells for 168 h. All
data are means = SD from triplicate experiments. (C) Analyses of initial and secondary proliferation rates of WT-BEC and EOMA cells. EOMA cells exhibited
a higher secondary proliferation rate (72 to 168 h) than did WT-BEC. (D and E) Western blot expression analyses of survivin (D) and PCNA (E) between
WT-BEC and EOMA cells. EOMA cells exhibit increased expression levels of survivin and proliferating nuclear antigen. Data represent the mean survivin (D)-
or PCNA (E)-versus-B-actin ratios from triplicate assays for each cell type = SD (s, P < 0.01; *#, P < 0.0001). (F and G) Western blot analyses revealing
robust decreased initiator caspase 8 (CC8) (F) and effector caspase 3 (CC3) (G) activation in EOMA cells compared with WT-BEC. (H) Apoptosis was evaluated
by using annexin V/7-AAD staining. Analyses indicated that EOMA cells exhibited a significantly lower percentage of apoptotic cells than did WT-BEC. All data

represent the mean ratios of cleaved caspase to full-length caspase from triplicate assays for each cell type = SD (s, P < 0.01).

determined as follows: initial proliferation rates = (average cell number at
72 h — average cell number at 48 h)/24 and secondary proliferation
rates = (average cell number at 168 h — average cell number at 72 h)/96.
Cells were used at passage 22.

Antibodies. Antibodies against the mouse CD31 ectodomain (affini-
ty-purified SL-4) were raised in rabbit and purified as described previ-
ously (11). Rabbit polyclonal antibodies against mouse caspase 3 (catalog
no. 9662), caspase 7 (catalog no. 9492), caspase 10 (catalog no. 9752),
cleaved caspase 3 (Asp175) (catalog no. 9661), P120-catenin (catenin 3-1)
(catalog no. 4989), and Ajuba (catalog no. 4897); rabbit monoclonal an-
tibodies against cleaved caspase 8 (Asp387) (clone D5B2) (catalog no.
8592), survivin (clone 71G4B7) (catalog no. 2808), P-YAP (Ser127)
(clone D9W2I) (catalog no. 13008), and YAP/tafazzin (TAZ) (clone
D24E4) (catalog no. 8418); and a mouse monoclonal antibody against
PCNA (proliferating cell nuclear antigen) (clone PC10) (catalog no. 2586)
were purchased from Cell Signaling Technology Inc. (Danvers, MA). A rat
monoclonal antibody against VE-cadherin (clone 11D4.1) (catalog no.
550548) and mouse monoclonal antibodies against a-catenin (clone 5)
(catalog no. 610193) and +y-catenin (clone 15/y-catenin) (catalog no.
610254) were purchased from BD Biosciences (San Jose, CA). Rabbit
polyclonal antibodies against B-catenin (N terminus) (catalog no. 1061)
were purchased from ECM Biosciences (Versailles, KY). Mouse monoclo-
nal antibodies against mouse -actin (clone AC-15) (catalog no. ab6276)
and MMP2 (clone 6E3F8) (catalog no. ab86607) and rabbit polyclonal

antibodies against VE-cadherin (catalog no. ab33168), Ki-67 (catalog no.
ab15580), and MMP9 (catalog no. ab38898) were purchased from Abcam
(Cambridge, MA). Rabbit polyclonal antibodies against histone H1 (FL-
219) (catalog no. sc-10806) and P53 (FL-393) (catalog no. sc-6243) and
secondary antibodies raised in donkey against rabbit IgG (catalog no.
sc-2313) and mouse IgG (catalog no. sc-2318), which were conjugated to
horseradish peroxidase (HRP), were purchased from Santa Cruz Biotech-
nology Inc. (Dallas, TX). Every caspase antibody was confirmed to detect
full-length caspase as well as the cleaved (active) form (8).

Preparation of cell lysates. Confluent 60-mm dishes of cells were
rinsed twice with cold PBS (pH 7.4) containing 1 mM sodium orthovana-
date (Na;VO,) and then lysed with radioimmunoprecipitation assay
(RIPA) buffer (EMD Millipore, Billerica, MA) supplemented with com-
plete EDTA-free protease inhibitor (catalog no. 04693132001; Roche Di-
agnostics, Indianapolis, IN), phosphatase inhibitor cocktail sets I and II
(catalog no. 524624 and 524625; EMD Millipore), and 1 mM phenyl-
methylsulfonyl fluoride (PMSF) (8). Cell lysate samples were placed on ice
for 30 min, vortexed thoroughly, and then centrifuged at 14,000 rpm for
15 min to remove insoluble materials. After the total protein concentra-
tion was determined by using a Pierce BCA protein assay kit (Thermo
Fisher Scientific Inc., Rockford, IL), an aliquot of 12 g of protein samples
was resuspended in SDS sample buffer and boiled for 5 min.

Nuclear and cytoplasmic fractionations. Confluent 60-mm dishes of
cells were harvested with 0.05% trypsin~EDTA (Life Technologies) and

FIG 2 EOMA cells exhibit decreased levels of adherens junction-related proteins, increased MMP expression levels, and reciprocal levels of cytoplasmic and
nuclear YAP compared to wild-type cells. (A to L) Western blot analyses revealed that the adherens junction-related molecules CD31 (A), VE-cadherin (B),
a-catenin (C), B-catenin (D), y-catenin (E), and P120-catenin (F) were attenuated and that MMP2 (G) and MMP9 (H) expression levels were increased in
EOMA cells compared to WT-BEC. (I and J) In EOMA cells, cytoplasmic P-YAP levels (I) were downregulated, and nuclear YAP levels (J) were upregulated
compared to levels in WT-BEC. Data represent the mean ratios of CD31 (A), VE-cadherin (B), a-catenin (C), B-catenin (D), y-catenin (E), P120-catenin (F),
MMP2 (G), MMP9 (H), and P-YAP (I) to B-actin and the mean ratios of YAP (J) and TAZ (L) to histone H1 from triplicate samples for each cell type = SD
(3, P < 0.05; %, P < 0.01; sk, P << 0.001; i, P < 0.0001). (K) Representative Western blots of YAP and TAZ cytoplasmic and nuclear fractions of WT-BEC
and EOMA cells illustrating the differences in YAP cytoplasmic and nuclear fractions in WT-BEC and EOMA cells, while no appreciable changes are noted for
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TAZ cytoplasmic and nuclear fractions in samples of the two cell lines. (L) Western blot analysis of TAZ levels in the nuclear fractions of WT-BEC and EOMA
cell lysates illustrating no differences between samples of the two cell lysates. (M) Phase-contrast and merged DAPI and F-actin, DAPI and CD31, DAPI and
VE-cadherin, DAPI and a-catenin, DAPI and -catenin, DAPI and y-catenin, DAPT and MMP2, DAPI and Ki-67, DAPI and survivin, DAPI and cleaved caspase
8 (CC8), DAPI and cleaved caspase 3 (CC3), DAPI and P-YAP, and DAPI and YAP immunofluorescence micrographs of WT-BEC and EOMA cells confirming
our Western blot analyses. Insets in CD31 and VE-cadherin panels illustrate differences in labeling intensities and localization patterns between WT-BEC and
EOMA cells. Bar = 50 pm.
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centrifuged. Cells were washed twice with cold PBS and pelleted by cen-
trifugation. Nuclear and cytoplasmic fractionation was performed by us-
ing NE-PER nuclear and cytoplasmic extraction reagents (catalog no.
78833; Thermo Fisher Scientific Inc.) according to the manufacturer’s
instructions. The protease and phosphatase inhibitors mentioned above
were added to cytoplasmic extraction reagent I (CER-I) and nuclear ex-
traction reagent (NER) (8). Protein concentrations of nuclear and cyto-
plasmic fractions were determined by using a BCA protein assay kit, and
an aliquot of 12 pg of protein was resuspended in SDS sample buffer and
boiled for 5 min.

Western blotting. Samples suspended in sample buffer were subjected
to 10 to 15% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) under
reducing conditions, and the gels were transferred onto polyvinylidene
difluoride (PVDF) membranes (EMD Millipore). The membranes were
incubated with 1% bovine serum albumin (BSA) in 50 mM Tris-buffered
saline (pH 7.4) containing 0.1% Tween 20 (TTBS) for 1 h at room tem-
perature to block nonspecific protein binding, followed by incubation of
the membranes overnight in TTBS containing primary antibody diluted
1:200 (anti-P53 and -histone H1), 1:250 (anti-a-catenin), 1:1,000 (anti-
caspases 3, 7, 8, and 10; anti-VE-cadherin [catalog no. ab33168]; anti-3-
catenin; anti-P120-catenin; antisurvivin; anti-MMP2; anti-MMP9; anti-
P-YAP; anti-YAP/TAZ; and anti-Ajuba), 1:2,000 (anti-PCNA), 1:2,500
(anti-CD31), 1:5,000 (anti-B-actin), and 1:6,000 (anti-y-catenin). After
washing with TTBS, the membranes were reacted with HRP-conjugated
secondary antibodies diluted 1:10,000 in TTBS for 1 h at room tempera-
ture. Target protein bands were detected by using Western Lightning
enhanced chemiluminescence substrate (PerkinElmer) according to the
manufacturer’s instructions. Quantitation was performed on scanned
densitometric images by using Quantity One software (Bio-Rad Labora-
tories, Hercules, CA) in triplicate experiments.

YM155 treatment. Confluent 60-mm dishes of WT-BEC, EOMA cells,
CD44KO-BEC, and CD31KO-BEC were treated with YM155 {4,9-dihydro-
1-(2-methoxyethyl)2-methyl-4,9-dioxo-3-(2-pyrazinylmethyl)-1H-
naphth[2,3-d]imidazolium, bromide} (12) (CAS registry no. 781661-
94-7) (item no. 11490; Cayman Chemical, Ann Arbor, MI) dissolved
in dimethyl sulfoxide (DMSO) at different final concentrations (0, 10,
50, 100, 200, and 500 nM) for 24 h. After incubation with YM155, cells
were lysed, and survivin, caspase 8, caspase 3, caspase 7, P53, PCNA,
CD31, VE-cadherin, Ajuba, cytoplasmic P-YAP, and nuclear YAP con-
centrations were determined by Western blotting as mentioned above.
Furthermore, treated cells grown on 12-well plates were fixed, and
survivin, cleaved caspase 3, Ki-67, P-YAP, YAP, CD31, VE-cadherin,
and Ajuba expression/localization modes were determined by immu-
nofluorescence. To examine the effect of YM155 on contact inhibition,
2.0 X 10’ cells (WT-BEC and EOMA cells) were plated onto 6-well
plates. After 6 h, floating cells and medium were removed, and fresh
medium with YM 155 (0 nM, 50 nM, and 500 nM ) was added. This time
point is defined as 0 h in Fig. 4M. Every 24 h (0, 24, 48, 72, 96, and 120
h), medium with YM155 was replaced by fresh medium, and phase-
contrast microscopic photographs were taken by using Hoffman in-
terference reflection microscopy (13) and Photoshop CS2 software
(Adobe, San Jose, CA) on a Windows 7 computer.

Immunofluorescence. Confluent cultures (high cell density) of WT-
BEC and EOMA cells, grown on 12-well plates, were fixed with 4% para-
formaldehyde in 50 mM HEPES buffer (pH 7.3) for 20 min and perme-
abilized for 20 min with 0.2% Triton X-100 in PBS (pH 7.4) at room
temperature. For Ajuba immunostainings, cells were fixed with 100%
methanol for 20 min and permeabilized for 20 min with 0%, 0.2%, or
0.5% Triton X-100 in PBS. To prevent nonspecific protein binding, cells
were incubated with 5% BSA in PBS containing 0.05% Triton X-100 (T-
PBS) for 1 h at room temperature (8). The cells were then incubated with
the primary antibodies (VE-cadherin [clone 11D4.1] and a-catenin
[clone 5] diluted 1:50 in T-PBS; B-catenin diluted 1:150; CD31 [SL-4] and
YAP [clone D24E4]| diluted 1:200; MMP2 and MMP9 diluted 1:300;
cleaved caspase 3 and survivin [clone 71G4B7] diluted 1:400; cleaved
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caspase 8, Ki-67, and Ajuba diluted 1:500; y-catenin [clone 15/y-catenin]
diluted 1:1,000; and P-YAP [clone D9W2I] diluted 1:2,000) overnight at
4°C and incubated further with secondary antibodies [Alexa Fluor 488-
conjugated goat anti-rabbit IgG(H+L), anti-mouse IgG(H+L), or anti-
rat IgG(H+L) (Life Technologies)] diluted 1:100 and Alexa Fluor 594
phalloidin (catalog no. A12381; Life Technologies) diluted 1:40 in T-PBS
for 1 h at room temperature. Finally, cells were counterstained with DAPI
(4',6-diamidino-2-phenylindole) (catalog no. D9564; Sigma-Aldrich, St.
Louis, MO) diluted 1:5,000 in T-PBS for 10 min at room temperature and
coverslipped with Dako fluorescence mounting medium (catalog no.
$3023; Dako, Carpentaria, CA). Digital fluorescence images were cap-
tured and phase-contrast microscopic photographs were taken on an
Olympus IX71 inverted microscope equipped with a MicroFire camera
and PictureFrame 1.0 software for Macintosh (Optronics) with Photo-
shop CS2 software (Adobe) on a Windows 7 computer.

Cell apoptosis assay. Apoptotic cells in the confluent monolayer of
WT-BEC and EOMA cells treated with or without 500 nM YM155 on
12-well plates were stained and detected by using annexin V conjugates
for apoptosis detection and Alexa Fluor 488 (catalog no. A13201; Life
Technologies) and 7-aminoactinomycin D (7-AAD) (catalog no. 30060;
Biotium Inc., Hayward, CA). Unfixed cells on 12-well plates were washed
3 times with washing buffer (50 mM HEPES [pH 7.4], 150 mM NaCl) and
2 times with binding buffer (10 mM HEPES [pH 7.4], 150 mM NaCl, 2.5
mM CaCl,). After washing, cells were treated with annexin V (1:10) and
7-AAD (1:1,000) diluted in binding buffer and incubated for 1 h at room
temperature in the dark. Stained cells were washed 2 times with binding
buffer and 3 times with washing buffer. Finally, cells were counterstained
with DAPI (Sigma-Aldrich) and coverslipped with Dako fluorescence
mounting medium. Annexin V-positive/7-AAD-negative apoptotic cells
were counted on the digital fluorescence images by using ImageJ 1.48v
software (National Institutes of Health) on a Windows 7 computer. Cells
were used at passage 21.

RNA interference. Small interference RNA-mediated survivin knock-
down experiments were performed by using a Stealth RNA interference
(RNAI)-siRNA duplex oligoribonucleotide system (Life Technologies).
The following three mouse siRNAs targeting survivin (GenBank accession
no. NM_001012273.1) sense sequences were designed by using BLOCK-iT
RNAi Designer (Life Technologies): 5'-GCGCGAUUUGAAUCCUGCG
UUUGAG-3’ (siSurvivinl), 5'-CCUGUCACGUGAAGUUGAUUGGGA
A-3’ (siSurvivin2), and 5'-GCUCAUCUGUUACCCUCGAACUGUU-3’
(siSurvivin3). The Stealth RNAi siRNA negative control (siNC), Med GC
(catalog no. 12935-300; Life Technologies), and sterile Milli-Q water
(Mock) were used as negative controls. Stealth siRNA transfection was
performed with Lipofectamine RNAIMAX reagents (Life Technologies)
by a reverse transfection method, according to the manufacturer’s in-
structions. Efficiencies of RNAi-mediated survivin knockdown were eval-
uated by quantitative real-time PCR (qRT-PCR), Western blotting, and
immunofluorescence staining.

qRT-PCR. Cells were grown to confluence and lysed with TRIzol re-
agent (Life Technologies), and mRNA was extracted according to the
manufacturer’s instructions (7). cDNA was synthesized by using an
iScript cDNA synthesis kit (Bio-Rad) according to the manufacturer’s
instructions (7). qRT-PCR was carried out on the iCycler iQ real-time
PCR detection system (catalog no. 170-8740; Bio-Rad) by using iQ SYBR
green Supermix, and each sample was run in triplicate (7). Threshold
cycle (C;) values were normalized against B-actin values (14), and data
were analyzed by using delta-C - (7) and relative expression methods. The
following primer sets for mouse Ajuba (GenBank accession no.
NM_010590.5), survivin (accession no. NM_001012273.1), and B-actin
(accession no. NM_007393.1) were designed by using NCBI Primer-
BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and synthe-
sized by Integrated DNA Technologies Inc. (Coralville, IA): forward
primer 5'-GGGCTGTGAGGACATTGTGA-3" and reverse primer 5'-GC
AACCTTCCTCGTCACTCA-3’ for Ajuba, forward primer 5'-ATCGCC
ACCTTCAAGAACTG-3" and reverse primer 5'-CAGGGGAGTGCTTT
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FIG 3 YM155 regulates EOMA cell survival via modulation of the Hippo pathway. (A to I) Western blot analyses reveal that YM155 treatment downregulated
survivin (A) and PCNA (F) expression and nuclear YAP localization (J) and upregulated cleaved caspase 3 (CC3) (C), P53 (E), CD31 (G), and VE-cadherin (H)
expression and cytoplasmic P-YAP localization (I) in EOMA cells. (K) The TAZ nuclear fraction was not affected by YM155 treatment. Data represent the mean
ratios of survivin (A), P53 (E), PCNA (F), CD31 (G), VE-cadherin (H), and P-YAP (I) to B-actin; cleaved caspase 8 (CC8) (B), caspase 3 (CC3) (C), and caspase
7 (CC7) (D) to full-length caspase; and YAP (J) and TAZ (K) to histone H1 from triplicate samples for each YM155 concentration (0, 10, 50, 100, 200, and 500
nM) £ SD (%, P < 0.05; **, P < 0.01). (L) Merged DAPI and survivin, DAPI and cleaved caspase 3 (CC3), DAPI and Ki-67, DAPI and P-YAP, DAPI and YAP,
DAPI and CD31, and DAPI and VE-cadherin immunofluorescence micrographs of EOMA cells treated with 0 nM and 500 nM YM155 confirming our Western
blot analyses. Insets in the CD31 and VE-cadherin panels illustrate relative expression levels and localizations. Bar = 50 pum.
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FIG 4 WT-BEC survival and the Hippo pathway are unaffected by YM155 treatment. (A to K) Western blot analyses reveal that survivin (A), cytoplasmic P-YAP
(B), nuclear YAP (C), CD31 (D), VE-cadherin (E), cleaved caspase 8 (CC8) (F), cleaved caspase 3 (CC3) (G), MMP2 (I), MMP9 (J), and PCNA (K) levels in
WT-BEC were not affected in the presence of YM155 (0, 50, and 500 nM). In contrast, in EOMA cells, MMP9 was not affected in the presence of YM155 (J), and
survivin (A) and MMP2 (I) expression levels were reduced in the presence of 500 nM YM155, while CD31 (D), VE-cadherin (E), cleaved caspase 3 (G), and
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CTATGC-3' for survivin, and forward primer 5'-AAGAGCTATGAGCT
GCCTGA-3" and reverse primer 5 -TACGGATGTCAACGTCACAC-3’
for B-actin.

Cell adhesion assay. To understand WT-BEC and EOMA cell adhe-
siveness compared to YM155 treatment or survivin knockdown, WT-
BEC, EOMA cells, cells treated with 500 nM YM 155, and Stealth siRNA-
transfected cells (EOMA-siNC and EOMA-siSurvivinl) were plated at
2 X 10° cells in 200 l of endothelial cell medium per well on 96-well
microplates (n = 8 each) coated with 1.5% gelatin and cultured in CO,
incubators. At 0, 30, 60, 90, 120, 240, and 480 min after plating, nonad-
herent cells were washed with cold PBS (pH 7.4). After freeze-thawing,
wells were treated with 200 .l of dye/cell lysis buffer by usinga CYQUANT
cell proliferation assay kit (Life Technologies). After incubation at room
temperature for 5 min, the sample fluorescence was measured by using the
Wallac 1420 fluorescence microplate reader (PerkinElmer Inc.) with fil-
ters for 485 nm. Cells were used at passage 22.

Migration and invasion assays. Cell migration and invasion were
demonstrated by using Falcon cell culture inserts in a 24-well companion
tissue culture plate system with an 8-pum-pore-size polyethylene tereph-
thalate membrane (catalog no. 353097; BD Biosciences). For invasion
assays, 24-well BioCoat Matrigel Invasion Chamber systems (catalog no.
354480; BD Biosciences) were used after rehydration. For migration and
invasion assays, cells were seeded in 500 pl of endothelial cell medium
without FBS (2 X 10* cells/ml) in the insert chamber, and the lower
chamber was filled with 750 pl of endothelial cell medium, according to
the manufacturer’s instructions. After 24 h of culture in CO, incubators,
the nonmigrating and noninvading cells were carefully removed from the
upper surface of the membrane with cotton swabs, and the bottom mem-
brane was fixed with 5% paraformaldehyde (PFA) in 50 mM HEPES (pH
7.4) for 20 min and stained with Mayer’s hematoxylin (Lillie’s modifica-
tion) (catalog no. $3309; Dako). After coverslipping with mounting me-
dium (Dako), numbers of migrating and invading cells were counted
under a microscope in 1 mm? of three different fields of filter membranes
from triplicate experiments (total of 9 different fields). Cells were used at
passages 22 and 23.

Statistical analysis. All data are means * standard deviations (SD)
from a series of experiments. Statistical analysis was performed by using
unpaired Student’s ¢ test using GraphPad Prism version 6.03 for Windows
(GraphPad Software Inc., La Jolla, CA). P values of <0.05 were considered
significant (8). Significant P values are mentioned in the figure legends.

RESULTS

EOMA cells are not contact inhibited and exhibit decreased
apoptosis. EOMA cells were not contact inhibited and were found
to exhibit an overriding morphology, forming tube-like and cyst-
like structures above the monolayers after confluence (Fig. 1A,
bottom, areas outlined by white dashed lines). In contrast, WT-
BEC were contact inhibited, exhibiting well-formed confluent
monolayers (Fig. 1A, left). Growth curve and cell proliferation
rate analyses indicated that EOMA cells exhibited a higher second-
ary proliferation rate, which is consistent with our evidence for a
loss of contact inhibition (Fig. 1B and C). In a high-cell-density
culture, EOMA cells exhibited higher survivin (Fig. 1D and 2M),

Hippo Pathway Regulates Hemangioendothelioma Behavior

Ki-67 (Fig. 2M), and PCNA (Fig. 1E) expression levels than did
WT-BEC, resulting in higher cell proliferative potentials in EOMA
cells. Regarding caspase-mediated apoptosis, EOMA cells exhib-
ited lower initiator caspase 8 (Fig. 1F) and effector caspase 3 (Fig.
1G) activation than did WT-BEC. Levels of activation of initiator
caspases 9, 10, and 12 and effector caspases 6 and 7 were not
appreciably different between WT-BEC and EOMA cells (data not
shown). Expression levels of full-length caspase were also not ap-
preciably different between WT-BEC and EOMA cells (data not
shown). Apoptosis was also evaluated by using annexin V/7-AAD
staining. This analysis indicated that EOMA cells exhibited a sig-
nificantly lower percentage of apoptotic cells than did WT-BEC
(Fig. 1H).

EOMA cells exhibit decreased expression levels of adherens
junction-related proteins and diminished Hippo pathway activ-
ity at high cell density. In a high-cell-density culture, EOMA cells
expressed decreased levels of CD31 (Fig. 2A and M), VE-cadherin
(Fig. 2B and M), a-catenin (Fig. 2C and M), B-catenin (Fig. 2D
and M), y-catenin (Fig. 2E and M), and P120-catenin (Fig. 2F),
which are major components of adherens junctions. Interestingly,
this diminished adherens junction formation in EOMA cells cor-
related with increased expression levels of MMP2 (Fig. 2G and M)
and MMP9 (Fig. 2H). Additionally, reciprocal expression/local-
ization of cytoplasmic P-YAP (Fig. 2I and M) and nuclear YAP
(Fig. 2J and M) compared to that in WT-BEC was noted and is
consistent with Hippo pathway activation being diminished in
EOMA cells at a high cell density. No appreciable changes in ZO-1
and CD44 expression levels between WT-BEC and EOMA cells
were noted (data not shown). Interestingly, while YAP cytoplas-
mic and nuclear localizations were reciprocal when WT-BEC were
compared with EOMA cells, TAZ cytoplasmic and nuclear local-
izations were unchanged (Fig. 2K and L).

The survivin inhibitor YM155 modulates Hippo pathway ac-
tivation and regulates EOMA cell survival. At high cell density in
culture, EOMA cells were treated with YM155 (a known survivin
inhibitor) for 24 h. YM155 suppressed survivin (Fig. 3A and L),
PCNA (Fig. 3F), and Ki-67 (Fig. 3L) expression, elicited no
changes in cleaved caspase 8 or 7 activation (Fig. 3B and D), and
upregulated effector caspase 3 activation (Fig. 3C and L) and P53
expression (Fig. 3E), consistent with a decreased proliferation rate
and an increased apoptotic rate. Interestingly, YM155 induced
CD31 (Fig. 3G and L) and VE-cadherin (Fig. 3H and L) expression
and adherens junction formation (as noted by the appearance of
membrane staining of VE-cadherin at the junctions between the
cells [Fig. 3L, inset]). Additionally, CD31 staining was noted to be
more intense as well, forming more distinct membrane staining
between cells albeit in a less uniform and organized pattern than
for VE-cadherin (Fig. 3L, inset). Furthermore, increased Hippo
pathway activation was noted, evidenced by increased cytoplas-

cytoplasmic P-YAP (B) expression levels were increased and nuclear YAP (C) and PCNA (K) expression levels were decreased. Data represent the mean ratios of
survivin (A), P-YAP (B), CD31 (D), VE-cadherin (E), MMP2 (I), MMP?9 (J), and PCNA (K) to B-actin; YAP (C) to histone H1; and cleaved caspase 8 (F) and
caspase 3 (G) to full-length caspase from triplicate samples for each cell type (WT-BEC and EOMA cells) with different concentrations of YM155 (0, 50, and 500
nM) = SD (#, P < 0.05; #:, P < 0.01; ##x, P < 0.001). In panel H, numbers of apoptotic EOMA cells were significantly increased in the presence of YM155. Data
are means = SD from triplicate experiments (#, P < 0.01). (L) Phase-contrast and merged DAPI and survivin, DAPI and P-YAP, DAPI and YAP, DAPI and
CD31, DAPI and VE-cadherin, and DAPI and cleaved caspase 3 immunofluorescence micrographs of WT-BEC treated with 0 nM and 500 nM YM155
confirming our Western blot analyses. Bar = 100 wm. (M) Morphological analysis of WT-BEC and EOMA cells with YM155 treatment (0, 50, and 500 nM) plated
at low cell density (0 h) (top), just at confluence (48 h) (middle), and until overconfluent (120 h) (bottom), using Hoffman interference reflection microscopy.
EOMA cells were contact inhibited in the presence of 500 nM YM 155 and modestly inhibited at 50 nM YM155. WT-BEC morphology was not affected by YM 155

treatment. Bar = 100 wm.
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mic P-YAP localization (Fig. 31 and L) and decreased nuclear YAP
translocation (Fig. 3] and L). Similar to our observations shown in
Fig. 2K and L, YM155 treatment had no effect on the TAZ nuclear
fraction (Fig. 3K). Treatment with YM155 was also noted to ab-
rogate EOMA cell overgrowth and the formation of tube-like and
cyst-like structures and to promote monolayer contact inhibition
(Fig. 4M).

YM155 does not affect WT-BEC survival and Hippo pathway
modulation. In order to ascertain if and how YM155 treatment
affects WT-BEC cultures, we performed a dose-response study
using cells that we used in our previous studies (7, 8). In a high-
cell-density WT-BEC culture, survivin (Fig. 4A and L), CD31 (Fig.
4D and L), VE-cadherin (Fig. 4E and L), MMP2 (Fig. 41), and
MMP9 (Fig. 4]) expression; cytoplasmic P-YAP localization (Fig.
4B and L); nuclear YAP translocation (Fig. 4C and L); and caspase
3 activation (Fig. 4G and L) were not affected by YM155 treatment
compared to EOMA cells, in which overgrowth and tube- and
cyst-like structures were also abrogated and monolayer contact
inhibition was observed in the presence of YM155 (Fig. 4M, bot-
tom right). In WT-BEC, as well as in EOMA cells, caspase 8 acti-
vation was not affected by YM 155 treatment (Fig. 4F).

EOMA cells exhibit increased expression levels of Ajuba
mRNA and protein compared to WT-BEC, which are inhibited
by YM155 treatment in a dose-specific fashion. Compared to
WT-BEC, whose Ajuba expression levels were negligible as evi-
denced by qRT-PCR, Western blotting, and immunofluores-
cence, EOMA cells exhibited significantly increased expression
levels of Ajuba by qRT-PCR and Western blotting (Fig. 5A and B).
Immunofluorescence analysis revealed that the expression of
Ajuba was in a cytoplasmic localization (Fig. 5C). EOMA cell cy-
toplasmic Ajuba expression was significantly reduced following
YM155 treatment in a dose-specific manner, as illustrated by
Western blotting (Fig. 5D) and immunofluorescence (Fig. 5E).

Survivin siRNA modulates Hippo pathway activation and
regulates EOMA cell survival similarly to the inhibitor YM155.
In high-cell-density cultures, EOMA cells, EOMA-Mock cells
(mock-transfected cells), EOMA-siNC cells (control siRNA-
transfected cells), EOMA-siSurvivinl-3 cells (cells transfected
with three different survivin siRNAs), EOMA-YM155 cells (500
nM) (EOMA cells treated with YM155), and WT-BEC were cul-
tured for 72 h and analyzed. The relative survivin gene expression
level was significantly reduced in EOMA cells transfected with all
three siRNAs tested and in EOMA cells treated with YM155 to
similar levels as those found in WT-BEC (Fig. 6A). Similarly, the
relative survivin protein expression level was also significantly re-
duced in EOMA cells transfected with all three siRNAs tested and
EOMA cells treated with YM 155, approaching the levels found in
WT-BEC (Fig. 6B). Figure 6C illustrates reduced survivin expres-
sion in EOMA nuclei for all three survivin siRNAs tested. Western
blot analyses of CD31 and VE-cadherin revealed significant in-
creases in levels of both proteins in survivin siRNA-transfected
EOMA cells compared to control siRNA-transfected EOMA cells
(Fig. 6D, E, and I). Additionally, the cytoplasmic fraction of P-
YAP was significantly increased in survivin siRNA-transfected
EOMA cells compared to control siRNA-transfected EOMA cells,
while the YAP nuclear fraction was decreased (Fig. 6F, G, and I).
Similar to data accrued by using YM155 (Fig. 4G and K), Ki-67
staining was significantly reduced, and cleaved caspase 3 accumu-
lation was increased in survivin siRNA-transfected EOMA cells
compared to control siRNA-transfected EOMA cells (Fig. 61).
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Survivin siRNA and YM155 modulate EOMA cell migration
and invasion. Prior to assessing migration and invasion in EOMA
cells and WT-BEC, we assessed their adhesion properties on
Transwell inserts and found no appreciable differences among
untreated and YM155-treated WT-BEC and EOMA cells (Fig. 6])
and between survivin siRNA-transfected EOMA cells and control
siRNA-transfected EOMA cells (Fig. 6K). Survivin siRNA-trans-
fected EOMA cells and EOMA cells treated with YM155 exhibited
significantly reduced migration through uncoated 8-pm Tran-
swells compared to WT-BEC, EOMA cells, and EOMA cells trans-
fected with control siRNA. Interestingly, EOMA cells treated with
YM155 exhibited a greater reduction in migration through un-
coated 8-pm Transwells than did the survivin siRNA-transfected
EOMA cells (Fig. 6L and M). Similarly, survivin siRNA-trans-
fected EOMA cells and EOMA cells treated with YM155 also ex-
hibited significantly reduced invasion through Matrigel-coated
8-pm Transwells compared to EOMA cells and EOMA cells trans-
fected with control siRNA, attaining reduced levels of invasion in
the range of the levels in WT-BEC cells. As noted above for the
migration assay, EOMA cells treated with YM155 exhibited a
greater reduction in invasion through Matrigel-coated 8-pm
Transwells than did survivin siRNA-transfected EOMA cells (Fig.
6N and O).

Deficiencies of the adhesion molecules CD44 and CD31 on
BEC mimic, in part, the phenotypes observed for EOMA cells
and are rescued, in part, upon treatment with YM155. While no
other murine hemangioendothelioma cell lines are available, we
utilized CD44KO- and CD31KO-BEC, which we have character-
ized in several previous studies (7, 8, 10, 15). We have found that
these two BEC lines exhibit characteristics similar to those exhib-
ited by EOMA cells (7, 8), specifically the loss of contact inhibition
and an “overriding” morphology (Fig. 7A and I); increased sur-
vivin expression, downregulated by YM155 (Fig. 7B and J); de-
creased VE-cadherin expression, modestly upregulated by YM 155
(Fig. 7D and L); and decreased activation of caspase 3, modestly
upregulated by YM155 (Fig. 7F and N), all in a dose-responsive
fashion. Interestingly, we noted no changes in P-YAP and YAP
cytoplasmic and nuclear localizations (Fig. 7G, H, O, and P) and
no changes in proliferation (data not shown) following YM155
treatments.

DISCUSSION

Vascular tumors are comprised of a number of moieties spanning
a range of benign entities, including hemangiomas; intermediate
entities exhibiting locally aggressive behavior, such as Kaposiform
hemangioendotheliomas and, rarely, metastasizing entities, in-
cluding papillary intralymphatic angioendotheliomas and Kaposi
sarcomas; and malignant entities, including epithelioid heman-
gioendotheliomas and angiosarcomas (2). A number of immuno-
histochemistry and immunofluorescence investigations have shed
light on the cells of origin of these tumors and have influenced
potential therapeutic targets (16—19). Specifically, the expression
levels of selected adhesion molecules, including VE-cadherin and
PECAM-1 (CD31), have been implicated in the development of
vascular tumors and may be correlated with their metastatic and
malignant potentials (20, 21). Recently, the importance of specific
molecules associated with the regulation of apoptosis and prolif-
eration, including survivin, Bcl-2, and Akt, in the regulation of
proliferation and apoptosis of hemangiomas has been indicated
(22-24).
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In light of the known interactions between survivin and VE-
cadherin (8, 25), survivin’s interactions with p53 (26, 27), sur-
vivin’s role as a regulator of smooth muscle apoptosis (28) and as
a target for anticancer therapy (29), and survivin’s interactions
with vascular endothelial growth factor (VEGF) in endothelial
cells (30), survivin is a potential therapeutic target for the control
of hemangioma proliferation and apoptosis. Consistent with this
possibility are reports that demonstrate Sp1 and Sp3 transactiva-
tion of the survivin promoter (27, 31). Furthermore, the small-
molecule inhibitor YM155 (12), which interferes with Sp1-DNA
interactions on the survivin promoter (32—34), has been used in a
phase I clinical trial for advanced solid tumors (35) and was re-
ported to elicit only modest untoward side effects (36).

Additionally, a specific inhibitor of B-adrenergic receptor ac-
tivation, propranolol, has been found to affect infantile hemangi-
oma growth and apoptosis via activation of caspases 3, 8, and 9
and cytochrome ¢; upregulation of p53; and increasing the Bax/
BCL-xL ratio (37-39).

Interestingly, the very recent finding of a YAP1-TFE3 fusion in
an epithelioid hemangioendothelioma (40) raised the possibility
of the YAP protein, a crucial component of the Hippo pathway,
playing a role in the proliferative and apoptotic dysregulation of
vascular tumors (19). Furthermore, the LIM protein Ajuba (41,
42), a known negative regulator of the Hippo pathway, via inhibi-
tion of LATS (large tumor suppressor kinase 1) kinase (43-45),
that interacts with catenin family members at cell-cell contacts
(adherens junctions) and with cadherin family members (46—48),
has been found to promote the epithelial-to-mesenchymal transi-
tion in colorectal cancers (49), and its lentivirus transduction into
malignant mesothelioma suppresses their proliferation via mod-
ulation of the Hippo pathway (50). In addition, findings demon-
strating increased expression levels of YAP and survivin and de-
creased LATS activity in gastric and hepatocellular carcinomas
(51, 52) are consistent with Ajuba expression and localization
possibly being an important regulator of the Hippo pathway in
endothelia. These studies raise the possibility that modulation
of the Hippo pathway has potential as a therapeutic target for
hemangiomas and may provide insights into mechanisms in-
volving the interactions of adhesion molecules and the Hippo

Hippo Pathway Regulates Hemangioendothelioma Behavior

pathway in the modulation of hemangioendothelioma prolif-
eration and apoptosis.

Thus, using endothelial cells derived from a murine hemangio-
endothelioma (4-6), we tested the hypothesis that these cells ex-
hibit dysregulated Hippo pathway activation due to reductions in
levels of selected cell adhesion molecules (CD31 and VE-cad-
herin) (7, 8), eliciting the induction of survivin (8) and Ajuba,
inactivating the Hippo pathway by inhibiting LATS kinase, and
inhibiting the proteasomal degradation of YAP (53), resulting in
the inhibition of caspase activation and increased proliferation
(8). Furthermore, we postulate that the inhibition of survivin will
rescue the EOMA phenotype, blunting its high proliferation rate
and increasing its apoptotic rate.

In this report, we demonstrated that EOMA cells are larger
than WT-BEC, are not contact inhibited, and exhibit a higher
secondary proliferation rate and a lower level of caspase activa-
tion. Compared to WT-BEC, EOMA cells were found to express
low levels of CD31 and VE-cadherin and increased levels of sur-
vivin, consistent with decreased caspase activation and increased
MMP expression. Furthermore, EOMA cells exhibited increased
levels of cytoplasmic Ajuba, decreased levels of cytoplasmic P-
YAP, and increased levels of nuclear YAP, consistent with a reduc-
tion in Hippo pathway activation (illustrated in Fig. 8A and B).
Interestingly, while the survivin inhibitor YM155 did not appre-
ciably affect WT-BEC, it affected EOMA cells by decreasing the
expression levels of survivin and Ajuba, increasing the expression
levels of CD31 and VE-cadherin, increasing cytoplasmic P-YAP
levels, and decreasing nuclear YAP levels, consistent with an in-
duction of Hippo pathway activation. Furthermore, it was found
to increase the expression of caspase 3 while decreasing MMP2
expression and proliferation, illustrating the interactive, dynamic
roles of adhesion molecules (CD31 and VE-cadherin), survivin,
and Ajuba in affecting the Hippo pathway in modulating prolif-
eration and apoptosis in EOMA cells (Fig. 8B and C). To confirm
that the effects of YM155 were due to modulation of survivin
expression, we utilized survivin siRNA constructs to knock down
survivin expression in EOMA cells. Survivin siRNA-transfected
EOMA cells exhibited a phenotype virtually identical to that of the
YM155-treated cultures, confirming the mechanism of YM155.

FIG 6 Survivin siRNA and YM155 modulate EOMA cell migration and invasion. (A) qRT-PCR analyses reveal significant decreases in survivin mRNA
levels in EOMA cells transfected with survivin siRNA constructs, reducing them to levels comparable to those noted following YM 155 treatment and those
observed in WT-BEC. Mock- and control construct (siNC)-transfected cultures expressed survivin mRNA levels equal to those of untreated EOMA cells.
All data are means * SD from triplicate experiments (:, P < 0.01). (B) Western blotting reveals that survivin protein levels in EOMA cells were also significantly
decreased in EOMA cells transfected with survivin siRNA constructs, reducing them to levels comparable to those noted following YM155 treatment and those
observed in WT-BEC. Again, mock- and siNC-transfected cultures expressed survivin mRNA levels equal to those of untreated EOMA cells. All data are
means = SD from triplicate experiments (*, P < 0.01). (C) Immunofluorescence microscopy reveals decreased survivin levels in EOMA cells transfected with
survivin siRNA constructs compared with WT-BEC. Bar = 100 um. (D to H) Compared to control construct-transfected cells, Western blotting illustrated that
survivin siRNA constructs exhibited increased CD31 (D) and VE-cadherin (E) expression levels as well as increased cytoplasmic P-YAP (F) and decreased nuclear
YAP (G) levels but no change in nuclear TAZ expression levels (H). All data are means = SD from triplicate experiments (*, P < 0.05). (I) Compared to control
construct-transfected cells,immunofluorescence microscopy revealed that EOMA cells transfected with survivin siRNA constructs exhibited increased CD31 and
VE-cadherin expression levels, decreased Ki-67 expression levels, increased cleaved caspase 3 (CC3) expression levels, increased P-YAP expression levels, and
decreased YAP expression levels, confirming our Western blot analyses. Bar = 100 um. (J and K) Adhesion studies on a gelatin substrate reveal no appreciable
changes in adhesion among untreated WT-BEC and EOMA cells or cells treated with YM155 or transfected with either the control construct or survivin siRNA.
All data are means = SD from triplicate experiments. (L) Migration through 8-pum-pore-size uncoated Transwells of WT-BEC, EOMA cells, and EOMA cells
treated with YM155 or transfected with survivin siRNA reveals that WT-BEC, EOMA cells, and control construct-transfected EOMA cells exhibited similar
migrations, while EOMA cells treated with YM155 or transfected with survivin siRNA exhibited significantly reduced migrations. All data are means = SD from
triplicate experiments (¥, P << 0.01; sk, P < 0.0001). (M) Representative hematoxylin-stained filters illustrating the numbers of differently treated cells
migrating through the pores of naked membranes. Bar = 100 um. (N) Invasion through 8-pum-pore-size Matrigel-coated Transwells of WT-BEC, EOMA cells,
and EOMA cells treated with YM155 or transfected with survivin siRNA reveals that EOMA cells and control construct-transfected EOMA cells exhibited high
relative migrations, while EOMA cells treated with YM155 or transfected with survivin siRNA exhibited significantly lower invasion, comparable to that noted
for WT-BEC. All data are means = SD from triplicate experiments (, P < 0.05; #:, P < 0.01; ##x, P < 0.0001). (O) Representative hematoxylin-stained filters
illustrating the numbers of differently treated cells invading the pores of Matrigel-coated membranes. Bar = 100 pm.
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FIG 7 Deficiencies of the adhesion molecules CD44 and CD31 on BEC mimic, in part, the phenotypes observed in EOMA cells and are rescued, in part, upon
treatment with YM155. We utilized CD44KO- and CD31KO-BEC, which we have previously characterized (7, 8, 10), to further assess the roles of VE-cadherin
and CD31 in the modulation of Hippo pathway activation. (A) Hoffman interference reflection microscopy of a representative postconfluent culture of
CD44KO-BEC illustrating a loss of contact inhibition and overriding aggregates of cells. Bar = 200 pm. (B to H) Western blot analyses of expression levels of
survivin (B), CD31 (C), VE-cadherin (D), cleaved caspase 8 (CC8) (E), cleaved caspase 3 (CC3) (F), cytoplasmic P-YAP (G), and nuclear YAP (H) untreated and
treated with a dose range of YM155. The survivin expression level was noted to be decreased (B), while the VE-cadherin (D) and cleaved caspase 3 (F) levels were
found to be modestly increased following YM155 treatment. All data are means = SD from triplicate experiments. (I) Hoffman interference reflection
microscopy of a representative postconfluent culture of CD31KO-BEC illustrating a loss of contact inhibition and overriding aggregates of cells. Bar = 200 pm.
(J to P) Western blot analyses of expression levels of survivin (J), CD31 (K), VE-cadherin (L), cleaved caspase 8 (M), cleaved caspase 3 (N), cytoplasmic P-YAP
(O), and nuclear YAP (P) in untreated cells and in cells treated with a dose range of YM155. The survivin expression level was noted to be decreased (J), while the
VE-cadherin (L) and cleaved caspase 3 (N) levels were found to be modestly increased following YM155 treatment. All data are means * SD from triplicate
experiments (*, P < 0.05; #*, P < 0.01; ##x, P << 0.001; *=x:, P << 0.0001).
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FIG 8 Working model of the involvement of adhesion molecule-mediated Hippo pathway modulation in the regulation of cell proliferation and survival in
WT-BEC and EOMA cells as well as the role of YM155 in the modulation of the Hippo pathway in EOMA cells. (A) WT-BEC exhibit a contact-inhibited
phenotype, with the cells expressing optimal levels of CD31 and VE-cadherin, low levels of survivin, nondetectable levels of Ajuba (dashed lines), moderate levels
of active caspases, and reduced nuclear YAP and increased cytoplasmic P-YAP levels, consistent with an active Hippo pathway. (B) Compared to WT-BEC,
EOMA cells exhibit decreased contact inhibition and junctional molecule expression, resulting in downregulation of the Hippo pathway with increases in
survivin, Ajuba (thick lines), and MMP expression levels and increased YAP nuclear translocation, suppressing caspase-mediated apoptosis and increasing
proliferation. (C) EOMA cells treated with YM155 or transfected with survivin siRNA exhibit increased contact inhibition and junctional molecule expression
resulting from increased CD31 and VE-cadherin expression levels and decreased survivin, Ajuba (dashed lines), and nuclear YAP expression levels, resulting in
upregulation of the Hippo pathway, which in turn results in increased cytoplasmic P-YAP and decreased MMP2 expression levels and caspase-mediated

apoptosis. (WT-BEC are not affected by YM155 treatment.)

Our data are consistent a loss of YAP regulation by cell adhe-
sion molecule expression and junctional assembly (54, 55). A per-
turbation of cell adhesion molecule-driven signaling (altered cell-
cell contacts) induces survivin expression (8, 25) and the activity
of the Hippo pathway (altering YAP subcellular localization),
which in turn affect cell proliferation and apoptosis. Specifically,
the reduction in levels of selected cell adhesion molecules (VE-
cadherin and CD31) disrupts adherens and tight junction integ-
rity, which, in addition to increasing survivin expression, results
in decreased YAP cytoplasmic binding and increased expression
of Ajuba, leading to inhibition of LATS and resulting in increased
YAP nuclear localization and induction of proproliferative and
antiapoptotic gene expression.

To support our findings implicating the cell adhesion mole-
cules VE-cadherin and CD31 as being important components
modulating Hippo pathway activation, we utilized CD44 and
CD31 knockout BEC lines that we have previously characterized
(7, 8, 10). Both of these BEC lines exhibit either reduced expres-
sion of VE-cadherin and CD31 (CD44KO-BEC) or a complete
loss of CD31 and reduced VE-cadherin expression (CD31KO-
BEC) (7, 8). Reduction or loss of these cell adhesion molecules
resulted in cultures exhibiting a loss of contact inhibition, evi-
denced by overriding cells, decreased caspase 3 activation, and
increased survivin expression. Treatment with YM155 resulted in
increased VE-cadherin expression, increased caspase 3 activation,
and decreased survivin expression, supporting the important role
of these cell adhesion molecules in endothelial cell behaviors.

In our studies, cell matrix perturbations did not appear to play
a significant role in EOMA cell proliferative and apoptotic regu-
lation, as WT-BEC, EOMA cells, EOMA cells treated with YM 155,
and survivin siRNA-transfected EOMA cells all exhibited identical
adhesion profiles on gelatin but did exhibit significant changes in
secondary proliferation rates under high-density-culture condi-
tions. Behaviors on other substrates have not been examined, and
differences cannot be ruled out presently.

December 2014 Volume 34 Number 24

Although YAP and TAZ have essentially the same affinity for
TEAD (TEA domain family member 1), differences have been
found in the ways in which they interact with TEAD (56). Recent
evidence suggests that YAP and TAZ do not compensate for each
other (57), as evidenced by the findings that YAP and TAZ knock-
out mice show different phenotypes and that the phenotypes of
YAP and TAZ knockdowns cannot be compensated for by the
other gene (58). Our studies are consistent with these findings.
Specifically, although YAP cytoplasmic and nuclear fractions dif-
fer significantly in WT-BEC and EOMA cells, TAZ subcellular
localizations are not changed. The mechanism(s) for this differ-
ential regulation is as yet unknown but is in agreement with those
recent reports.

Regarding our finding of a greater decrease in MMP2 expres-
sion following YM155 treatment of EOMA cells than that noted
following transfection with survivin siRNA, it is known that, like
survivin, the MMP2 and MMP14 promoters also lack a typical
TATA or CCAAT box, suggesting that Spl may be involved in
regulating MMP2 and, possibly, MMP14 promoter activity (59,
60), thus being consistent with YM155 also directly affecting
MMP2 expression exclusive of its effects on survivin. Indeed, a
recent study found that when Sp1 expression was reduced, MMP2
expression was reduced in human umbilical vein endothelial cells
(59), consistent with the possibility that YM 155 inhibition of at
least these two proteins occurs via the same putative mechanism
(33, 34).

In aggregate, these findings support the importance of ad-
hesion molecules (VE-cadherin and CD31), survivin, and
Ajuba (46, 48,53, 61) in modulating the Hippo pathway, which
regulates, in part, proliferation and survival in hemangioendo-
theliomas. The potential of YM155 as a therapeutic agent (Fig.
8), while an interesting possibility, is tempered by the lack of
availability of additional murine hemangioendothelioma cell
lines to evaluate.
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