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Following the recent availability of high-coverage genomes for Denisovan and Neanderthal hominids, we conducted a screen for
endogenized retroviruses, identifying six novel, previously unreported HERV-K(HML2) elements (HERV-K is human endoge-
nous retrovirus K). These elements are absent from the human genome (hg38) and appear to be unique to archaic hominids.
These findings provide further evidence supporting the recent activity of the HERV-K(HML2) group, which has been implicated
in human disease. They will also provide insights into the evolution of archaic hominids.

In 2008, an archaeological dig at a cave in the Siberian Altai
mountain range led to the discovery of a finger bone belonging

to a female hominid, dating to at least �50,000 years ago (1, 2).
From this, the DNA of a subspecies of Homo sapiens, designated
Denisovans, was sequenced (1). Similarly, a draft Neanderthal ge-
nome—a sister group to Denisovans—–was sequenced from
three individuals in 2010 (3, 4). Using this data, Agoni et al. (5)
identified 14 novel human endogenous retrovirus K (HERV-K)
proviruses, which were absent from the human genome sequence
(assembly hg19). The authors suggested that these HERVs were
unique to archaic hominids and that no orthologous insertions
would be found in modern humans (5). Subsequently, however,
Marchi et al. reported that all of these sequences were actually
present, or likely to be present, in some modern humans (6).

In this study, we screened the most recently available high-
coverage genomes for a Denisovan (4) and an Altai Neanderthal
(2) for HERV-K proviruses. We present six novel, endogenized
retroviruses, absent from the hg38 human genome, 43 modern-
human genomes reported by Lee et al. (7), and a further 358 re-
ported by Marchi et al. (8). These may therefore represent the first
proviruses unique to Neanderthal and Denisovan hominids.

While endogenized retroviral DNA makes up �8% of the hu-
man genome, only one group—HERV-K(HML2)—appears to
have been active within the past million years. This has been dem-
onstrated by the observation that some members of this group,
but not others, are insertionally polymorphic, having been iden-
tified in some modern humans (9). Although no active, replica-
tion-competent HERV-K(HML2) elements have been identified
to date, it remains possible that such elements exist and may cause
disease in some modern humans.

The high-coverage Neanderthal and Denisovan genomes
screened in this study were both derived from fossils found in
Denisova Cave (2, 4). These genome sequences consist of short,
unassembled DNA reads averaging �70 to 200 bp and were se-
quenced to 52- and 30-fold coverage, respectively (versus 1.3-fold
[3] and 1.9-fold [1] coverage for the genomes screened previously
by Agoni et al. [5]). They therefore likely represent almost-com-
plete genome coverage.

Novel retroviral insertions in archaic hominids can be recog-
nized when orthologous flanking DNA in modern humans is not
interrupted by a HERV insertion, manifesting instead as an empty
preintegration site. We obtained reads containing 5= host-virus
junctions using a perl script that stringently detected the first 20 bp
of the start of the HERV-K(HML2) long terminal repeat (LTR),
allowing us to build libraries of reads containing hominid and

viral DNA. Flanking sequences were then extracted and BLAST
searched against the human genome (hg38), using blastn and a
word size of 11. Apparent novel HERV-K(HML2) insertions were
identified by a lack of retroviral sequence downstream of a match-
ing flank in the modern-human genome.

To confirm that putative novel insertions were not a result of
sequencing artifacts, such as template switching, we used three
approaches. First, we confirmed that each retrovirus was repre-
sented by multiple reads, as this would be unlikely to occur in the
event of sequencing error. Second, we attempted to identify the
corresponding 3= flanks for each candidate provirus. This in-
volved obtaining the modern-human sequence directly down-
stream of the flank-virus breakpoint and locating matching se-
quence in the Denisovan and Neanderthal genomes. Matching
reads containing LTR sequence directly upstream of the 3= flank
were extracted using BLAST, utilizing word sizes of 5 to 7. This
enabled matches to be returned, despite small mismatches occur-
ring due to target site duplications (TSDs) at the virus-host junc-
tion. Lastly, the presence of matching TSDs was considered addi-
tional verification of the virus. Conversely, we then repeated each
of these steps with the 3= end of the HERV-K(HML2) LTR to
identify 3= host-virus junctions. Sequence reads are given in Table
S1 in the supplemental material.

Using this approach, we identified a total of nine HERV-
K(HML2) proviruses present within the Neanderthal and Deniso-
van genomes—while also absent from hg38 —that were not re-
ported by Agoni et al. (5). However, their absence from the hg38
sequence does not necessarily imply absence from all modern hu-
mans; such elements could be insertionally polymorphic, as dem-
onstrated by Marchi et al. (6). While we did not directly screen
further modern-human genomes, we compared our nine ele-
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ments against those recovered by Lee et al. (7) and Marchi et al. (8)
from their analyses of high-coverage modern-human genomes.
This revealed that three of these viruses were present within the
data of Lee et al. (7), of which two were also identified by Marchi et
al. (8).

The remaining six elements therefore appear to be absent from
both hg38 and the additional 401 modern-human genomes inves-
tigated in previous reports (7, 8). For four of these elements, both
the 5= and 3= virus-host junctions were identified, while the re-
maining two—which were both represented by multiple sequence
reads—were derived from single ends. Of the six proviruses, three
were shared by both Denisovans and Neanderthals, while two
were unique to Neanderthals and one to Denisovans (Fig. 1). We
note that one of these proviruses, De13, is located approximately 1
kb upstream of an existing HERV-K(HML2) solo LTR in hg38; it
also appears to share the same TSD, as well as a similar flanking
sequence. This would normally suggest that it is a sequencing ar-
tifact. However, it is represented by multiple sequence reads in the
Denisovan genome and lies within a highly repetitive region. Its
flanking sequence exactly matches the region 1 kb upstream of the
known solo LTR in hg38.

As a result of genetic drift, neutral HERV insertions can be-
come fixed in a population within a time frame dependent on
population size and generation time. It is estimated that the aver-
age time taken to fixation in humans is �800,000 years (10). Since

modern humans are estimated to have diverged from Denisovan
and Neanderthal lineages approximately 553,000 to 589,000 years
ago (2), we would expect that some— but not all— of the novel
HERV-K(HML2) elements in these archaic hominids would be
absent in modern humans. This is consistent with our results; six
elements appear to be absent from all of the modern-human ge-
nomes investigated to date, whereas others (identified in this and
previous reports [5, 7, 8]) are present within some of them. How-
ever, it remains possible that these six elements are also present in
modern humans, albeit at very low allele frequencies.

We suggest that at least some of the six proviruses identified in
this study inserted into archaic hominids after their divergence
from modern humans; however, it is also possible that they in-
serted before the divergence of archaic hominids and modern hu-
mans, with these ancestral polymorphisms being subsequently
lost from modern humans by genetic drift. These findings will
help improve our understanding of archaic hominid evolution
and provide additional insight into the recent activity of the
HERV-K(HML2) retroviral group.
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extensive were truncated and are provided in full in Table S1 in the supplemental material. � or � denotes the native orientation of the read against hg38. For
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