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It is still unclear whether expanded and activated regulatory T cells (Tregs) in chronic viral infections can influence primary im-
mune responses against superinfections with unrelated viruses. Expanded Tregs found in the spleens of chronically Friend virus
(FV)-infected mice decreased murine cytomegalovirus (mCMV)-specific CD8� T cell responses during acute mCMV superinfec-
tion. This suppression of mCMV-specific T cell immunity was found only in organs with FV-induced Treg expansion. Surpris-
ingly, acute mCMV infection itself did not expand or activate Tregs.

Previous infections can influence the immune response to in-
fections with unrelated pathogens, which is called heterolo-

gous immunity (1, 2). This phenomenon has been found in closely
related and completely unrelated viral infections in humans and in
mouse models (3). To date, limited information is available as to
whether virus-expanded regulatory T cells (Tregs) in a chronically
infected host play a role in heterologous immunity. In this study,
we investigated the influence of Friend virus (FV)-expanded Tregs
on the primary murine cytomegalovirus (mCMV)-specific CD8�

T cell response during an acute mCMV superinfection.
We first confirmed the expansion of Tregs during FV infection

by determining the number of Tregs in chronically FV-infected
mice in different organs (Fig. 1a) (4, 5). C57BL/6 mice (males, 8 to
9 weeks old) were infected intravenously with 40,000 spleen focus-
forming units (SFFU) of FV, and CD4� Foxp3� Tregs were mea-
sured at day 42 postinfection (6, 7). Significantly enhanced per-
centages (not shown) and absolute numbers of Tregs were found
in the spleens but not in the livers and peritoneal exudate cells
(PECs) of chronically FV-infected mice compared to results for
naive, age-matched controls (Fig. 1a). FV-expanded Tregs had
an activated and differentiated phenotype (CD43� CD69� and
KLRG-1�), in contrast to Tregs from uninfected mice at day 10
and day 42 after FV infection (Fig. 1c and reference 8, respec-
tively).

To investigate whether mCMV infection also induces an ex-
pansion of Tregs, naive mice were infected intraperitoneally with
5 � 104 PFU of mCMV (Smith strain [7]) and CD4� Foxp3�

Tregs were analyzed at day 10 postinfection in the spleen, liver,
and salivary gland, sites where mCMV replicates (9). Surprisingly,
no expansion or activation of Tregs was found in the spleens of
acutely mCMV-infected mice, in contrast to what is described for
FV or lymphocytic choriomeningitis virus (LCMV) infection (Fig.
1b and c) (10–12). Additionally, no expansion of the V�5� CD4�

Foxp3� Tregs, which recognize self-superantigens expressed by
endogenous mouse mammary tumor virus, were detectable in
mCMV-infected mice (8, 10, 11; data not shown). Furthermore,
Tregs from mCMV-infected mice displayed the same phenotype
as Tregs from naive animals (Fig. 1c). This was also the case for
later time points after mCMV infection (�10 days postinfection)

(data not shown), indicating that mCMV does not induce Treg
responses in C57BL/6 mice.

Tregs in influenza A virus (IAV)-immune mice control IAV-
specific memory CD8� T cells during sequential infection with a
different IAV strain by IAV-specific memory Tregs in the lung
(13). Additionally, we could show that IAV-expanded Tregs neg-
atively influenced the strength of non-cross-reactive LCMV-spe-
cific CD8� T cell responses in mice sequentially infected with IAV
and LCMV (14). Since nothing is known about the influence of
virus-expanded Tregs in chronic viral infections on a primary un-
related infection, chronically FV-infected mice were superinfected
with mCMV (FV/mCMV). mCMV-specific CD8� T cell re-
sponses were determined in the spleen, liver, and PECs at day 7
after mCMV superinfection (Fig. 2). Therefore, lymphocytes were
simulated with the mCMV-specific major histocompatibility
complex (MHC) class I peptides M45985–993 (HGIRNASFI),
M57816 – 824 (SCLEFWQRV), M102446 – 455 (SIVDLRFAVL),
m139419 – 426 (TVYGFCLL), or m14115–23 (VIDAFSRL), and func-
tional mCMV-specific CD8� T cells were determined by gamma
interferon (IFN-�) production (7, 15). Significant 2- to 3-fold
reductions in mCMV-specific IFN-�� CD44� CD8� T cell num-
bers were detectable in the spleens of FV/mCMV-superinfected
mice compared to numbers in mice infected only with mCMV
(Fig. 2a). Importantly, this reduction was detectable in those
spleens where FV induced a sustained Treg expansion and activa-
tion but not in PECs (Fig. 2b) or in livers (data not shown). In
these PECs and livers, the mCMV-specific CD8� T cell responses
were similar between FV/mCMV- and mCMV-only-infected
mice (Fig. 2b). This is in line with our previous findings showing
that FV-induced Treg responses are locally defined to organs in
which viral replication occurs and in which effector CD4� and
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FIG 1 Numbers of Tregs in the spleens, livers, PECs, and salivary glands of acutely mCMV- as well as chronically FV-infected mice. (a) Naive C57BL/6 mice were
infected intravenously with 40,000 SFFU FV; control mice received phosphate-buffered saline (PBS). In the chronic phase, 6 weeks after FV infection, the
numbers of CD4� Foxp3� T cells were determined in the spleens, livers, and PECs. (b) Naive C57BL/6 mice were infected intraperitoneally with 5 � 104 PFU of
mCMV; control mice received PBS. At day 10 after mCMV infection, the number of CD4� Foxp3� T cells was measured in the spleens, livers, and salivary glands.
(c) Mice were infected with FV or mCMV, and control (naive) mice received PBS. At 10 days postinfection, the absolute numbers of CD4� Foxp3� Tregs as well
as activated Tregs were determined in the spleens and livers of acutely FV- or mCMV-infected or naive mice. (a, b) Data were pooled from 2 to 6 independent
experiments with 4 to 24 mice per group. (c) Statistical analysis was performed with an unpaired Student t test, and the data were pooled from 1 to 4 independent
experiments with 6 to 19 mice per group. Statistical analysis was performed with the Bonferroni multiple-comparison or Kruskal-Wallis test. Statistically
significant differences between the groups are indicated as follows: *, P � 0.05; **, P � 0.01; and ***, P � 0.001.

Tregs in Heterologous Infection

December 2014 Volume 88 Number 23 jvi.asm.org 13893

http://jvi.asm.org


CD8� T cell responses are induced (16). These effector T cells play
a major role in initiating the activation and expansion of different
subsets of Tregs (8, 10, 17).

To prove that FV-expanded Tregs are important mediators of
the reduction in mCMV-specific CD8� T cell responses, we made
use of the DEREG mouse model. DEREG mice express the human
diphtheria toxin receptor (DTR) under the control of the Foxp3
promoter (18). Treatment of DEREG mice with diphtheria toxin
(DT) results in a selective depletion of Foxp3� CD4� Tregs. For
Treg depletion, 0.5 �g DT/mouse/time point was injected intra-
peritoneally on days 	4, 	1, 2, and 5 of mCMV superinfection of
chronically FV-infected mice (19). Depletion of Tregs during
mCMV superinfection resulted in significant 3- to 5-fold increases
in the total numbers of mCMV-specific CD8� T cells that pro-
duced IFN-� in chronically FV-infected mice (Fig. 3). This signif-
icant increase was detectable for all analyzed mCMV epitope-spe-
cific CD8� T cell responses in the spleen. Previously, it had been
shown that the activation and expansion of Tregs during FV in-
fection were not dependent on FV antigens but rather were initi-
ated by self-antigens and cytokines, like interleukin 2 (IL-2) and
tumor necrosis factor alpha (TNF-
) (8, 10). Hence, no FV-spe-
cific Tregs were found during FV infection (10). Our current find-
ings show that not only is the induction of Tregs independent of
the FV antigen, but also the suppression of effector T cell re-
sponses is not restricted to FV-specific T cells. FV-expanded Tregs
inhibit T cell responses against unrelated viral antigens (mCMV),
indicating that their activity is not antigen but rather organ spe-
cific.

To determine the influence of non-virus-induced, natural
Tregs on mCMV-specific CD8� T cell responses, Tregs were de-
pleted in age-matched mice infected only with mCMV (Fig. 3,
gray bars). No significant differences in the magnitudes of
mCMV-specific CD8� T cell responses were found between Treg-
depleted and nondepleted mice during acute mCMV infection.
This was in line with the finding that mCMV infection did not

FIG 2 Primary mCMV-specific CD8� T cell responses in the spleens and PECs of
naive mCMV-infected and FV/mCMV-superinfected mice. Naive C57BL/6 mice
were infected intravenously with 40,000 SFFU FV; control mice received PBS. In
the chronic phase, 6 weeks after FV infection, mice were infected intraperitoneally
with 5 � 104 PFU mCMV. As a control, age-matched naive mice were infected
with mCMV. mCMV-specific CD8� T cell responses in the spleens (a) and PECs
(b) of naive and chronically FV-infected mice were obtained at day 7 after mCMV
infection. Data from the spleens were pooled from 4 independent experiments
with 10 to 17 mice and from PECs from 2 independent experiments with 3 to 9
mice per group. Statistical analysis was performed with an unpaired Student t test.
Statistically significant differences between the groups are indicated (*, P � 0.05;
**, P � 0.01).

FIG 3 mCMV-specific CD8� T cell responses after the depletion of Tregs in naive mCMV-infected and FV/mCMV-superinfected mice. Tregs were depleted by
intraperitoneal injection of 0.5 �g DT at days 	4, 	1, 2, and 5 of mCMV infection in naive and chronically FV-infected DEREG mice. Control mice received PBS.
mCMV-specific CD8� T cell responses were determined at day 7 after mCMV infection. Data were pooled from 3 independent experiments with 5 to 15 mice per
group, and statistical analysis was performed with a one-way analysis of variance (ANOVA) multiple-comparison test (*, P � 0.05; **, P � 0.01).
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result in Treg expansion or activation (Fig. 1c). In contrast to our
findings, a stronger effect on mCMV-specific T cell responses in
Treg-depleted mice was described by Arens et al. (20). This differ-
ence might be explained by the different technical approaches
which were used to deplete Tregs during acute mCMV infection.
In our study, Foxp3-expressing cells were selectively depleted,
whereas in the study of Arens et al., Tregs were depleted with
anti-CD25 antibodies. Approximately 80% of all NK cells express
CD25 at days 2 and 3 after mCMV infection (21). Thus, treatment
with the anti-CD25 antibody may have also depleted NK cells,
whereas in our approach, only Foxp3� Tregs were ablated. Deple-
tion of NK cells has been shown to enhance mCMV titers and
mCMV-specific T cell responses during acute mCMV infection
(22–26), which might be the reason for the strong effect reported
by Arens et al. (20). Unlike with mCMV, the expansion of Tregs
has been found in mice infected with other herpesviruses, like
herpes simplex virus (HSV) (12, 27). It is currently not known
why mCMV induces such weak Treg responses, which is clearly
different from what occurs in many other viral infections.

To investigate whether the mCMV clearance in chronically
FV-infected mice was negatively influenced by the fact that FV-
expanded Tregs reduced mCMV-specific CD8� T cell responses,
we determined mCMV titers by plaque assay at day 7 after mCMV
superinfection (Fig. 4) (7). No differences in mCMV titers in the
spleen (the organ where reduced mCMV-specific CD8� T cell
responses were found) were detected between mCMV-infected
and FV/mCMV-superinfected mice (Fig. 4). This suggests that the
enhanced number of Tregs in chronically FV-infected mice did
not alter mCMV clearance. Similar results were obtained in the

models of acute LCMV infection of IAV-immune mice and
chronic LCMV infection (14, 28). As mentioned above, NK cells
play a very important role in viral clearance in early mCMV infec-
tion of C57BL/6 mice, and even the strength of the mCMV-spe-
cific T cell response is partly controlled by NK cells (22–26). Bind-
ing of the mCMV protein m157 to Ly49H� on NK cells is
responsible for the strong NK cell effect in C57BL/6 mice (22,
29–31). Additionally, the depletion of CD8� T cells during
mCMV infection does not change the kinetics of mCMV clearance
(32). This shows that mCMV clearance is driven mainly by NK
cells during acute mCMV infection of C57BL/6 mice, which ex-
plains why CD8� T cell responses suppressed by FV-expanded
Tregs did not significantly affect viral loads.

Taken together, our data show that Tregs expanded by a
chronic retroviral infection can dampen primary immune re-
sponses to mCMV. This effect might impair the immunity of in-
dividuals to acute infections with chronic infectious diseases.
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