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ABSTRACT: Owing to recent developments in computational algorithms
and architectures, it is now computationally tractable to explore biologically
relevant, equilibrium dynamics of realistically sized functional proteins using
all-atom molecular dynamics simulations. Molecular dynamics simulations
coupled with Markov state models is a nascent but rapidly growing technology
that is enabling robust exploration of equilibrium dynamics. The objective of
this work is to explore the challenges of coupling molecular dynamics
simulations and Markov state models in the study of functional proteins. Using
recent studies as a framework, we explore progress in sampling, model
building, model selection, and coarse-grained analysis of models. Our goal is to
highlight some of the current challenges in applying Markov state models to
realistically sized proteins and spur discussion on advances in the field.

■ INTRODUCTION

Proteins dynamically explore their free energy landscape, giving
rise to their form and function. Environmental changes can
induce significant perturbations to a protein’s free energy
landscape and modify its dynamics.1−4 Protein dynamics can
be broadly sorted into equilibrium and nonequilibrium
dynamics. Experimentally, established techniques in NMR and
room temperature X-ray crystallography are able to quantify
equilibrium dynamics at disparate time scales.5−8 From a
computational standpoint, all-atom molecular dynamics (MD)
simulations can survey the equilibrium dynamic of proteins;
however, while a full accounting of equilibrium dynamics is
theoretically accessible, in practice it is difficult to obtain.
MD is an N-body simulation scheme where atoms in the

system of interest are treated classically and the Newtonian
equations of motion are integrated numerically to propagate the
system dynamics over time. Computational resources limit the
system’s spatial scale, as well as achievable simulation time scale
bound the applicable scope of MD simulations. As system size
increases, the computational requirements to perform the
simulation also increase, leading to a trade-off between system
size and computationally tractable simulation length. Recent
advances in computational hardware has expanded the scope and
scale of MD simulations, owing to the deployment of multiple
petascale national supercomputers (i.e., Stampede, Titan, Mira,
BlueWaters), GPUs9−11 that have allowed routine access to
continuous simulations of biologically relevant systems on the
microsecond time scale, and specialized architectures such as
Anton12,13 that have achieved millisecond resolution. Yet,
accurately quantifying equilibrium properties from MD simu-
lations remains a challenge not only because of limited sampling
but also because of the still rather limited development of

integration and analysis technologies that allow researchers to
systematically derive information from multiple MD simulations
in a rigorous and fully reproducible manner.
A recent approach to characterize equilibrium properties is to

integrate MD simulations using Markov state models
(MSM).14−16 A MSM is a stochastic model that assumes the
Markov property that the system is memoryless (i.e., the
conditional probability distribution of future states depend only
upon the current state and not on prior states). Given a set of
states Q, with Qt denoting the state at time t, if a process
undergoes a transition i→ j at time t, this is written as Qt = i and
Qt+1 = j. The transition data of a Markov chain is given by a n × n
transition matrix δ = pij, where pij = P(Qt+1 = j|Qt = i) is the
probability of transitioning from state i to state j. Formally a
process is Markovian if the following is true
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There are various MSM packages that analyze MD trajectories
and create clusters of microstates as well as to survey the
transition state probabilities. Two of the most prominent are
MSMBuilder217 and EMMA.18 From a practical standpoint,
MSMBuilder2 appears to be designed for larger systems and with
speed of data processing in mind. On the other hand, EMMA is
designed for smaller MSMs that can be statistically validated and
provides tools to quantify statistical uncertainty for quantities of
interest.
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To create a MSM, conformational space needs be explored,
and subsequently discretized into microstates from which
transition probabilities are calculated, and finally refined and
validated.19 Classical MD simulations can be used to explore
conformational space,12,13 but because the MSM is built from
transition probabilities, enhanced sampling techniques such as
replica exchange,20−22 simulated tempering,23 coarse grain-
ing,24,25 aMD,26 or using simplified force fields, which do not
reproduce kinetic rates, can be used to provide an initial sampling
of configuration space which is followed classicalMD simulations
to recapture the correct underlying thermodynamics. Micro-
states are defined through various clustering algorithms and state
definitions depending on the biological question of interest (e.g.,
backbone RMSD for folding). After microstates are determined,
transition rates between states are calculated from the MD
trajectories and theMSM generated. Improvements on the initial
MSM can be made through adaptive sampling, in which
configurations with low sampling count (and thus high statistical
error) become new starting configurations for subsequent MD
runs. This allows one to obtain vastly improved statistics for
more rarely sampled states.27 Finally, MSMs must be validated
for self-consistency and that the Markov property is observed
after some lag time.
While MSMs were initially used to couple Brownian dynamics

simulations with MD simulations in order to quantify binding
kinetics for biological systems in the early 1990s,28 the
application of MSMs to reconstruct thermodynamics based
solely on MD trajectory data is much more recent. In 2004
Swope, Pitera, and co-workers laid a theoretical framework and
applied MSM coupled with MD simulations (MD-MSM) to the
study of protein folding.29,30 MD-MSM development and
application continues to be driven largely by the study of protein
folding.31−37 The study of protein function has been more
limited, however, within the past six months a number of new
works have been published. Roux and co-workers used MSM in
conjunction with their string method to study the activation of
pathway of Scr-kinases.38,39 Kohlhoff and co-workers used MSM
with trajectory data collected on Google’s exascale cloud
computing resources to study agonism and inverse agonism in
a GPCR.40 Recently, our lab completed our study of cAMP
agonism of a cyclic-nucleotide binding domain (CBD) in the
regulatory unit of protein kinase A (PKA).41 These studies each
show the potential power ofMD-MSM analysis in understanding
protein function at an atomic scale and also highlight the
computational difficulties of building these models as well as the
challenges inherent in using an emerging analytical technique.
The objective of the current work is to explore the challenges of
usingMD-MSM to study functional protein systems utilizing our
recent study on PKA’s CBD; in other words, to explore the reality
of moving from simple model systems to complex biological
systems. After a brief introduction of the CBD studies, we discuss
relevant challenges, including sampling conformational space,
microstate definitions, model building, model comparison, and
model analysis.

■ BIOLOGICAL BACKGROUND OF A CANONICAL
SIGNAL TRANSDUCTION DOMAIN

CBDs are a ubiquitous and ancient signaling domains.42,43 PKA’s
regulatory subunit contains two tandemCBDs that cooperatively
bind cAMP to regulate PKA’s enzymatic activity.44,45 Upon
cAMP binding, the structure of the regulatory subunit of PKA
changes from an extended or holo-enzyme (H) conformation
that inhibits PKA’s catalytic subunit to a compact or cAMP-

bound (B) conformation.46,47 The conformational changes in
regulatory subunit are reflected in the motions of key structural
motifs within the CBD that govern the ligand induced
conformational changes in the regulatory subunit.48 Paralleling
NMR studies on the same system,49 we explored the role of
cAMP in the regulation of the conformational dynamics of the H-
to-B conformational change in a single functional CBD domain
using MD-MSM.41

■ SAMPLING
The sampling of rough energy landscapes is a computationally
intensive task. The Arrhenius relationship suggests that the rate
of reaction varies exponentially with the increase in barrier of
activation. For energy landscapes with large barriers, using
classical MD, a trajectory can become trapped in a local minima
and never escape within the time scale of the simulation. Owing
to the complexity of hyper-dimensional conformation space, it
becomes computationally intractable to sample all configurations
that contribute to the transition state probabilities with good
statistics. While there have been many advances in computer
hardware and MD software optimizations, computationally
tractable time scales are currently only on the order of
microseconds. Often, large domain motions of proteins have
an intrinsic time scale on the order of several milliseconds. Even if
one is lucky enough to sample a slow event, with n = 1 we cannot
practically make any conclusions about the system and thus the
main challenge in MD simulations is sampling.
AMarkov State Model helps overcome sampling challenges by

shifting the sampling focus from identifying local energy minima
toward the practice of simulating more informative transition
pathways. Many methods to improve sampling and statistical
confidence in the MSMs have been developed. The most
elementary method is to simply perform one (or a few) long time
scale runs; however, there is a large computational cost
associated with this approach.19 The computational burden of
calculating extreme length trajectories (e.g., at the time of writing
of this manuscript, we define “extreme length” by over 10 μs of
total sampling in a single run) has been reduced by extraordinary
progress in GPUs as well as specialized MD architectures such as
Anton.50 Alternately, instead of calculating one or a few long
trajectories, similar results can be obtained by performing
multiple randomly seeded shorter runs. Instead of naively
starting random trajectories that may be kinetically trapped in
highly populated metastable states, initial states can also be
selected near more rarely sampled configurations based upon the
initial MSM.51 As additional statistics are gathered and integrated
into the MSM, the sampling distribution will even out and new
regions of less confidence can be used to pick new initial
simulations seeds in a process called adaptive sampling.52 It is
important to note that while simulations of initial configurations
that do not lie on transition pathways will increase the total
sampling time, the incorporated data will not bias the final
results.19

The biology underlying the system of interest is a critical
aspect of successful application of MD-MSM. Aware of the
challenges of exploring the conformational ensemble, we
selected to study the CBD. The CBD systems were sufficiently
small, containing 126 amino acids and∼30 000 atoms when fully
solvated. Importantly, the critical CBD dynamics occur on the
microsecond time scale or faster.53 Effectively accessing
dynamics on the microsecond time scale allows us to leverage
GPU and Anton-based MD for parallel multiple sampling runs
seeded from the available crystal structures, thus avoiding the
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need to apply an alternate (e.g., enhanced or biased) sampling
method or simulation methodology per se. We started MD
simulations from the X-ray crystal structures of PKA’s regulatory
subunit in both the H or B conformations and with and without
cAMP thus creating four simulation families. Our objective was
to explore the conformational space from two starting points
hoping that the trajectories will overlap in conformational space
allowing us to build a MSM. (Figure 1) We performed an initial

sampling using long time scale, ∼13 μs, simulations on
Anton12,13 with 4 parallel shorter 0.5 to 1.0 μs GPU enabled
MD simulations using Amber9−11,41 Each of the parallel runs was
started from the same equilibrated conformation but new initial
velocities were assigned for each simulation.
In addition to our initial sampling, we performed multiple

rounds of adaptive sampling guided by our primary MSM. In
order to improve the quality of the MSM and enhance our

Figure 1. 3D plots of conformational space exploration for two∼13 μs simulations of apo CBD started at different conformations. MD simulations were
started in either the cAMP bound conformation (cyan dots) or holoenzyme conformation (magenta dots). Each point represents a conformational
snapshot (i.e., frame) from the MD trajectories plotted based on the RMSD from the crystallographic structure of three CBD structural motifs, the
phosphate binding cassette (PBC), the N3A motif, and the B/C helix, that characterize the conformational change in the CBD. Each plot contains the
same two trajectories with different reference structures.

Figure 2. Example conformational space exploration of apo CBD plotted relative to holoenzyme conformation of two 10 ns adaptive sampling runs. MD
simulations were started in either the cAMP bound conformation (red dots) or holoenzyme conformation (blue dots). Adaptive sampling runs,
indicated by black arrows, were started from frames form trajectory started in either cAMP bound conformation (magenta dots) or holoenzyme
conformation (cyan dots) Each point represents a conformational snapshot (i.e., frame) from theMD trajectories plotted based on the RMSD from the
crystallographic structure of three CBD structural motifs, the phosphate binding cassette (PBC), the N3Amotif, and the B/C helix, that characterize the
conformational change in the CBD.
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conformational sampling we started short 10−15 ns MD
simulations from microstates in the MSM with few, 1 or 2,
conformations. Because the microstates are determined by
clustering, conformations in these outlier clusters represented
extreme conformations that could possibly be on transition
pathways. Also, as the microstates had few members, the total
number of transitions into and out of the microstate were
extremely low decreasing our confidence in the rate of transitions
to that state. For each of the conformations selected, 3 MD
simulations were performed, assigning new starting velocities to
explore the conformational space. The lengths of the simulations
were sufficient to explore the local conformational and return to a
local minimum. (Figure 2)Multiple rounds of adaptive sampling,
composed of 68 MD simulations ranging from 10 to 200 ns in
individual length, were performed until there was no noticeable
change in the implied time scale plots, discussed below.
Our approach is a hybrid of the twomain sampling approaches

in the literature: long time scale simulations, such as in the case of
FiP35 WW domain folding a single MSM built from two 100 μs
Anton generated trajectories stated from an unfolded state,32 and
multiple short time scale simulations, such as in the case of
GPCR MSMs simulations that were started from two structures,
active and inactive, collecting multiple 100 ps trajectories for a
total of 2.15 ms leveraging a grid-computing environment.54 A
hybrid approach on our dynamic system allowed us to leverage
the best of both approaches. The long time scale simulations
enabled extensive sampling of the conformational ensemble
followed by short time scale directed-sampling to improve the
model. Using this hybrid method and starting with exper-
imentally determined starting conformations allows for an
unbiased exploration of conformational space. This sampling
approach is similar to the work of Head−Gordon and co-workers
who are able to identify key transition pathways combining long
time scale initial sampling with directed sampling guided by
instantaneous normal modes analysis.55,56 Together these
methods establish the feasibility of unbiased, directed sampling
of the conformational ensemble to detect important structural
and dynamical transitions. Because our approach also allowed us
to rely only on classical MD seeded from experimental structures,
it is hoped that this data set will provide an effective test bed for
comparing sampling methods. Our full trajectory data is available
by request.
Of note, using our final MSM we determined the half-life of

transitioning out each microstate by treating the transition out of
a microstate into several microstates as a multipliable parallel
reaction thus treating the transition as a first order reaction. Some
of the half-lives for these microstates were >200 ns, a standard
sampling duration for current classical MD studies. This
illustrates the sampling limitations for single MD simulations;
and suggests caution should be taken when selecting initial seed
conformations of simulations with short time scale sampling
lengths.
In addition to being able to effectively sample conformational

space, it is also important to know how to track the progress of
sampling and assess when it is complete. For our CBD models,
we employed two approaches to assess sampling robustness.
First, we developed a human readable metric that would allow us
to track the progress of the MD simulations though conforma-
tional space and identify if the simulations have overlapped in
conformational space. Because the CBD H-to-B conformational
change is characterized by the orientation of key structural motifs
in the CBD, we used the RMSD of each structural motif from the
experimental structures to characterize a confirmation. This

allowed us to plot a projection of the protein’s location in
conformational space onto two 3D plots. (Figure 1) We
employed both reference conformations to increase the
likelihood of knowing the simulations overlapped in conforma-
tional space, as the distance between points becomes distorted in
a projection of the hyper-dimensional conformational space. Our
initial sampling, particularly with the Anton runs, overlapped in
conformational space and allowed us to build aMSM of the CBD
making the H-to-B transition with and without cAMP bound.
Second, for adaptive sampling, we employed implied time scale
plots, described below, to evaluate convergence of our model.

■ MICROSTATE DEFINITIONS

In order to build a MSM the conformational space explored by
the MD simulations needs to be discretized. Ideally the
discretization occurs along kinetic boundaries between meta-
stable states in conformational space minimizing approximation
error.57 Since those boundaries are unknown a priori, the
secondary objective is to make the division in conformational
space as small as possible.57 Many approaches have been used
and developed, from traditional root mean squared distance
(RMSD) methods to independent component analysis.15,19

While some recent efforts have been able to recapture kinetic
information within the microstate definitions, generally, any
kinetic information associated with the conformations (e.g.,
velocities from MD trajectories) is discarded, and it is assumed
that conformations that are structurally similar are kinetically
similar.51,58 Fundamentally, the process of discretization involves
defining a vector that describes a state, selecting a distance
metric, and applying a clustering algorithm.
In our study of CBDs, we initially treated the problem CBD

conformational dynamics as a protein folding problem, building
on existing applications of MSMs to study proteins. We defined
the conformation of a protein as spatial coordinates of the
backbone Cα atoms. Corresponding microstates were based on
RMSD clustering. For the sample MSM of the whole CBD
presented here, we utilized the Theobald RMSD clustering
algorithm implemented in MSMBuilder217 allowing alignment.
For the MSM of the substructures of CBD we aligned the MD
sampled conformations to a common reference frame, the
crystallographic structures, in order to study the motions of the
CBD subdomains relative to dynamically stable core of the CBD.
Other studies used different microstate definitions. The Src
kinase studies defined conformations by using subset of heavy
atoms that exhibited the greatest conformational changes.39 For
the GPCR studies, RMSD of active site atom and interdomain
distances were used to define microstates.54 In all three
approaches, microstates were determined according to the
scientific question and structural domains of interest. These
focused state definitions allow for efficient sampling with the
potential neglect of portions of conformational space.

■ MODEL SELECTION

After microstates have been defined and sampling completed, the
MSM needs to be built and its quality determined. In particular,
the quality of a MSM can be quantified by whether the lag time is
sufficiently long that the chosen microstate decomposition
behaves according to the Markov property. The established best
practice is to use methods from spectral theory such as the
Swope−Pitera eigenvalue test, Chapman−Kolmogorov test, and
Bayesian Model selection.59 Assuming that the system is in state
q1 and progresses through state q2 to state q3, these methods are
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measures of whether or not the P(q3|q1q2) = P(q2|q1)P(q3|q2).
While these methods are mathematically rigorous and
informative, often a visual approach is easier to interpret. The
best practice is to generate an implied time scale plot (ITP) of the
model relaxation time scale versus the model lagtime of various
coarse-grain methods or parameters. For a transition matrix T,
we can calculate

τ τ
λ

= −
lnk

k

where τk is the implied time scale, λk is an eigenvalue of the
transition matrix with lag time τ. Ultimately we expect that the
condition

τ τ=T n T( ) ( )n

is observed. This is visualized as an exponential decay in the ITP
to system equilibrium.
In accordance with established best practices, we employed

ITP to determine the quality of our MSM. Using the hybrid k-
centers k-medoids clustering algorithm within MSMbuilder2,17

we carried out a parameter sweep of RMSD cut-offs producing
variable divisions of conformational space and computed ITPs
for each model. Interestingly, as the RMSD cutoff radius
increased, decreasing the total number of clusters, the quality of
the ITPs increased. (Figure 3) Based on the previous theoretical
work, this finding would suggest that as themodel error increased
due to poorer division of the conformational ensemble, theMSM
appears moreMarkovian. The apparent increase in model quality
is likely due to the time exposure of dampening and thermal
fluctuations manifested over the MD simulation. For the case of
an extremely small RMSD cutoff, every conformation in the

Figure 3. Sample comparison between ITP plots and Chapman−Kolmogorov test plots for the apo CBD at different clustering cut-offs. In the left panel,
implied time scale plots (ITPs) are presented. In the right panel, results from the Chapman−Kolmogorov (CK) tests are presented; MD data is blue;
MSM results at different lag times are shown in green (lag 2.4 μs), magenta (lag 4.8 μs), and red (lag 9.6 μs).
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simulated trajectory may be considered its own cluster-state and
the transition between one cluster-state to the next is extremely
fast (the sampling rate). In this case, over dampening must be
used to destroymemory in order to satisfy theMarkovian criteria.
For high friction (high dampening), the probability distribution
of the conformational ensemble is temporally governed by the
Fokker−Planck equation and this technique has been used
determine reaction coordinates via diffusion maps.60

In the case where the RMSD cutoff is large, clusters are often
generated with hundreds of conformations and the transition
between clusters is comparatively slower. The slower the
transition is between clusters, the more the dynamics are
exposed to dampening and thermal fluctuations when integrating
the equations of motion for the simulation. It may be that the
trajectories’ memory is semidestroyed by the amount of time it
resides in a given cluster-state and that if the residence time is
long enough, the trajectory will make an approximately
memoryless transition to another cluster state increasing the
apparent adherence to the Markov criteria.
In addition to ITPs, we performed a Chapman−Kolmogorov

test to validate the models.57,61−63 The Chapman−Kolmogorov
test compares the probability of remaining in a selected state at
increasing time steps of the MD trajectories to that of MSM. A
MSM is considered internally consistent with its source MD
trajectories if the probability of remaining in given state falls
within 1-σ standard error of the MD data.59 Consistent with
theory, the Chapman−Kolmogorov test showed that increasing
the number of microstates and increasing the lag time improved
the consistency of the MSMs (Figure 3). However, as the quality
of the ITP improved, with decreasing number of microstates, the
quality of Chapman−Kolmogorov analyses decreased. The
Chapman−Kolmogorov analyses can be thought of as a measure
of how consistent the Markov State Model is with the actual MD
simulation.57 Therefore, it seems that the choice of cutoff must
balance the Makovian quality (as judged by the ITP) of the
model with the internal consistency (Chapman−Kolmogorov
analysis) of the model. A good MSM will minimize the error
between both.
The error seems to arise from the memory inherent in the MD

trajectory. We argue that a larger cutoff distance must be used in
order to destroy memory but that this causes the continuity of
the MD trajectory to be destroyed. The cluster states are often
represented as crisp partitions in conformational space.
However, a crisp partition implies that the same transition
probabilities are assigned to all conformations associated within a
given cluster-state. It may be likely that a conformation buried
within a cluster-state does not have the same transition attributes
as a conformation located on the peripheral boundary of that
cluster-state. Anchoring a conformation to an assigned transition
probability completely destroys the continuity of the dynamics
and transitions between cluster-states become more like a
jumping process rather than a smooth conformational transition.
The Chapman−Kolmogorov test is likely sensitive to this
discontinuity introduced by larger cluster sizes.
To counteract this issue in our work, we selected theMSM that

had the largest number of clusters with the best-resolved ITPs at
a long lag time, as described above. For the example CBDmodel,
this resulted inmodels of∼120 clusterssignificantly fewer than
the few thousand node models published for other sys-
tems.32,39,54 However, the RMSD cutoff was 3.5 Å, similar to
folding models that resulted in thousands of nodes.32 The lag
time for our models, 9.6 ns, was also similar to GPCR MSMs,54

7.5 ns, and the Scr kinase MSM,39 5 ns. The ITP for the CBD’s

MSM (Figure 3) was better resolved than respective ITPs in
either the GPCR MSMs or the Scr kinase MSM.39,54

■ COMPARING MODELS

In the study of functional proteins, it is critical to be able to
compare different MSMs to understand how ligands or
mutations perturb the underlying free energy landscape and
thus modify function. To our knowledge, only our CBD study41

and the GPCR study54 have attempted to compare MSM from
perturbed systems, and in both cases, bound ligands were the
source of perturbation. For the GPCR work, the same microstate
definitions were used for each model and MSMs was generated
independently with a unique selection of microstates. Compar-
ison between MSMs of different systems was thus done using
information derived from transition state matrix such as TPT or
the generation of representative trajectories via Markov Chain
Monte Carlo techniques and then comparing information
derived from those trajectories. To compare the CBD MSMs,
we employed a “unified clustering” approach. We started by
clustering conformational states explored by both systems with
and without cAMP-bound simulations together in order to
produce a single shared set of microstates. Subsequently, separate
MSMs were built for systems with and without cAMP-bound
systems, using selected clustering parameters that produced
high-quality ITPs and the same lag times for both systems.
Unified clustering allowed for direct comparison between two
MSMs on a microstate-by-microstate basis. We were able to
observe the changes in equilibrium populations of microstates
upon cAMP binding and furthermore, to identify unique
microstates in each system. However, unified clustering may
lead to a less optimal discretization of conformational space, as
microstates are “forced” upon the model for the sampling of the
other systems. We selected MSMs where the ITPs well resolved
for both systems to minimize any distortion generated by unified
clustering.

■ COARSE-GRAINED MODELS

Due to the inherent complexity of the conformational space a
MSM for a well-sampled system may contain hundreds or
thousands microstates. As a result, while high-resolution models
may robustly describe the free energy landscape; it is arduous and
time-consuming to extract distinct human readable kinetic states.
In order to reduce the human burden of interpreting high-
resolution MSMs, coarse-graining methods, which serve to
aggregate similar microstates, are typically used. To understand
the functional dynamics of the CBD in PKA, we employed two
types of coarse-grained models: the first to study metastable
states and the second to explore mapping of metastable states to
putative functional conformations.41

First, we looked at the metastable states using the Robust
Perron Cluster Analysis (PCCA+) method17,64,65 as imple-
mented in MSMBuilder2 followed by the Markov-clustering
algorithm (MCL).66,67 The PCCA+ algorithm performs a fuzzy
spectral clustering based upon the eigenvalues of the stochastic
transition matrix. PCCA+ assumes that there should be a
separation of time scales between slow transitions across barriers
and more rapid transitions within a single basin. This can be
mathematically described by a distinction between the
eigenvalues corresponding to the slowest dynamics (with values
close to 1) and eigenvalues of faster transitions (with values less
than one). Finally, the fuzzy clusters are obtained as a linear
transformation of the slowest eigenvectors.65 Essentially, the
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conformations are grouped into clusters that are separated by the
slow dynamics.
In contrast the MCL algorithm, designed originally for

clustering of simple and weighted graphs, clusters based upon
the propensity of a random walker leaving a particular set of
states. This propensity is calculated by the alternate application
of an expansion and inflation operator until the transition matrix
converges. For a given stochastic transition matrix (A), the
expansion operator computes the power of A using the normal
matrix product (A*A). Successive applications of the expansion
operator on A will eventually converge upon a stationary
distribution. On the other hand, the inflation operator
corresponds with taking the Hadamard power of a matrix (the
elementwise power) followed by a scaling step to ensure the
matrix is stochastic again. The inflation operator is formally
written as,

Γ =
∑ =

M

M
( A)

( )

( )
pq

pq
r

i
k

iq
rr

1

where Γr is the inflation operator, Mpq is the value of stochastic
transition matrix A at row p and column q, and r is a tunable
parameter that determines the amount that strong neighbors
strengthened and weak neighbors demoted. By analogy,
parameter r correlates with how much the contrast ratio between
barrier height and well depth is increased per iteration.
Effectively, larger values of r will lead to enhanced sensitivity to
small basins of attraction in the network, resulting in additional
clusters and has been compared to the rate of temperature
decrease in simulated annealing.68 In summary, MCL clusters
states that are tightly connected by fast transitions.
As shown in Figure 4, both PCCA+ and MCL coarse-grained

mostly share the same microstates. It is likely that PCCA+ and
MCL coarse-grain to similar clusters because fundamentally both
cluster based upon the propensity of a random walker to remain
in a cluster with minimal jumps between clusters. MCL calculates
this stationary distribution by strengthening fast transitions while
weakening slow transitions, manipulating the transition matrix in
a nonphysical way. While PCCA+ calculates this stationary
distribution by using linear combinations of eigenvectors
corresponding to the slow-transitions thus preserving the slow
time scales of the transition matrix.
Due to its deterministic nature and r’s relationship to the

barrier height, we usedMCL for our analyses. For example, MCL
facilitated the qualitative comparison of two energy landscapes of
a structural motif of CBD. By comparing MCL at different r
values clearly showed how the addition of cAMP changed the
free energy landscape from a shallow surface with multiple
metastable states to a defined two state system. (Figure 5).
Second, we used transition pathway theory (TPT) committer

analysis69 to divide the conformational ensemble into “func-
tional”macrostates. We used results of the committer analysis to
divide the microstates into clusters with >50% of transitioning to
microstates that contained one of the crystallographic con-
formations. This model assumes that the end-point crystal
structures best represent the functional state of the protein. In
effect, this method determines a functional “continental divide”
in the free energy landscape. Encouragingly, the functional
divisions corresponded with the kinetic divisions determined
with the MCL analysis (Figure 4). The combinations of these
two analysis techniques identified which of the kinetic transitions
corresponded to functional transitions. While this approach was

helpful in the analysis of the CBD, a robust study of this approach

should be performed before it is more generally applied.

Figure 4. Sample comparison of PCCA+, MCL, and TPT committer
macrostate models. Color-coding of the microstates identifies macro-
state membership. Microstate nodes are plotted based on the RMSD of
the cluster generator from two reference structures and the node
diameters are proportional to the log of their proportional equilibrium
population.
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■ CONCLUSIONS LOOKING FORWARD

The advancements in computational resources and architectures
have increased our MD sampling capabilities, and with the
addition of MSMs as an emerging new general data analytics
framework, it is now possible to characterize full equilibrium

thermodynamics for functional protein systems with atomistic

detail. In this work, we discussed issues surrounding sampling,
microstate definitions, model selection, model comparison, and
coarse-grained models, and attempt to highlight the challenges
arising from more complicated systems.

Figure 5.Comparison ofMCLmacrostate models for a subdomain of the CBDwith and without cAMP-bound at different MCL-p values. Color-coding
of the microstates identifies macro states membership. Microstate nodes are plotted based on the RMSD of the cluster generator from two reference
structures and the node diameters are proportional to the log of their proportional equilibrium population.
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In the area of sampling, ideally we would like to use
experimental observables, for example NMR-derived order
parameters, to determine if our models are converged and
whether sampling is sufficient. Relationships between MSM and
experimental observables are only beginning to be explored,70

but should be a major focus of research moving forward.
Currently, it seems the general approach is to sample to the
maximum capabilities of the employed computational resources.
Going forward, the development of automated metrics to assess
sampling convergence on-the-fly may improve utilization of
available resources and make the process of creating MSMsmore
efficient, reproducible, and reliable.
To our knowledge, there has been no systemic evaluation of

microstate definitions and their effect on sampling, MSM
outcomes, and scientific insight. Unfortunately, at this point,
there is likely insufficient publically available data to conduct a
systematic analysis. However, as the implementations of MD-
MSM increase, a well-described test set would be a desirable
community outcome in order to facilitate meaningful compar-
ison between definitions.
In the realm of model selection, the inconsistences with the

Chapman−Kolmogorov test in our work and the lack of
reporting of the Chapman−Kolmogorov test in the other
published functional studies indicate the continued reliance on
ITP to determinemodel quality. The relatively poor resolution of
slow motions in the GPCR and Src studies and the inconsistency
of the Chapman−Kolmogorov test results in our study suggest
that there is more to be done in either improving the models or
methods for evaluating the models.
As MSMs are constructed for an increasing number of

biological systems, coarse-graining methods will need to
continue to be developed, studied and evaluated. Coarse-
graining models not only provide intuitive models of MSM,
they can also form the basis for multiscale modeling approaches,
allowing atomic scale MSM to be integrated inMarkov models of
macromolecular and subcellular processes. This integration
requires development of transparent error analysis techniques
that facilitate the assessment of error propagation between
models and across scales.
Moving forward, methods for comparing MSMs need to be

developed that are both qualitative and quantitative. While the
scientific questions of each study generally guide the specific
ways two MSMs are compared, a systematic and theoretically
sound approach to assessing differences in the resulting two free
energy landscapes needs to be addressed.
As more complicated systems are explored, researchers in the

field will need to be continually critical of the employed
approaches. We need to understand and continue to define
limitations of the theoretical underpinnings of our work and
where we are being guided by our biological intuition. We hope
that the frank discussion of methods presented in this work will
encourage discussion and continue methodological advance-
ments related to the application of MSMs to larger-scale
biological systems.
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