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Determination of Specific Antibody Responses to the Six Species of
Ebola and Marburg Viruses by Multiplexed Protein Microarrays
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Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and
there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses
highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein
(NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as
a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vac-
cinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e.,
Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant
increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge
of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and
VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP
(GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results
with ZEBOV and MARY proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was
comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described pro-

tein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple

species of filoviruses.

he first recorded outbreak of Marburg virus (MARV) took

place in 1967 in Germany and Yugoslavia and was traced to
infected African green monkeys from Uganda (1), while the first
outbreaks of Ebola virus were documented in Sudan and the
Democratic Republic of Congo in 1976 (2, 3). Cycles of filovirus
outbreaks continue to be a major concern from a biodefense and
public health perspective as no licensed therapeutic agents or vac-
cines are available. Filoviral hemorrhagic fever is characterized by
rapid disease onset and mortality rates of up to 90% (4). Following
an incubation period that can range from 2 to 21 days, infected
patients commonly develop nonspecific flulike symptoms of fe-
ver, vomiting, loss of appetite, headache, abdominal pain, fatigue,
and diarrhea, while bleeding occurs in a smaller number of infec-
tions (1, 3, 5). Case fatalities are associated with reduced adaptive
immune responses (6, 7) and the release of high levels of immune
response mediators (8—10) that contribute to vascular dysfunc-
tion, coagulation disorders, shock, and eventual multiorgan fail-
ure (2).

There is a persistent need for sensitive and reliable serological
approaches for examining filoviral infections. Because genetic
material from the pathogen is often missing, antibody detection
methods are indispensable, especially for examining nonviremic
patients and for disease surveillance. While enzyme-linked immu-
nosorbent assays (ELISAs) for detecting specific IgG and IgM
based on live virus preparation were previously developed (11—
13), the need for biosafety level 4 (BSL4) labs and associated safety
issues are major limitations. Serological assays based on recombi-
nant filovirus antigens are alternatives that do not require infec-
tious agents, and several ELISAs were reported (14-18). For
example, Nakayama and coworkers developed a glycoprotein
(GP)-based ELISA representative of all six species of filoviruses
and analyzed human patient sera from Ebola and Marburg virus
outbreaks (15). However, these previous methods have only ad-
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dressed a limited number of antigens and species of filoviruses.
The Filoviridae family includes one species of Marburg virus
(Marburg marburgvirus) and five species of Ebola virus {Sudan
ebolavirus [Sudan virus (SEBOV)], Zaire ebolavirus [Zaire virus
(ZEBOV)], Reston ebolavirus [Reston virus (REBOV)]|, Bundibu-
gyo ebolavirus [Bundibugyo virus (BEBOV)], and Tai Forest ebo-
lavirus [ Tai Forest virus (TAFV)]}, each of which can cause severe
hemorrhagic fevers in primates, including humans (2). Further
complicating assay development, the single-stranded, negative-
sensed RNA genome (~19 kb) encodes seven structural proteins
(1, 19, 20) that are all potential antigens: the nucleoprotein (NP),
virion protein 35 (VP35), VP40, glycoprotein (GP), VP30, VP24,
and RNA-dependent RNA polymerase (L). The major functions
of each component of the viral proteome were previously charac-
terized. The RNA genome is encapsulated by the NP, and the
ribonucleoprotein complex is associated with VP35, VP30, and L
(21, 22). Transcription and replication of the viral genome re-
quires L, NP, and VP35 (23), while transcription for Ebola virus
but not for Marburg virus requires VP30 as an additional cofactor
(24, 25). VP40 is a matrix protein critical for virion assembly as
well as budding from infected cells (26, 27), and VP24 appears to
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play a role in nucleocapsid assembly and inhibition of interferon
signaling (28-30). Unlike Marburg GP, Ebola GP is expressed fol-
lowing RNA editing, while the unedited transcript encodes a sol-
uble GP that is released from infected cells (31, 32). Further, tri-
meric GP complexes on the virion surface are receptors for fusion
and entry into the host cell (33-35).

Here, we adopted a protein microarray strategy for detection of
filovirus antibodies in sera. The microarray is composed of NP,
GP, and VP40 from all Ebola and Marburg virus species, as well as
several control proteins. We evaluated the performance of this
assay by using sera collected from rhesus macaques that were
treated with filovirus vaccines and challenged with Ebola and
Marburg viruses. We further examined the potential use of anti-
gens that were expressed exclusively in Escherichia coli.

MATERIALS AND METHODS

Cloning. Full-length genes for NP and VP40 and the GP mucin-like do-
main fragment (GP mucin) for six filovirus species, Reston ebolavirus,
Bundibugyo ebolavirus, Zaire ebolavirus, Sudan ebolavirus, Tai Forest ebo-
lavirus, and Marburg marburgvirus were cloned into the pENTR/TEV/D-
TOPO vector (Life Technologies, Grand Island, NY) and sequence veri-
fied. The nucleotide substitutions found in the cloned sequence compared
with that in the reference sequence from GenBank are summarized in
Table S1 in the supplemental material. All entry vector clones were shut-
tled into destination E. coli expression vectors via the LR reaction (LR
Clonase II; Life Technologies). Specifically, VP40 and GP mucin open
reading frames (ORFs) were shuttled into pDEST-HisMBP (Addgene
plasmid 11085) containing an N-terminal His-tagged maltose-binding
protein (HisMBP) tag, while all NP ORFs were shuttled into pDEST17
(Life Technologies) containing an N-terminal His tag.

Protein expression and purification. Proteins were expressed in ei-
ther BL21-AI cells (Life Technologies) or Rosetta 2(DE3) cells (EMD Mil-
lipore, Billerica, MA). Expression for pDEST-HisMBP constructs was in-
duced with 1 mM isopropyl-B-p-thiogalactopyranoside (IPTG), while
expression for the pDEST17 constructs was induced with 0.2% vr-arabi-
nose. Pelleted cells from overnight cultures grown at 18°C were lysed
using B-PER reagent (Thermo Scientific, Rockford, IL) supplemented
with 2X Halt protease and phosphatase inhibitor cocktail, EDTA-free
(Thermo Scientific), 0.2 mg/ml lysozyme, 50 to 100 U/ml DNase I
(Thermo Scientific), and 2 mM phenylmethylsulfonyl fluoride (PMSF).
Lysates were separated into supernatant and insoluble pellet fractions by
centrifugation, and induced protein expression was confirmed through
Western blotting or mass spectrometry and Coomassie staining. HisMBP-
tagged VP40s and GP mucins were soluble and present in the supernatant
fraction. With the exception of ZEBOV NP (Zaire NP), all His-tagged NPs
were insoluble and predominantly in the pellet fraction. Supernatants
containing expressed VP40s were loaded onto HisTrap HP columns (GE
Healthcare, Piscataway, NJ) preequilibrated with 20 mM sodium phos-
phate, 0.5 M NaCl, 40 mM imidazole (pH 7.4). VP40 fractions were col-
lected by applying an imidazole step elution. All GP mucins except MARV
GP mucin (Marburg GP mucin) were purified using HisTrap HP col-
umns. Binding and washing steps were conducted with 25 mM HEPES,
0.5 M NaCl, 25 mM imidazole (pH 8), and bound GP mucins were eluted
using an imidazole gradient. Marburg GP mucin was purified using an
MBPTrap HP column preequilibrated with 25 mM HEPES, 0.2 M NaCl, 1
mM EDTA (pH 7.4). Bound protein was eluted using 25 mM HEPES, 0.2
M NaCl, 1 mM EDTA, 10 mM maltose (pH 7.4). NPs were purified
through on-column refolding on HisTrap HP columns. Briefly, NP pellets
were resolubilized in 25 mM HEPES, 0.2 M NaCl, 25 mM imidazole, 1
mM B-mercaptoethanol, 6 M guanidine hydrochloride (pH 8). Proteins
were bound to columns under denaturing conditions and refolded using
a 6 to 0 M urea gradient over a 30-column volume range. Refolded pro-
teins were eluted using an imidazole gradient. Although Zaire NP was
found in the supernatant, the protein did not appear to bind to the His-
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Trap column under the conditions used for VP40 purification. This may
have been due to a hidden His tag, and, thus, guanidine hydrochloride was
added directly to the Zaire NP supernatant to a final concentration of 6 M
in order to expose the His tag. Denatured Zaire NP was processed in a
manner similar to that for the other resolubilized NPs. The purities and
concentrations of collected fractions were measured by an Agilent protein
230 kit (Agilent Technologies). All purified proteins were stored at —20°C
in their respective elution buffers with glycerol added to a final concen-
tration of 25%.

Microarray printing. The purified recombinant proteins were spotted
(see Fig. S1 in the supplemental material) on nitrocellulose-coated FAST
slides (KeraFAST, Boston, MA), using a contactless inkjet microarray
printer (ArrayJet, Edinburgh, Scotland). The microarray included a total
of 34 proteins: (i) E. coli-expressed filovirus antigens, (ii) insect cell-ex-
pressed ZEBOV and Sudan ebolavirus and Marburg virus (Angola) GP
ectodomain (ATM) (IBT Bioservices, Gaithersburg, MD), (iii) mamma-
lian cell-expressed Marburg virus (Musoke) GP ATM (IBT Bioservices),
(iv) human, monkey, mouse, rabbit, and goat IgG (Rockland Immuno-
chemicals, Gilbertsville, PA), (v) human, monkey, and rabbit IgM (Rock-
land Immunochemicals), (vi) HisMBP (ProteinOne, Rockville, MD),
(vii) dengue virus serotype 2 (dengue2) and 3 (dengue3) nonstructural
protein 1 (NS1), and (viii) bovine serum albumin (BSA) (Thermo Scien-
tific). The purified dengue virus proteins were previously described (36).
Briefly, the proteins were expressed with a HisMBP tag in E. coli and
purified via immobilized metal affinity chromatography. Each protein
was printed in triplicate. All purified proteins were diluted to 200 ng/pl in
printing buffer (25 mM HEPES, 0.5 M NaCl, 25% glycerol, 1 mM dithio-
threitol [DTT] [pH 8]). Alexa Fluor 647-conjugated streptavidin (Life
Technologies) was diluted 1:50 in printing buffer and included in the
microarray as a reference marker. The buffer served as an empty place-
holder on the microarray. Printed slides were desiccated overnight under
vacuum and stored at —20°C.

Microarray processing. All microarray processing steps were per-
formed under 21°C conditions, and each antibody or serum sample was
processed in duplicate microarrays. Printed microarrays were incubated
for 1 h in 1X Biacore Flexchip blocking buffer (GE Healthcare) with 2%
normal goat serum (Vector Laboratories, Burlingame, CA) or 2% normal
rabbit serum. Microarrays were washed 3 times for 5 min each with wash
buffer (1X Tris-buffered saline [TBS], 0.2% Tween 20, 3% BSA), which
was used in all subsequent wash steps. Microarrays were incubated with
the primary antibody diluted 1:1,000 or a serum sample diluted 1:150 in
probe buffer (1X TBS, 0.1% Tween 20, 3% BSA). Aftera 1-h incubation in
the primary antibody or sera, microarrays were washed and incubated for
1 h with Alexa Fluor 647-conjugated secondary antibodies diluted 1:2,000
in probe buffer. Microarrays were washed and then rinsed with water
before analysis.

Vaccinations and infections. Rhesus macaque sera were obtained
from two separate vaccine studies for ZEBOV and MARV (our unpub-
lished data). The vaccine trials were similar in design and procedure to a
study previously described by Warfield et al. (37). Briefly, for the ZEBOV
study, five animals were vaccinated with ZEBOV virus-like particles
(VLP) and MARV VLP. The vaccinated animals were subsequently chal-
lenged with ZEBOV. Three serum samples (naive, postimmunization,
and postchallenge) were collected for each animal. The Marburg virus
study was conducted in a similar manner, except that the animals were
vaccinated with MARV VLP and challenged with MARV.

Antibodies. Rabbit polyclonal anti-ZEBOV NP (anti-Zaire NP; 0301-
012), mouse monoclonal anti-SEBOV GP (anti-Sudan GP; 0202-029),
mouse monoclonal anti-SEBOV VP40 (anti-Sudan VP40; 0202-018),
mouse monoclonal anti-ZEBOV GP (anti-Zaire GP; 0201-020), rabbit
polyclonal anti-ZEBOV VP40 (anti-Zaire VP40; 0301-010), mouse
monoclonal anti-Marburg virus (Musoke) GP (anti-Marburg GP; 0203-
023), and mouse monoclonal anti-Marburg virus (Musoke) VP40 (anti-
Marburg VP40; 0203-012) antibodies were purchased from IBT Bioser-
vices. Alexa Fluor 647-conjugated goat anti-mouse IgG (A21237) and
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goat anti-rabbit IgG (A21244) antibodies were purchased from Life Tech-
nologies. Alexa Fluor 647-conjugated rabbit anti-monkey IgG (bs-
00335R-A647) and rabbit anti-monkey IgM (bs-0336R-A647) antibodies
were purchased from Bioss (Woburn, MA).

Data acquisition and analysis. Processed slides were scanned at a
635-nm wavelength using a GenePix 4400A scanner (Molecular Devices,
Sunnyvale, CA). Acquired images were analyzed with GenePix Pro 7 soft-
ware. Any defective or missing spots were removed from further analysis.
The median fluorescence intensity for each microarray spot was corrected
through local background subtraction on GenePix Pro 7. Subsequent
analysis was done in Microsoft Excel and R. The resulting background-
corrected fluorescence intensities were averaged across replicate spots and
quantile normalized for each serum group (naive, immunized, and chal-
lenged). A paired t test was conducted to compare each antigen-antibody
signal for naive versus immunized, naive versus challenged, and immu-
nized versus challenged sera.

RESULTS

Filovirus protein microarray. Taking into consideration the
complexity of the viral proteome and previous data suggesting
potential targets of host antibody responses (1416, 38), we devel-
oped a microarray composed of a minimal set of proteins repre-
sentative of all Marburg and Ebola virus species. The VP40s and
NPs for Reston ebolavirus, Bundibugyo ebolavirus, Zaire ebolavirus,
Sudan ebolavirus, and Tai Forest ebolavirus and MARV were ex-
pressed as full-length recombinant proteins in E. coli. Initially, we
prepared GP ectodomain (ATM) constructs from all filovirus spe-
cies for expression in E. coli. However, because the GP ATM pro-
teins were not all stable in solution (data not shown), the coding
sequences were truncated and expressed as more stable, GP mu-
cin-like domain fragments (see Table S1 in the supplemental ma-
terial), with HisMBP fusion tags (amino termini). The final GP
protein design was supported by data from previous reports sug-
gesting that the antibody responses to ZEBOV were directed at
least in part against the GP mucin-like domain (39-42).

The recombinant filovirus antigens purified from E. coli, along
with the control proteins, were printed in 120- to 130-pm diam-
eter spots in a 12 X 12 format (see Fig. S1 in the supplemental
material) on slides covered with a thin layer of nitrocellulose. Ad-
ditionally, GP ATM produced in eukaryotic host cells were in-
cluded in the microarray for comparison with the E. coli-produced
GP mucins. IgGs (monkey, human, rabbit, goat, and mouse) and
IgMs (human, monkey, and rabbit), HisMBP, BSA, and dengue
virus proteins served as controls. For quality control purposes and
to validate our assay design, printed microarrays were probed with
anti-His antibody and with a panel of purified filovirus antibodies.
Probing with anti-His antibody showed that all His-tagged pro-
teins were successfully spotted and adsorbed onto the nitrocellu-
lose-coated microarray slides (data not shown). Anti-Marburg
VP40, anti-Marburg GP, anti-Sudan VP40, anti-Sudan GP, anti-
Zaire VP40, anti-Zaire NP, and anti-Zaire GP were bound by their
target antigens with a high degree of specificity (Fig. 1A, B, and C).
Minor cross-reactivities between REBOV VP40 and Sudan VP40
and between BEBOV VP40 and ZEBOV VP40 were observed
when microarrays were probed with anti-SEBOV VP40 and anti-
ZEBOV VP40, respectively (Fig. 1B and C). Combined, data from
these control antibodies indicate that the filovirus microarrays
performed correctly under idealized test conditions.

Analysis of sera from ZEBOV and MARYV challenge studies.
Sera from two separate animal studies were analyzed using our
microarrays. In the ZEBOV study, rhesus macaques were vacci-
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nated with a mixture of trivalent (GP, NP, and VP40) virus-like
particles (VLP) for MARV and ZEBOV and subsequently chal-
lenged with ZEBOV. In the Marburg virus study, rhesus macaques
were vaccinated with trivalent (GP, NP, and VP40) VLP for
MARYV and subsequently challenged with MARV. All vaccinated
animals in the Zaire and Marburg studies survived the viral chal-
lenge. After application of the serum samples to the filovirus mi-
croarray, bound IgGs were detected using fluorescently labeled
secondary antibodies (see Fig. S2 and S3 in the supplemental ma-
terial).

For the ZEBOV study, the comparisons between sera from
naive and immunized animals showed significant increases (P <
0.05) in IgGs against all vaccine antigens except for MARV NP
(Marburg NP) (Fig. 2A). Cross-reactive IgGs against BEBOV,
TAFV, REBOV, and SEBOV VP40 and BEBOV and TAFV NP
were induced through vaccination (Fig. 2A). After animals were
challenged, IgG signals against all Ebola virus NPs and VP40s and
ZEBOV GP mucin (Zaire GP mucin) had significant increases
(P < 0.005) in challenged sera compared to those in immunized
sera (Fig. 2A). For the Marburg virus study, the microarrays de-
tected significant increases (P < 0.05) in IgGs against Marburg
NP, GP mucin, and VP40 in immunized sera compared to those in
naive sera (Fig. 2B). Cross-reactive IgGs against all Ebola virus
VP40s were detected in the immunized sera (Fig. 2B). We ob-
served a cross-reactive signal against Zaire GP mucin which was
statistically significant (P < 0.05) comparing naive and immu-
nized sera but not naive and challenged sera (Fig. 2B). The com-
parison between naive and challenged sera showed significant in-
creases (P < 0.05) in IgG responses for Marburg NP and GP
mucin (Fig. 2B). However, the increase in IgG against Marburg
VP40 was not statistically significant (Fig. 2B). The results from
analysis of rhesus sera suggested that the microarray enabled de-
tection of anti-GP antibodies in a species-specific manner. Fur-
ther, the anti-GP antibodies were detected with minimal cross-
reactivity toward other species for the cases of sera from the
ZEBOV and MARYV infections (Fig. 2C). We also examined IgM
responses with sera from both animal studies, and representative
data are provided in Fig. $4 in the supplemental material. Overall,
minor IgM signals were detected against ZEBOV and MARYV an-
tigens using these convalescent-phase sera. The preliminary re-
sults indicate that the filovirus microarray may be used for IgM
detection. An analysis of sera collected from time points closer to
vaccination and the viral challenge will confirm the utility of mea-
suring IgM responses by protein microarray.

Comparison between E. coli and eukaryotic cell-expressed
GP. Both of the GP mucins produced in E. coli and GP ATMs
produced in eukaryotic cells (insect or mammalian) were in-
cluded in the printed microarray. Examining sera from the
ZEBOV (Fig. 3A) and MARYV (Fig. 3B) studies, we confirmed that
the mucin domain was sufficient for capturing IgG responses to
filoviruses. We observed slightly higher IgG signals from the Zaire
GP mucin than from the Zaire GP ATM with sera from ZEBOV
challenged animals (Fig. 3A and B), whereas antibody recognition
of the Marburg GP mucin was comparable to that of the Mar-
burg GP ATM (both Angola and Musoke) for sera obtained
from animals challenged with MARV. Based on these microar-
ray results, we concluded that the E. coli-produced GP mucin
resulted in species specificity similar to that of the eukaryotic cell-
expressed GP ATMs.
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FIG 1 Validation of filovirus microarrays using control antibodies. A panel of antibodies against Marburg virus (A), Zaire ebolavirus (B), and Sudan ebolavirus (C)
proteins were tested on printed microarrays. All antibodies are mouse monoclonal except for anti-Zaire NP and VP40, which are both rabbit polyclonal. Bound
antibodies were detected fluorescently on a microarray scanner. Background-corrected fluorescence intensities were averaged across technical replicates on the microar-
rays. The bars represent mean fluorescence (relative fluorescence units [RFU]) = standard error of the mean (SEM). All GP ATMs were expressed in insect cells except
for Marburg GP ATM (Musoke), which was expressed in mammalian cells. B, Bundibugyo; T, Tai Forest; M, Marburg; R, Reston; S, Sudan; Z, Zaire.
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microarray scanner. Following data preprocessing, normalized fluorescence signals were averaged across the five animals in each study. The bars represent
normalized mean fluorescence (RFU) = SEM. The cutoff line represents 2 standard deviations above the mean antibody signal observed in the naive sera. For
each antigen-antibody response, paired t tests were done for naive versus immunized and naive versus challenged sera. Unless indicated with an asterisk, all
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Side-by-side comparison of GP-specific IgG signals in challenged sera from Zaire ebolavirus and Marburg marburgvirus studies.
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DISCUSSION

We developed a protein microarray composed of isolated recom-
binant antigens from the six species of Ebola and Marburg viruses
and used this platform to examine the antibody responses of rhe-
sus macaques to infection and vaccination. The florescence-based
readout for the microarray is highly sensitive, and the assay only
requires 1 to 2 pl of biological sample for full evaluation. The NP
and GP antigens were most useful for distinguishing sera from
ZEBOV in comparison to Marburg virus infection, while results
from the Marburg virus study sera indicated that Marburg VP40
induced a cross-reactive VP40 antibody response against all Ebola
viruses. We also observed a general antibody cross-reactivity
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among Ebola virus NP and VP40 proteins, in a manner similar to
results from previously reported ELISA studies (43—45), while GP
exhibited the highest level of antibody specificity. Supporting the
value of the GP mucin domain as a serological marker of infection,
E. coli-expressed GP mucins for Zaire and Marburg filoviruses
displayed species-specific antibody recognition similar to that of
the multidomain GPs (ATM) that were produced from eukaryotic
cells, based on assay results from the ZEBOV and MARV studies.
The microarray assay detected increases in IgG responses to spe-
cific filovirus antigens resulting from vaccination or viral chal-
lenge, and the relative levels of other antibody isotypes (IgM)
could also be measured. We further noted that active infection
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stimulated a significant boost in immune responses primed by
vaccination, as specific IgG levels in VLP-vaccinated macaques
increased in response to aerosol challenges from either ZEBOV or
MARV. The significant increase in ZEBOV- and MARV-specific
IgG responses following viral challenge, as measured by the pro-
tein microarray, allows us to conclude that VLP vaccinations did
not induce sterilizing immunity in the animals.

A portion of our results corroborate previously reported stud-
ies concerning antibody recognition of filovirus antigens. Anti-
body responses against NP and GP were detected in human pa-
tients by ELISAs (14-16) and Western blots (46). In another
report, antibodies that recognized GP, NP, and VP40 were ob-
served in sera from a SEBOV (Gulu) outbreak in 2000-2001 (38).
These previous ELISA studies examined only select antigens from
a single filovirus species or a single antigen from multiple filovi-
ruses, whereas the microarray format supports a highly multiplex
analysis of sera. Although only two species of virus were examined
in our study, we propose that the protein microarray will also be
useful for multiplexed examination of serological responses to
most filovirus strains. Expanding the capabilities of these previ-
ously described methods, the protein microarray we describe may
facilitate diagnosis and serological surveillance of infections
caused by multiple species of the highly infectious filoviruses.
Translating the laboratory test into a low-cost, point-of-care assay
will greatly extend its practical utility. Care of patients with filovi-
ral infections is challenging enough because of the resource-poor
settings of outbreaks and the procedures that are required to pre-
vent the spread of infections (47). Allaranga and coworkers pro-
posed that an active epidemiological surveillance system, includ-
ing surveillance of zoonotic infections, is vital for the early
detection and effective response to filoviral hemorrhagic fever ep-
idemics in Africa (48). We suggest that an optimized version of
our microarray assay can be an important tool for epidemiological
studies and potentially for diagnosis of infections. An expansion
of the antigen probes used in the assay may also be a useful mod-
ification to consider. A recent report of hospital-based surveil-
lance in Ghana suggested the importance of distinguishing infec-
tions caused by hepatitis viruses that produce symptoms that
mimic viral hemorrhagic fevers from the infrequent infections
caused by filoviruses (49). Further, the prevailing hypothesis con-
cerning outbreaks of filoviral hemorrhagic fevers is that indige-
nous human populations occasionally make contact with animal
reservoirs of Ebola and Marburg viruses, resulting in rapid spread
of disease (50). Wildlife are often more severely affected than hu-
mans, as demonstrated by a 89% drop in chimpanzees and 50%
decrease in gorilla populations as a result of one recorded Ebola
virus outbreak (51). Observations concerning the zoonotic origin
of filoviruses suggest that there may also be significant value in
modifying our microarray assay to include the possibility of sup-
porting serological surveillance of infections occurring within do-
mestic or wildlife animal populations.
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