Skip to main content
. 2014 Nov;21(11):1512–1520. doi: 10.1128/CVI.00469-14

TABLE 3.

Summary of parsimonious variable selectionsb

Variable name Time point (mo) Simple logistic regression results
BBR LASSO Elasticnet
Glmnet
Intercept (P value) Parameter (P value) AUC (95% Cl) LASSO Elastic net LASSO Elastic net
IgG 6 0.8952 (<0.0001) 1.7332 (<0.0001)a 0.7724 (0.6956–0.8491) X
7 −0.6569 (0.0582) 1.0009 (<0.0001)a 0.7956 (0.7208–0.8703) X X
Last 0.7105 (0.0015) 2.1628 (<0.0001)a 0.8214 (0.7514–0.8914)
TNA 6 −1.346 (0.0060) 1.8551 (<0.0001)a 0.7416 (0.6689–0.8143) X
7 −1.9889 (0.0006) 1.0808 (<0.0001)a 0.7918 (0.7158–0.8678) X X
SI 2 −4.9416 (<0.0001) 1.4900 (<0.0001)a 0.7860 (0.7086–0.8633)
6 −3.9370 (0.0376) 1.4369 (0.0111)a 0.7095 (0.5809–0.8381)
IFNeLi 6 −0.3719 (0.3090) 0.7881 (0.0004)a 0.7073 (0.6077–0.8068) X
R_IL4IFNeLi 7 0.6808 (0.0020) −0.1508 (0.3684) 0.5428 (0.4195–0.6661) X
IL4e 1 −2.0654 (0.5856) 2.0972 (0.4594) 0.5149 (0.4790–0.5508) X
TNFe 1 3.2168 (0.0787) −1.4247 (0.1622) 0.6627 (0.5485–0.7769) X
R_IL4IFNm 7 0.6608 (0.0004) −0.7249 (0.0508) 0.5829 (0.4844–0.6815) X
No. of variables 3 3 5 3 12
Variable set identifier Par_LASSOc Par_LASSOc Par_elastic_Elasticnet Par_LASSOc Par_elastic_Glmnet
a

P value of <0.05 from Wald chi-square test of the parameter estimate.

b

•, variables that were selected by all five selection methods. X, variables that were selected by 1 or 2 methods.

c

Parsimonious selections by LASSO in all the packages selected the same variables that were considered one variable set, Par_LASSO, for subsequent analyses.