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The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-
Mediated Biofilm Formation in Pseudomonas aeruginosa
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Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen and a threat for immunocompromised and cystic
fibrosis patients. It is responsible for acute and chronic infections and can switch between these lifestyles upon taking an in-
formed decision involving complex regulatory networks. The RetS/LadS/Gac/Rsm network and the cyclic-di-GMP (c-di-GMP)
signaling pathways are both central to this phenomenon redirecting the P. aeruginosa population toward a biofilm mode of
growth, which is associated with chronic infections. While these two pathways were traditionally studied independently from
each other, we recently showed that cellular levels of c-di-GMP are increased in the hyperbiofilm retS mutant. Here, we have for-
mally established the link between the two networks by showing that the SadC diguanylate cyclase is central to the Gac/Rsm-
associated phenotypes, notably, biofilm formation. Importantly, SadC is involved in the signaling that converges onto the RsmA
translational repressor either via RetS/Lad$ or via HptB/HsbR. Although the level of expression of the sadC gene does not seem
to be impacted by the regulatory cascade, the production of the SadC protein is tightly repressed by RsmA. This adds to the
growing complexity of the signaling network associated with c-di-GMP in P. aeruginosa. While this organism possesses more
than 40 c-di-GMP-related enzymes, it remains unclear how signaling specificity is maintained within the c-di-GMP network. The
finding that SadC but no other diguanylate cyclase is related to the formation of biofilm governed by the Gac/Rsm pathway fur-
ther contributes to understanding of this insulation mechanism.

Bacteria adopt different lifestyles in response to the fluctuating
conditions that they encounter in the environment. They can
form a biofilm, which is a sessile community of bacteria, and they
can switch between a motile and a sessile lifestyle (1, 2). In a bio-
film, bacteria are engulfed in an extracellular matrix composed of
exopolysaccharides, extracellular DNA, and proteins (3—6). This
helps protect bacteria from various stresses, harsh antimicrobial
treatments, or eradication by the immune system (7). In the case
of the opportunistic Gram-negative pathogen Pseudomonas
aeruginosa, several exopolysaccharides have been described.
Whereas mucoid strains isolated from cystic fibrosis patients
overproduce alginate (8), nonmucoid strains, such as PAOIL,
PA14, or PAK, can produce the Pel exopolysaccharide, a glucose-
rich polymer (9-11), and/or the Psl exopolysaccharide, a polymer
of a repeating pentamer containing b-mannose, L-rhamnose, and
D-glucose (12).

The switch in lifestyle and the development of biofilms are
based on informed decisions relayed via complex regulatory net-
works. This results in the control of various cellular processes at
the transcriptional, posttranscriptional, or posttranslational level.
In the last decade, key networks, such as the Gac/Rsm pathway or
the second messenger, cyclic-di-GMP (c-di-GMP) signaling path-
way, have been proven to be central in modulating the transition
to biofilms (13, 14). In P. aeruginosa, the Gac/Rsm pathway in-
cludes the RetS and LadS sensors that antagonistically impact the
activity of the GacS histidine kinase (15-18). RetS can form het-
erodimers with GacS, thus preventing phosphorylation of the cog-
nate response regulator GacA (19), which otherwise promotes the
transcription of two small RNAs, RsmY and RsmZ (20). More
recently, it was shown that RetS activity could be counteracted by
the PA1611 sensor histidine kinase (21). Ultimately, the small
RNAs sequester RsmA, a repressor that inhibits the translation of
target mRNAs by binding to single-stranded GGA motifs formed
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near the ribosome binding site (22-24). Among the more than 500
targets of RsmA are the transcripts of the pel and psl genes (22, 25).
Hence, a retS or an rsmA mutant has a hyperbiofilm phenotype
due to the stimulation of the Gac pathway and the relieved RsmA
repression on exopolysaccharide production.

In parallel to the Gac/Rsm pathway, signaling networks medi-
ated by c-di-GMP are also related to the transition to a biofilm (14,
26, 27). This cyclic dinucleotide is ubiquitous among bacteria,
with low intracellular levels of c-di-GMP promoting a motile life-
style and high levels promoting biofilm formation (28). Proteins
involved in the synthesis of c-di-GMP harbor a GGDEF domain
and are known as diguanylate cyclases (DGCs) (29). Proteins with
an EAL or HD-GYP domain are called phosphodiesterases (PDEs)
and are involved in c-di-GMP hydrolysis (29).

Recently, it was shown that a retS mutant displays elevated
levels of c-di-GMP, suggesting a link between the two networks
(30). In the present work, we have attempted to pinpoint the mo-
lecular basis of this link. We report that the membrane-associated
DGC known as SadC (31) is central to the Gac/Rsm pathway and
that additional elements, such as SadB, also play a role in the
signaling cascade.
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MATERIALS AND METHODS

Strains, plasmids, and growth conditions. The bacterial strains, plas-
mids, and primers used in this study are listed in Table S1 in the supple-
mental material. Bacteria were cultured at 37°C with shaking in LB me-
dium or M9 minimal medium containing 22 mM glucose, 2 mM MgSO,,
and 0.1 mM CaCl,. Culture media were supplemented with antibiotics at
the following concentrations, when appropriate: for Escherichia coli, 50
pg/ml ampicillin (Ap) and 50 pg/ml kanamycin (Km), and for P. aerugi-
nosa, 500 wg/ml carbenicillin (Cb) for selection or 300 wg/ml Cb for
maintenance, 2,000 pg/ml streptomycin (Sm) for selection, 150 pg/ml
gentamicin (Gm) for selection and 100 pwg/ml Gm for maintenance, and
50 pg/ml tetracycline (Tet) for maintenance. A Congo red staining assay
was performed at 30°C on tryptone (10 g/liter) agar (1%) plates supple-
mented with 40 pg/ml Congo red and 20 pg/ml Coomassie brilliant blue.
Plates for swimming motility assays were prepared using 0.3% LB agar
and incubated at 30°C as described previously (32). Escherichia coli
OmniMAX and TOP10 were used for standard genetic manipulations.
PCR products were cloned into pCR2.1-TA and subcloned into
pBBRIMCS-4 or pKNG101. Transfer of plasmids into P. aeruginosa
strains was carried out by triparental mating using the conjugative prop-
erties of plasmid pRK2013. Transconjugants were isolated on Pseudomo-
nas isolation agar (Difco) supplemented with the appropriate antibiotics.
Deletion mutants were selected in 5% sucrose after 3 days of incubation at
room temperature. Mutator fragments were constructed by PCR ampli-
fication of upstream and downstream fragments of approximately 500 bp
flanking the chromosomal region to be mutated. Deletions were con-
firmed by sequencing using external primers.

Biofilm assays. Visualization of biofilm formation was carried out in
14-ml borosilicate tubes. Briefly, LB (3 ml) or M9 medium supplemented
with appropriate antibiotics was inoculated to a final optical density at 600
nm (ODy,) of 0.1 and incubated at 37°C. Biofilms were stained with 0.1%
crystal violet (CV), and tubes were washed with water to remove unbound
dye. Quantification of biofilm formation was performed in 24-well poly-
styrene microtiter plates. LB (1 ml/well) and antibiotics, when appropri-
ate, were inoculated to a final ODy,, 0f 0.01. The plates were incubated for
6 h or 14 h at 30°C. Biofilms were stained with 100 pl of CV and washed
twice with water before being solubilized in 96% ethanol. CV staining was
measured by reading the optical density at 600 nm.

RNA extraction and qRT-PCR. Overnight PAK and PAK AretS cul-
tures were subcultured in LB medium with a starting ODy,, of 0.1 and
incubated at 37°C with shaking for 6 h. Cells were then harvested into
RNAlater stabilization solution (Ambion), and RNA was extracted using
an RNeasy extraction kit (Qiagen). To remove DNA, a Turbo DNA-free
kit (Applied Biosystems) was used, and the RNA was repurified using an
RNeasy kit, following the supplier’s indications. cDNA was synthesized
from 200 ng of RNA template by adding 20 U of Protector RNase inhibitor
from Roche, 10 pmol of Pd(N), random hexamer oligonucleotides from
Amersham, and 10 pmol deoxynucleoside triphosphates from Bioline to
the reaction mix. Quantitative real-time reverse transcription-PCR (qRT-
PCR) was performed on an ABI 7300 real-time PCR system using ABI
SYBR green PCR master mix.

Quantification of c-di-GMP. The reporter PcdrA-gfp plasmid, ob-
tained from Matthew Parsek (33), was introduced into the P. aeruginosa
strains of interest by electroporation, and overnight cultures were subcul-
tured in LB medium supplemented with the appropriate antibiotic to a
starting ODy, of 0.1. After shaking incubation at 37°C for 6 h, 1 ml of
culture was harvested and cells were resuspended in 1X phosphate-buft-
ered saline (PBS) before the optical density at 600 nm and fluorescence
(excitation, 485 nm; emission, 520 nm) were measured in a black 96-well
plate with a see-through bottom (Falcon) using a FLUOstar Optima plate
reader (BMG Labtech). Quantifications were performed in triplicate, and
data are presented as relative fluorescent units (RFU), which are arbitrary
fluorescent units corrected for cell density.

Construction of chromosomal Flag fusions. The PAO1 strains en-
coding DGC proteins with a C-terminal Flag tag were engineered using a
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strategy previously described (34). Briefly, the Flag fusion constructs were
produced by splicing by overhang extension PCR using the primers listed
in Table S1 in the supplemental material and contained 500- to 700-bp
homologous flanking regions, with the Flag tag positioned in the middle.
This construct was ligated into pME3087 between BamHI and HindIII/
EcoRI restrictions sites. The resulting vector was then used to introduce
the Flag tag fusion by a two-step allelic exchange. Following biparental
conjugation (donor S17-1) into the target strain, single crossovers were
selected on Tet and restreaked. Cultures from single crossovers were
grown overnight in LB medium and diluted 1:100 into fresh medium.
After 2 h, 20 pg/ml Tet was added to inhibit the growth of cells that had
lost the Tet resistance cassette. After a further hour of growth, 2,000 g/ml
Cb was added to select against growing bacteria. Cultures were grown for
a further 4 to 6 h, before cells were harvested by centrifugation, washed
once in LB, and used to inoculate an overnight culture. This counterse-
lection was done twice, before plating a dilution series of the final samples
onto LB agar. Individual colonies were patched onto LB plates with or
without Tet, and Tet-sensitive colonies were tested for Flag insertion by
colony PCR.

Western blots. Strains with chromosomal Flag-tagged DGCs contain-
ing a vector with either rsmY or rsmA under the control of an inducible
promoter were grown overnight, diluted 1:100 in the morning, and grown
toan ODy, of 1.5. This culture was used to inoculate 20 ml prewarmed LB
supplemented with 0.05% Triton X-100. At an ODg, of 0.4, 1 mM IPTG
(isopropyl-B-p-thiogalactopyranoside) was added for induction of rsmY
or rsmA. After induction, samples were taken every hour. Samples were
separated on 12% Tris-HCI gels and blotted onto 0.45-pm-pore-size
polyvinylidene difluoride (PVDF) membranes (Millipore). The mem-
branes were incubated overnight in blocking solution (1X PBS, pH 7.4,
0.01% Tween 20, 5% milk powder), after which proteins were detected
with 1:7,000-diluted and 1:10,000-diluted rabbit anti-mouse M2-specific
antiserum (DakoCytomation). Bound antibodies were visualized using
ECL chemiluminescent detection reagent (PerkinElmer).

RESULTS

The RsmA-dependent diguanylate cyclase PA0338 is not in-
volved in the retS mutant hyperbiofilm phenotype. It has previ-
ously been shown that in a P. aeruginosa PAK retS mutant, the
levels of c-di-GMP are increased (30). We hypothesized that this
could be a consequence of either (i) an upregulation or activation
of proteins with DGC activity or (ii) a downregulation or inacti-
vation of proteins with PDE activity. Since a retS mutation results
in the relief of RsmA repression, the RsmA regulon (22) was
screened for putative upregulated DGCs or downregulated PDEs.
Analysis of the data published by Brencic and Lory in 2009 (22)
revealed that only one putative DGC, PA0338, was upregulated
(2.8-fold) in the rsmA mutant compared to its level of regulation
in the PAK wild-type strain, and no putative PDE was downregu-
lated. Using qRT-PCR, we were able to show that PA0338 mRNA
levels are 3.8-fold higher in a retS background than in the parental
PAK strain (Fig. 1A). RetS is also known to inversely regulate the
type III secretion system (T3SS) and type VI secretion system
(T6SS) via RsmA (30), and our qRT-PCR confirmed this observa-
tion (Fig. 1A). In light of the PA0338 upregulation, we tested
whether a mutation in PA0338 resulted in the suppression of the
retS hyperbiofilm phenotype. A retS PA0338 mutant was engi-
neered and spotted on Congo red agar plates. Both the retS and
retS PA0338 mutants displayed a wrinkly red phenotype that con-
trasts with the smooth white appearance of the PAK wild-type
strain, suggesting that the double mutant is still a hyperbiofilm
former (Fig. 1B). The level of c-di-GMP was also monitored in
these strains using the PcdrA-gfp reporter fusion (33). As shown in
Fig. 1C, the retS and retS PA0338 mutants displayed elevated levels

Journal of Bacteriology


http://jb.asm.org

A 15
B PAKApel

- . [ PAKAretSApel
(] *k
2 5
©
S |
T 0 [ |
S T6SS (hsiA1)  T3SS|(pctv) PA0338

-5 ——

-80 ﬁ

-90 L

-100 =
B PAK AretS AretSAPA0338
C 50000 *kk *kk
40000
> 30000
[T
© 20000

10000

, il
PAK AretS  AretSAPA0338

FIG 1 PA0338 is upregulated in a retS mutant background. (A) Transcript
levels of hsiAl (positive control), pcrV (negative control), and PA0338 mea-
sured by qRT-PCR and normalized to those of gyrA. Statistical Student’s ¢-test
analysis was based on three replicates, and significant changes are indicated
(**, P <0.001;***, P < 0.0001). (B) Congo red binding of the indicated strains
after 2 days of incubation. (C) Intracellular levels of c-di-GMP measured with
the transcriptional PcdrA-gfp reporter. Relative fluorescence units (RFU) are
arbitrary fluorescence intensity units corrected for cell density. At least three
independent experiments were performed. Statistically significant changes
were calculated using the Student t test and are indicated (***, P < 0.0001).

SadC- and RsmA-Dependent Signaling

of ¢-di-GMP. Therefore, these data suggest that PA0338 is not
involved in the synthesis of c-di-GMP that leads to the hyperbio-
film phenotype of the retS mutant.

SadCis responsible for the retS mutant hyperbiofilm pheno-
type. In the initial characterization of the retS mutant (15), a
transposon mutagenesis screen for suppressors of the retS hyper-
biofilm phenotype was performed, and insertions were mapped to
the gacS, gacA, rsmZ, and PA4332 (sadC) genes. SadC is a mem-
brane protein and has a cytoplasmic C-terminal GGDEF domain
with known DGC activity (31, 35). Herein, we engineered a retS
sadC mutant and examined the biofilm phenotype using crystal
violet staining. As a control, a sadC single mutant was also in-
cluded. Interestingly, deletion of sadC in the retS background
readily resulted in the loss of the retS mutant hyperbiofilm phe-
notype (Fig. 2A). This loss of phenotype was more pronounced
than the loss caused by the deletion of sadC alone (Fig. 2A) and
could be complemented by introducing the sadC gene in trans
(Fig. 2B). Moreover, the reduced ability of the retS sadC mutant to
form biofilms was accompanied by an increase in the ability of the
strain to swim in soft agar plates (Fig. 2C). Finally, the retS sadC
mutant displayed levels of c-di-GMP similar to those displayed by
the wild-type strain (Fig. 2D), suggesting that the SadC diguany-
late cyclase is active in the retS mutant and is responsible for the
hyperbiofilm phenotype.

SadC is responsible for the hptB mutant hyperbiofilm phe-
notype. We next investigated the role of SadC in a known regula-
tory pathway that converges onto the Gac/Rsm pathway and in-
volves the histidine phosphotransfer module HptB (36-38). It was
shown previously that an hptB mutant displays a hyperbiofilm
phenotype and this phenotype is milder than the one observed for
the retS mutant (36). Analysis of the c-di-GMP levels and Congo
red binding showed that the intermediate level of biofilm forma-
tion of the hptB mutant corresponds to an intermediate level of
intracellular ¢-di-GMP, and both phenotypes were abrogated in
an hptB sadC mutant (Fig. 3A and B). To further establish the
pivotal role of SadC in these RsmA-dependent pathways, an in-
verse approach was used whereby the RetS and HptB antagonists,
namely, LadS (17) and HsbR (36, 39), respectively, were overex-
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FIG 2 SadC is required for the retS mutant hyperbiofilm phenotype. (A) Quantification of the crystal violet staining of biofilms grown in microtiter plates for
14 h. A photo of the test tubes was taken prior to the addition of ethanol for quantification purposes. (B) Crystal violet staining of biofilms grown in test tubes
for 6 h. The empty vector pPBBRIMCS-4 (pvector) and pBBRIMCS-4-sadC (psadC) were conjugated into PAK AretS or PAK AretS AsadC. (C) Results of a
swimming motility assay performed in 0.3% LB agar plates. (D) Intracellular levels of c-di-GMP measured with the transcriptional PcdrA-gfp reporter. Relative
fluorescence units (RFU) are arbitrary fluorescence intensity units corrected for cell density. At least three independent experiments were performed. (A, C, and
D) Statistically significant changes were calculated using the Student ¢ test and are indicated (**, P < 0.001; ***, P < 0.0001).
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FIG 3 SadC is required for the hptB mutant hyperbiofilm phenotype. (A)
Congo red binding of the indicated strains after 2 days of incubation. (B)
Intracellular levels of c-di-GMP measured with the transcriptional PcdrA-gfp
reporter. Relative fluorescence units (RFU) are arbitrary fluorescence intensity
units corrected for cell density. At least three independent experiments were
performed. Statistically significant changes are indicated (***, P < 0.0001,
Student’s t test). (C) PAK and PAK AsadC were conjugated with pBBRI-
MCS4-ladS (pladS) or pBBR1-MCS4-hsbR (phsbR). Congo red binding is
from day 2 of incubation.
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pressed in a sadC mutant. For this purpose, plasmids encoding
either the sensor LadS or the response regulator HsbR were intro-
duced by conjugation into the relevant strains. While overexpres-
sion of ladS and hsbR in the wild-type strain induced Congo red
binding, a similar phenotype could not be obtained in the sadC
mutant (Fig. 3C). Overall, these data suggest that the increase of
c-di-GMP levels and the induction of biofilm-related phenotypes
observed upon activation of the Gac/Rsm cascade rely entirely on
the diguanylate cyclase SadC.

SadC production is controlled by RsmA. Both the RetS- and
HptB-dependent pathways ultimately relay onto the translational
repressor RsmA, and therefore, the sadC deletion was also engi-
neered in an rsmA mutant background. Note that the rsmA mu-
tant displayed a wrinkly red phenotype and this corresponded to
an increased level of c-di-GMP (Fig. 4A and B). As was observed
for the retS sadC and hptB sadC double mutants, hyperbiofilm
formation and the increase in c-di-GMP levels were also lost in the
rsmA sadC mutant (Fig. 4A and B). In addition, a crystal violet
assay showed that the overexpression of sadC resulted in hyper-
biofilm formation in the wild-type or sadC mutant strains but
failed to do so in the rsmYZ mutant (Fig. 5A). This suggests that
sadC overexpression cannot relieve the repression by RsmA and is
in favor of a link between these two signaling pathways, yet it is a
possibility that the lack of biofilm is due to the absence of rsmYZ,
a reduced level of c-di-GMP, or both. In order to address this
further, we then used an alternative strategy. As discussed above,
previous studies identified PA0338 as a direct target for RsmA
(22), but no RsmA-dependent control on SadC production was
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FIG 4 Deletion of sadC abrogates the hyperbiofilm and high c-di-GMP phe-
notypes of an rsmA mutant. (A) Congo red binding phenotypes visualized on
day 2 of incubation. (B) Intracellular levels of c-di-GMP measured with the
transcriptional PcdrA-gfp reporter. Relative fluorescence units (RFU) are ar-
bitrary fluorescence intensity units corrected for cell density. Statistically sig-
nificant changes are indicated (***, P < 0.0001, Student’s t test).

reported. Here, we used an original approach to look at the pro-
duction of SadC in a genetic background where either rsmA or one
of its regulatory antagonists, the small RNA rsmY, is overex-
pressed. To do this, the chromosomally encoded sadC was genet-
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FIG 5 SadC production is controlled by RsmA. (A) Quantification of the
crystal violet staining of biofilms grown in microtiter plates for 6 h. Statistically
significant changes are indicated (**, P < 0.001, Student’s ¢ test). (B) Immu-
noblots with M2 antiserum showing the levels of DGC-Flag variants in whole-
cell lysates. The PAO1 DGC-Flag strains indicated on the left contain different
plasmids: pvector (empty vector), prsmY (IPTG-inducible rsmY), and prsmA
(IPTG-inducible rsmA). Cells were harvested after 1 h induction with 1 mM
IPTG. Shown here is a representative immunoblot from at least three indepen-
dent experiments.
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FIG 6 SadB is central to the RetS- and HptB-dependent signaling pathways.
Crystal violet staining of biofilms grown under shaking conditions for 8 h (A)
and 18 h (B) is shown.

ically modified to encode a FLAG-tagged version of the protein,
and the levels of SadC were monitored by Western blotting using
antibodies against the tag. Strikingly, SadC was readily detected
when the RsmA repression was released by RsmY overproduction,
whereas SadC production was drastically reduced upon RsmA
induction (Fig. 5B). The same was observed for PA0338 but not
for two additional DGCs that were taken as negative controls,
namely, PA0847 and PA5487 (Fig. 5B).

SadB is also central to the Gac/Rsm pathway. Previous work
(31) has placed SadB and SadC in the same genetic pathway reg-
ulating biofilm formation. Although SadB is a protein of un-
known function (40), it was shown that it is required for SadC
signaling. We thus tested whether a sadB mutation was able to
suppress the phenotype associated with retS or hptB mutations, as
was observed for a sadC mutation. In both cases, the hyperbiofilm
phenotype was significantly reduced upon introduction of the
sadB deletion (Fig. 6). Altogether, our results indicate that the
Gac/Rsm pathway is tightly linked to c-di-GMP signaling via
the SadC/SadB pathway.

DISCUSSION

In P. aeruginosa there are more than 40 putative proteins involved
in the metabolism of ¢-di-GMP, and this is thought to form an
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intricate intracellular network that specifically regulates biological
processes crucial for bacterial adaptation and virulence (41).
However, many of the studies about this second messenger have
used genetic approaches whereby a particular DGC or PDE is
overexpressed, and this seems to have a general impact in dictating
the lifestyle fate of a bacterial population, failing to establish a
more specific function. Here, we sought to identify the protein or
proteins specifically responsible for the elevated levels of c-di-
GMP in a retS mutant, thus physically connecting the two net-
works (Fig. 7). RetS is a sensor protein that represses Gac/Rsm
signaling by forming heterodimers with the GacS sensor (15). Al-
though the complexity of the Gac/Rsm system varies between dif-
ferent species, the GacA/GacS two-component system, the cog-
nate small RNA targets and the translational repressor, are
conserved in Gammaproteobacteria (24). In some species, a spe-
cific link between the Gac/Rsm pathway and c-di-GMP signaling
has been reported in the last few years. In E. coli, the GacA/GacS
two-component system is known as BarA/UvrY and controls the
expression of the small RNAs CsrB and CsrC. These, in turn, mod-
ulate the activity of the CsrA translational repressor, which targets,
among many other genes, two genes encoding proteins with a
GGDEF domain, YdeH and YcdT (42). In Salmonella enterica, the
GacA/GacS two-component system is known as BarA/SirA and
modulates the CsrA translational repressor via CsrB and CsrC. In
this case, CsrA is known to regulate eight genes encoding GGDEEF,
GGDEF/EAL, or EAL domain proteins, and five of these are reg-
ulated by direct binding of CsrA to the mRNA (43). In Xanthomo-
nas campestris, RsmA has been shown to control posttranscrip-
tionally at least three GGDEF domain proteins, and the three
contribute additively to the elevated levels of ¢-di-GMP in the
rsmA mutant (44). In P. aeruginosa, direct evidence that the Gac
system and c-di-GMP signaling were interlinked came from the
observation that the retS mutant displays high levels of c-di-GMP
and that the c-di-GMP-induced T3SS/T6SS switch is dependent
on the two sSRNAs RsmY and RsmZ (30).

On the basis of the published literature, two proteins with a
GGDEF domain were considered of interest in this study. On the
one hand, PA0338 was reported to be upregulated in an rsmA
mutant (22), and on the other hand, a PA4332 (sadC) transposon
mutant had been identified as a suppressor of the retS mutant
hyperbiofilm phenotype (15). By engineering mutants with dele-

/ Biofilm
A\

FIG 7 The SadC and the Gac/Rsm pathways are interlinked. The Gac/Rsm system is a complex signaling cascade that regulates several biological functions,
including biofilm formation. The proteins belonging to this cascade that negatively impact the formation of biofilms are indicated in red. All the proteins of this
cascade indicated in green have a positive impact on biofilm formation. The hyperbiofilm phenotype induced by the deletion of the retS, hptB, or rsmA gene is
dependent on an intact sadC gene product to produce c-di-GMP (represented by stars). SadC levels are under the control of RsmA, but the exact mechanism by
which it occurs is still unknown. Downstream of SadC is SadB, whose function remains obscure.
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tions of these genes, we were able to conclude that the activity of
SadC is directly responsible for the hyperbiofilm phenotype and
the elevated levels of c-di-GMP observed in a retS mutant. To
further understand the importance of SadC in the Gac/Rsm path-
way, deletion of sadC was also introduced into hptB and rsmA
mutant backgrounds. The HptB pathway is known to converge
onto RsmA, possibly via the transcriptional repression of RsmY
(36). In addition, HptB can be phosphorylated by the sensor
PA1611 (37), which is able to interact with RetS to counteract its
repressing role upon GacS (21). Once it is phosphorylated, HptB
phosphorylates HsbR, whose output domain has both a phospha-
tase activity and a kinase activity (36, 45). HsbR controls the phos-
phorylation state of HsbA, an anti-anti-sigma factor that is likely
to control the availability of a sigma factor required for rsmY ex-
pression. For the flagellum biogenesis, it has recently been shown
that this anti-anti-sigma factor regulates the anti-sigma factor
FlgM, releasing ® (45). In both the htpB sadC and rsmA sadC
mutants, we observed the abrogation of the hyperbiofilm pheno-
type and a restoration of the c-di-GMP levels.

Even though PA0338 does not seem to account for the produc-
tion of c-di-GMP in the retS mutant, both qRT-PCR and Western
blot analysis indicate that the expression and production of
PA0338 are under the control of RsmA. This may suggest that the
catalytic activity of PA0338 is too low to be a major contributor to
biofilm formation or that it might be connected to other RsmA-
dependent phenotypes, yet it was previously shown that overex-
pression of PA0338 is able to increase the biofilm levels in PA14
(46), a genuine ladS mutant (47). In the case of SadC, RsmA con-
trol was detected only at the level of protein production, while no
regulation of transcript abundance was observed by qRT-PCR
(data not shown).

SadC was previously characterized for its role in swarming mo-
tility and put in the same genetic pathway as BifA (48), a PDE, and
SadB, a protein of unknown function (40). In addition, RoeA, a
DGC, has been shown to have an additive effect with SadC in P.
aeruginosa strain PA14 (35, 49). Since SadB has been demon-
strated to act downstream of SadC, the impact of a sadB deletion in
the retS and hptB mutants was also investigated, and the results
confirmed the position of SadB downstream of SadC in the signal-
ing cascade, although the function of SadB is not clear. It has
previously been shown that both the N-terminal YbaK domain of
SadB and the C-terminal HD domain of SadB are required for
function (40, 50). Hypothetically, it was considered that SadB
could act upstream of c-di-GMP synthesis, somehow assisting
SadC to achieve its DGC activity, or that SadB could function as a
c-di-GMP receptor, somehow transmitting the c-di-GMP signal
to downstream targets. In addition to this, SadB is known to act
upstream of the Pil-Chp chemotactic cluster (50), and this cluster
is required for type IV pilus (T4P) biogenesis (51). Interestingly,
in Pseudomonas fluorescens, a link between SadB and the Gac sys-
tem in which it exerts a negative regulation on flagellum-driven
motility during exponential phase has recently been established
(52). In this bacterium, the Gac system comprises three transla-
tional repressors, RsmA, RsmE, and Rsml (53), and the two sig-
naling cascades were shown to intersect in the cooperative regu-
lation of the 0** sigma factor, also known as AlgT or AlgU. On the
one hand, SadB is required for the transcription of o022, and on the
other hand, RsmA and RsmE act as translational repressors of o2
Once it is produced, 0% is necessary for the expression of the
transcriptional regulator amrZ (also referred to as algZ) (54, 55),
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which functions to downregulate fleQ, a c-di-GMP binding pro-
tein (56) and the master regulator of the flagellar components. In
P. aeruginosa, it is not known if o2? is a member of the RsmA
regulon, but AmrZ belongs to the ¢ regulon and has been shown
to be involved in both the downregulation of flagella and Psl ex-
opolysaccharide and the upregulation of twitching motility and
alginate production (57-60).

In conclusion, the regulatory pathways involved in the control
of P. aeruginosa lifestyles are increasingly complex. The connec-
tion between Gac/Rsm signaling and c-di-GMP is unlikely to be
restricted to biofilm control or the T3SS/T6SS switch, and recent
studies have also highlighted that iron uptake is coordinately reg-
ulated by these two networks (61). It is thus important to study in
further depth the direct connections existing between each com-
ponent and preferably avoid an overexpression context. Our fu-
ture work will aim at establishing what the downstream targets of
c-di-GMP signaling via SadC are. More particularly, we will inves-
tigate what the function of SadB is, although it is likely that other
important players in the cascade are still to be identified.
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