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Despite recent advances in metagenomic and single-cell genomic sequencing to investigate uncultivated microbial diversity and
metabolic potential, fundamental questions related to population structure, interactions, and biogeochemical roles of candidate
divisions remain. Numerous molecular surveys suggest that stratified ecosystems manifesting anoxic, sulfidic, and/or methane-
rich conditions are enriched in these enigmatic microbes. Here we describe diversity, abundance, and cooccurrence patterns of
uncultivated microbial communities inhabiting the permanently stratified waters of meromictic Sakinaw Lake, British Colum-
bia, Canada, using 454 sequencing of the small-subunit rRNA gene with three-domain resolution. Operational taxonomic units
(OTUs) were affiliated with 64 phyla, including more than 25 candidate divisions. Pronounced trends in community structure
were observed for all three domains with eukaryotic sequences vanishing almost completely below the mixolimnion, followed by
a rapid and sustained increase in methanogen-affiliated (�10%) and unassigned (�60%) archaeal sequences as well as bacterial
OTUs affiliated with Chloroflexi (�22%) and candidate divisions (�28%). Network analysis revealed highly correlated, depth-
dependent cooccurrence patterns between Chloroflexi, candidate divisions WWE1, OP9/JS1, OP8, and OD1, methanogens, and
unassigned archaeal OTUs indicating niche partitioning and putative syntrophic growth modes. Indeed, pathway reconstruction
using recently published Sakinaw Lake single-cell genomes affiliated with OP9/JS1 and OP8 revealed complete coverage of the
Wood-Ljungdahl pathway with potential to drive syntrophic acetate oxidation to hydrogen and carbon dioxide under methano-
genic conditions. Taken together, these observations point to previously unrecognized syntrophic networks in meromictic lake
ecosystems with the potential to inform design and operation of anaerobic methanogenic bioreactors.

Over the past 2 decades, cultivation-independent approaches
have identified at least 60 major branch points (phyla or di-

visions) in the bacterial and archaeal domains of life (1). Approx-
imately half of these branch points represent candidate divisions
with no known cultivated representatives, so-called microbial
dark matter (MDM) (2). Emerging lines of evidence suggest that
bacteria affiliated with BD1-5, OP11, OP9/JS1, OP1, and WWE1
candidate divisions harbor genes encoding components of fer-
mentation, hydrogen or sulfur metabolic pathways supporting
cometabolic or syntrophic growth modes under anaerobic condi-
tions (3–6). Consistent with this, a recent single-cell genomic
study of OP9 bacteria from hot spring sediments suggested a de-
pendence on exogenous vitamins sourced from surrounding mi-
crobial community members (3). Such public good dynamics
could represent a common organizing principle in structuring
microbial community interaction networks (7, 8) and help ex-
plain the resistance of most environmental microorganisms, in-
cluding candidate divisions to clonal isolation (7, 9).

While advances in metagenomic and single-cell genomic se-
quencing have begun to open a window on the metabolic potential
of many candidate divisions, fundamental questions relating to
their population structure, interactions, and biogeochemical roles
remain. Recent molecular surveys indicate that natural and engi-
neered ecosystems with anoxic, sulfidic, and/or methane-rich
conditions tend to harbor a diversity of candidate divisions (6,
10–12). Among ecosystems manifesting these biogeochemical
conditions, permanently stratified meromictic lakes provide trac-
table models in which to study MDM population structure, func-
tion, and dynamics. In these aquatic ecosystems, the water column
partitions into oxic fresh surface waters referred to as the mix-
olimnion, a redox transition zone, and anoxic, often hydrogen

sulfide (H2S)- and methane (CH4)-rich bottom waters, referred to
as the monimolimnion (13, 14).

Previous studies have identified MDM in geographically iso-
lated meromictic lakes with different degrees of spatial and taxo-
nomic resolution. For example, small-subunit (SSU) rRNA gene
clone library sequencing in Lake Pavin in France identified at least
five bacterial candidate divisions, including OP1, OP3, OP10,
OP11, and WS5 that partitioned between the redox transition
zone and monimolimnion (15). A more recent study using a com-
bination of SSU rRNA gene clone library sequencing and Phy-
loChip hybridization in Mahoney Lake in Canada identified at
least eight bacterial candidate divisions, including OP1, OP8,
OP9/JS1, OP11, TM6, WS1, WS3, and ZB2 (16). A higher-
throughput study in Arctic Lake A identified SSU rRNA gene
pyrotag sequences affiliated with at least four candidate divisions,
including OP3, OP8, OP9, and OP11 that increased in abundance
within the monimolimnion (17).

Here we describe the microbial community inhabiting Saki-
naw Lake, a meromictic lake, on the Sunshine Coast of British
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Columbia, Canada, using a pyrosequencing approach targeting
the SSU rRNA gene, with specific emphasis on describing the pop-
ulation structure of MDM across defined redox transition zones.
We apply hierarchical clustering and indicator species analyses to
identify operational taxonomic units (OTUs) differentially asso-
ciated with the mixolimnion, upper and lower part of the transi-
tion zone, and monimolimnion in relation to environmental pa-
rameter data. Network analysis is then used to chart potential
interactions between prevalent OTUs, including many candidate
divisions. Metabolic reconstruction based on recently published
near-complete Sakinaw Lake single-cell amplified genome se-
quences reinforces network connectivity patterns, revealing puta-
tive syntrophic relationships among candidate divisions and
between candidate divisions and other microbial community
members (2).

MATERIALS AND METHODS
Sampling. Water samples from Sakinaw Lake, British Columbia, Canada,
were taken at deep basin station S1 (49°40.968=N 124°00.119=W) using a
combination of 12-liter Niskin and 8-liter GO-FLO bottles on 6 June
2007, 23 October 2007, 21 May 2008, 5 August 2009, 5 January 2010, 27
January 2011, and 24 May 2011 (see Table S1 in the supplemental mate-
rial). A total of 66 samples were collected from different depths covering
the mixolimnion (5 m to 30 m), transition zone (33 m to 55 m), and
monimolimnion (60 m to 120 m). Conductivity temperature and depth
were measured with a Sea-Bird SBE19 CTD device measuring conductiv-
ity, temperature, and depth (Sea-Bird Electronics Inc., Bellevue, WA,
USA). Samples were kept at 4°C in the dark and subsequently processed
for environmental DNA extraction. Additionally, transition metal, sulfide
(H2S), and sulfate (SO4

2�) concentrations were determined for samples
collected on 24 May 2011.

Environmental DNA. Approximately 6 h after sample collection, 2
liters of water was filtered through a 0.22-�m Sterivex GV filter (Milli-
pore) without a prefilter using a Masterflex L/S 7553–70 peristaltic pump
(Cole-Parmer) for DNA extraction. DNA was extracted from Sterivex
filters by the method of Zaikova and colleagues (18) and DeLong and
colleagues (19). The DNA extraction protocol can be viewed as a visual-
ized experiment at http://www.jove.com/video/1352/ (20).

Enumeration of cells by flow cytometry. Enumeration of total cells
was performed by the method of Zaikova and colleagues (18). Briefly,
water samples were fixed in 4% (wt/vol) formaldehyde and stored at 4°C
in the dark for approximately 18 h prior to processing for flow cytometry.
Nucleic acids were stained with SYBR green (Invitrogen), and cells were
counted with a fluorescence-activated cell sorting (FACS) LSRII flow cy-
tometer equipped with an air-cooled argon laser (Becton Dickinson). Cell
counts were estimated using a known concentration of 6-�m fluorescent
beads (Invitrogen).

Chemical profiling. All salinities are on the TEOS-10 reference com-
position salinity scale, with the salinity anomaly assumed to be zero (21).
Dissolved oxygen concentrations were determined by Winkler titrations
(22). Hydrogen sulfide concentration was measured from water samples
fixed with 2% final concentration of zinc acetate and analyzed in the lab
using the methylene blue method of Cline et al. (23). The concentrations
of transition metals, including iron (Fe), manganese (Mn), and arsenic
(As), and SO4

2� were determined at Maxxam Analytics (Burnaby, British
Columbia, Canada) using Standard Methods for the Examination of Water
and Wastewater published by the American Public Health Association
(24). Sulfate was determined with automated colorimetry according to
the standard protocol SM 4500 SO4

2� within 24 h after sample collection
(24). Samples for dissolved fractions of Fe, Mn, and As were preserved
with nitric acid (HNO3) and filtered through a 0.45-�m membrane filter
prior to analysis with inductively coupled plasma mass spectrometry
based on standard protocol EPA 200.8 (25) within 14 days of sampling.
Dissolved methane (CH4) was measured from 13 samples (water depths

of 5 m, 10 m, 25 m, 30 m, 33 m, 36 m, 40 m, 45 m, 50 m, 55 m, 60 m, 80 m,
and 120 m) collected in June 2007 by gas chromatography coupled to
mass spectrometry (GC-MS) using the static headspace equilibrium tech-
nique of Zaikova et al. (18). As CH4 concentrations in the monimolim-
nion of Sakinaw Lake exceed detection limits of the applied method, our
data are estimates and indicate that CH4 concentrations in the deep Saki-
naw Lake waters exceed atmospheric saturation values.

PCR amplification of SSU rRNA gene for pyrotag sequencing. Envi-
ronmental DNA extracts described above were amplified using previously
published three-domain primers targeting the V6-V8 region of the SSU
rRNA gene (26): 926F (5=-cct atc ccc tgt gtg cct tgg cag tct cag AAA CTY
AAA KGA ATT GRC GG-3=) and 1392R (5=-cca tct cat ccc tgc gtg tct ccg
act cag-XXXXX-ACG GGC GGT GTG TRC-3=). Primer sequences were
modified by the addition of 454 A or B adapter sequences (shown in
lowercase type). In addition, the reverse primer included a 5-bp bar code
designated XXXXX for multiplexing of samples during sequencing.

Twenty-five microliter PCRs were performed in triplicate and pooled
to minimize PCR bias. Each reaction mixture contained between 1 and 10
ng of target DNA, 0.5 �l Taq DNA polymerase (Bioshop Inc., Canada), 2.5
�l Bioshop 10� buffer provided in the Bioshop Taq-polymerase kit, 1.5
�l of 25 mM Bioshop MgCl2, 2.5 �l of 10 mM deoxynucleoside triphos-
phates (dNTPs) (Agilent Technologies), and 0.5 �l of 10 mM (each)
primer. The thermal cycler protocol started with an initial denaturation at
95°C for 3 min and then 25 cycles, with 1 cycle consisting of 30 s at 95°C,
45 s at 55°C, 90 s at 72°C, and 45 s at 55°C. The final step, an extension step,
was 10 min at 72°C. PCR products were purified using the QIAquick PCR
purification kit (Qiagen), eluted in 20 mM Tris (pH 8), quantified using
the Quant-it Picogreen dsDNA reagent. SSU rRNA amplicons were
pooled at 30 ng DNA for each sample. Emulsion PCR and sequencing of
the PCR amplicons were performed at the McGill University and Génome
Québec Innovation Center on a Roche 454 GS FLX titanium platform
according to the manufacturer’s instructions.

Pyrotag sequence analysis. Pyrotag sequences were analyzed using
the Quantitative Insights Into Microbial Ecology (QIIME) software pack-
age (27). To minimize the removal of false-positive singleton OTUs,
901,664 pyrotag sequences generated from 66 samples collected in Saki-
naw Lake between 2007 and 2011 were clustered together (see Table S1 in
the supplemental material). Reads with length shorter than 200 bases,
ambiguous bases, and homopolymer sequences were removed prior to
chimera detection. Chimeras were detected and removed using the chi-
mera slayer provided in the QIIME software package. Sequences were
then clustered at 97% identity using uclust with furthest linkage algo-
rithm. Prior to taxonomic assignment, singleton OTUs (OTUs repre-
sented by one read) were omitted, leaving 23,231 OTUs (Table S2). To
generate an OTU table specific for the May 2011 data set, the filter_otus_
by_sample.py script was used, leaving 181,464 sequences and 12,908
OTUs for downstream analysis. The average number of reads per sample
in the Sakinaw Lake May 2011 data set was 16,323, with the exception of
the 33-m-deep sample, which had �50% fewer reads. Representative se-
quences from each nonsingleton OTU were queried against the SILVA
database release 111 (28) and the Greengenes database (29) using BLAST
(30).

Overall, the comparison between SILVA and Greengenes databases
revealed similar taxonomic assignments for bacterial OTUs. However,
significant differences for archaeal OTU assignments were observed be-
tween the two databases. Approximately twice as many reads were as-
signed to Methanomicrobia using the Greengenes database than when the
SILVA database was used. This difference could be mapped back to a
single abundant OTU, approaching 10% of total sequences at a depth of
45 m that was assigned to Methanomicrobiales using the Greengenes da-
tabase and to Halobacteriales using the SILVA database. BLAST-based
comparisons indicated that sequences comprising this OTU shared
�90% identity with Halobacteriales reference sequences in SILVA and
90% identity with Methanomicrobiales reference sequences in Green-
genes. Moreover, a number of putative archaeal OTUs associated with the
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redox transition zone and monimolimnion (depths of 33 m to 120 m)
were identified with “no blast hits” using Greengenes but assigned to
Halobacteriales using SILVA. Because both databases are not well anno-
tated for Halobacteria (31), the Sakinaw Lake data set was mapped onto
the full-length Halobacteria SSU rRNA gene database generated by
Youssef and colleagues (31) using the program CD-HIT (cd-hit-est-2d)
(32). The data set could not be clustered with the Halobacteria reference
sequences at 99%, 97%, or 95% identity. Even for 90% sequence identity,
only 981 reads (0.5%) clustered with the Halobacteria reference se-
quences. Given these uncertainties in putative archaeal OTU affiliation,
we designated them “unassigned Archaea” until full-length sequences or
reference genomes become available to support more-in-depth phyloge-
netic analysis.

Statistical analyses. Microbial community richness was determined
using scripts implemented in the QIIME package. OTU tables were rar-
efied starting with 10 sequences to a maximum of 6,000 sequences. Ten
iterations per sample were calculated with 100 sequences between each
step. Hierarchical cluster analysis of microbial community compositional
profiles and environmental parameters was conducted in the R statistical
environment (Development Core Team, 2011; http://www.R-project.org/)
using Manhattan distance measures for clustering microbial community
compositional profiles (33) and Euclidean distance for environmental pa-
rameters (34). Prior to analysis, pyrotag data sets were normalized to the total
number of reads per sample, and environmental parameter data were trans-
formed to the same order of magnitude so that each variable had equal weight.

Multilevel indicator species analysis (ISA) was performed to identify
OTUs specifically associated with different water column compartments
(mixolimnion [5 m, 20 m, and 30 m], upper part of the transition zone [33
m, 36 m, 40 m, and 45 m], lower part of the transition zone [50 m and 55
m], and monimolimnion [60 m, 80 m, and 120 m]). Dufrene and Leg-
endre established a method to determine an indicator species by its relat-
edness to a user-defined environment, e.g., group of samples, where each
species is treated individually, and its indicator value is determined ac-
cording to its abundance value (35). De Caceres and colleagues recently
extended the algorithm for ISA to include a multilevel pattern analysis
(36). Arguing that species with higher adaptability for different environ-
mental factors are indicative for specific environment combinations, this
analysis additionally determines indicator species for combinations of
environments. The ISA/multilevel pattern analysis calculates P values
with Monte Carlo simulations and returns indicator values (IVs) and
values with � � 0.05. The IVs fall between zero and one, where one is
considered a true indicator.

Cooccurrence network. To generate a robust network emphasizing
cooccurrences between prevalent OTUs in water column compart-
ments rather than individual depth intervals, Spearman’s rank corre-
lation was used. Spearman’s rank correlation coefficients were calculated
using a custom perl script, “correlation_network.pl” (https://github.com
/hallamlab/utilities/tree/master/correlation_network). The initial data set
consisted of 12,900 OTUs. To simplify the network, we retained OTUs
with at least 10 reads appearing in at least three samples leaving 1,528
OTUs with Spearman’s rank correlations equal to or greater than 0.99.
The resulting cooccurrence network contained 130,101 edges, each with a
positive correlation. The network was visualized with a force-directed
layout, using Cytoscape 2.8.3 (37). Network properties were calculated
with the “Network Analysis” plug-in. Nodes in the cooccurrence network
corresponded to individual OTUs, and edges were defined by computed
correlations between corresponding OTU pairs. The layout revealed four
distinct modules, which persisted after lowering the correlation coeffi-
cient cutoff for edge creation to 0.90, reinforcing the robustness of the
network.

Pathway reconstruction. To evaluate the metabolic potential for syn-
trophic acetate oxidation (SAO) among highly connected candidate divi-
sions, publicly available single-cell genomes from Sakinaw Lake affiliated
with OP9/JS1, OP8, and WWE1 were searched for coverage of the Wood-

Ljungdahl pathway using the Joint Genome Institute integrated microbial
genomes expert review portal (IMG-ER) (http://img.jgi.doe.gov/).

Nucleotide sequence accession number. The sequences reported in
this study have been deposited in the NCBI BioProject database (www
.ncbi.nlm.nih.gov/bioproject) under BioProject accession no. PRJNA
257655 (identification no. [ID] 257655).

RESULTS
Site location and physicochemical properties. Sakinaw Lake is a
permanently stratified lake located on the Sunshine Coast of Brit-
ish Columbia, Canada (49°40.8=N, 124°00.39=W) at an elevation
of �5 m above sea level. Originally a fjord opening to the Strait of
Georgia, Sakinaw Lake was almost completely isolated from the
ocean due to coastal uplift �11,000 years ago following the last ice
age (38). For thousands of years, a small stream named Sakinaw
Creek was the only conduit between Sakinaw Lake and the Strait of
Georgia. In 1952, Sakinaw Creek was dammed to better manage
water levels for development projects in the surrounding water-
shed preventing seawater ingress. The lake consists of two basins:
a relatively shallow freshwater basin 49 m deep and a more exten-
sive salt stratified basin 140 m deep (39). A gradual salinity in-
crease in the transition zone is followed by a series of three �0.5-
g/kg salinity steps punctuating the monimolimnion.

Measurements of absolute salinity (SA), temperature, and ox-
ygen between 2007 and 2011 revealed a remarkable stability in the
salinity gradient throughout the water column as well as consis-
tent temperatures below a depth of 36 m (see Table S3 in the
supplemental material). Temperature and oxygen (O2) profiles in
the mixolimnion changed between different sampling time
points, which was expected due to seasonal influences. To deter-
mine the availability of terminal electron acceptors (TEAs) for
microbial energy metabolism in different water column compart-
ments, O2, iron (Fe), manganese (Mn), arsenic (As), and SO4

2�

measurements were plotted as a function of depth and compared
to measurements of SA, sulfide (H2S), and total bacterial cell
counts (Fig. 1). The resulting profiles were then compared to geo-
graphically distinct meromictic lakes to determine common base-
line conditions (Table S4). The mixolimnion in Sakinaw Lake (5
m to 30 m) was constituted of entirely fresh, oxygen-rich water. In
the transition zone (30 m to 55 m), salinity and the concentration
of alternative TEAs, including Fe, Mn, and SO4

2� gradually in-
creased, whereas O2 concentrations decreased. The oxic-anoxic
interface was located at a depth of 33 m. Methane concentrations,
which were determined for samples collected in June 2007 in-
creased below 33 m and reached saturation at 45 m (data not
shown), forming a sulfate methane transition zone (SMTZ). Peak
concentrations of Fe, Mn, and SO4

2� were observed in the micro-
molar range (8.1 �M, 4.2 �M, and 57.5 �M, respectively) at a
depth of 36 m and corresponded with increased microbial cell
abundance (�2.8 � 105 cells/ml). Sulfide concentrations in the
lower part of the redox transition zone and the monimolimnion
(50 m to 120 m) were high (4.5 mM) and resulted in the removal
of soluble Fe from the water column by precipitation into iron
sulfide (FeS) and pyrite (FeS2) (40). The peak concentration of As
was in the nanomolar range (93.4 nM) at a depth of 60 m.

Relationship between community structure and physico-
chemical characteristics. To better understand how the physico-
chemical properties of the Sakinaw Lake water column influence
microbial community diversity, we performed 454 pyrosequenc-
ing of the SSU rRNA gene with three-domain resolution. Al-
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though OTUs were generated from a time series, we focused on
data sets obtained from the 24 May 2011 sampling campaign given
the availability of extensive physicochemical information span-
ning defined water column redox gradients (see Materials and
Methods). With this approach, the number of nonsingleton OTUs
available for downstream analysis increased compared to cluster-
ing of the May 2011 data set alone. Indeed, a number of singletons
in May 2011 were found in clusters containing �200 reads in the
time series consistent with the presence of conditionally rare taxa
in the Sakinaw Lake water column (see Table S2 in the supplemen-
tal material) (41).

Approximately 75% of the organisms in the May 2011 data set
were assigned to the domain Bacteria, and 25% of these were as-
signed to candidate divisions. Collectively, bacterial OTUs con-
tained the majority of pyrotag reads in all but the 45-m-deep sam-
ple where almost 60% of the reads were assigned to the domain
Archaea (Fig. 2A). Eukaryotes, although prevalent in oxygenated
surface waters, vanished almost completely below the mixolim-

nion. Richness estimates based on count data indicated that the
mixolimnion had fewer OTUs than samples from the transition
zone and monimolimnion (Fig. 2B). This pattern was consistent
for all samples collected between 2007 and 2011 (see Fig. S1 in the
supplemental material).

Hierarchical clustering of the microbial community composi-
tion profiles and selected environmental parameter data (temper-
ature, SA, TEAs, and H2S) reflected the stratified nature of the lake
ecosystem (Fig. 2C). The resulting dendrograms revealed identical
clustering patterns between OTU abundance and environmental
parameters for almost all depth intervals. Both dendrograms sug-
gest that water column partitioning in Sakinaw Lake did not easily
conform to a three-compartment meromixis model, i.e., mix-
olimnion, redox transition zone, and monimolimnion. This was
not unexpected, as the division of the water column into three
compartments is based solely on hydrodynamic conditions and
does not reflect partitioning of the water column into distinct
environmental niches. On the basis of these observations, we op-

FIG 1 Environmental parameters in Sakinaw Lake on 24 May 2011. The salinity gradient revealed water column compartmentalization into the mixolimnion
(5 m to 30 m), redox transition zone (33 m to 55 m) and monimolimnion (60 m to 120 m). Seasonal temperature influences resulted in a temperature gradient
within the mixolimnion, whereas temperatures in the transition zone and monimolimnion remained unchanged. The peak in microbial cell counts appeared at
a depth of 36 m where oxygen was depleted and maximum concentrations of alternative terminal electron acceptors iron (Fe), manganese (Mn), and sulfate
(SO4

2�) were measured. Maximum concentrations of arsenic (As) were located at a depth of 60 m. Sulfide was absent in the mixolimnion and increased to
millimolar concentrations in the transition zone and monimolimnion.
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erationally divided the transition zone into an upper and lower
part to more accurately reflect potential niche partitioning.

To identify how OTUs partitioned between the mixolimnion,
upper part of the transition zone, lower part of the transition zone,
and monimolimnion, we conducted a four-way set difference
analysis of the presence of OTUs (Fig. 3A). Approximately 1% of
the OTUs were shared between all four water column compart-
ments, with the majority of OTUs exhibiting mutually exclusive
distribution patterns (13% unique to the mixolimnion, 21%
unique to the upper transition zone, 10% unique to the lower
transition zone, and 21% unique to the monimolimnion) (Fig.
3A). Operational taxonomic units associated with a given water
column compartment that are absent or rare in other compart-
ments are potential ecological indicators. To identify potential
indicator OTUs, we performed a multilevel indicator species anal-
ysis. With this analysis we were able to determine indicator species
for individual water column compartments and compartment
combinations. Only 5 to 10% of the compartment-specific OTUs
were identified as indicator species (Fig. 3B; see Fig. S2 in the
supplemental material). Indeed, the majority of OTUs that were
identified as compartment specific in the four-way set difference
analysis exhibited fine-scale depth partitioning (Fig. 3C and Table
S5). Indicators shared between compartments were also uncom-
mon with the exception of the lower part of the transition zone
and monimolimnion. In these two compartments, �44% of the

OTUs were identified as indicators. Overall, the majority of OTU
indicators were affiliated with unassigned Archaea (25.63%) and
candidate phyla (21.3%), followed by Chloroflexi (16.2%). For a
detailed taxonomic breakdown of indicator OTUs, see Table S6.

Taxonomic composition. To determine how the taxonomic
composition of the microbial community was distributed within
and between water column compartments, we plotted bacterial
and archaeal OTUs based on relative abundance (Fig. 4). The
presence of eukaryotes in Sakinaw Lake is described in the supple-
mental material (see Fig. S3 in the supplemental material). All taxa
exhibiting intermediate abundance (�0.1%) or above are repre-
sented in Fig. 4 and also Fig. S3 in the supplemental material.
However, for visualization purposes, only taxa �1% are shown to
scale.

The most abundant taxa in the mixolimnion were Alphapro-
teobacteria (11.8%) the majority of which were affiliated with
SAR11 (9.7%), Betaproteobacteria (10%) mostly affiliated with
Burkholderiales (8.1%), Bacteriodetes (13.2%), Actinobacteria
(22.3%), Cyanobacteria (16.9%), Planctomycetes (8.3%), and Ver-
rucomicrobia (1.1%) (Fig. 4A; see Table S2 in the supplemental
material). Archaea were almost absent from the mixolimnion, al-
though Methanomicrobia were identified among members of the
rare biosphere (�0.1%) (Fig. 4B and Table S2) (42, 43). Depth-
specific trends within the mixolimnion were observed for several
taxa, including Cyanobacteria, which decreased rapidly below 5 m,
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FIG 2 Relationship between community structure and physicochemical characteristics of the Sakinaw Lake water column. (A) Bacterial operational taxonomic
units (OTUs) contained the majority of pyrotag reads in all samples but the sample taken at a depth of 45 m, where almost 60% of the reads were assigned to
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and Planctomycetes and Verrucomicrobia, which increased below 5
m. Overall, the bacterial composition in the mixolimnion of Saki-
naw Lake was similar to other freshwater and meromictic lake
ecosystems (17, 44, 45).

Proteobacteria dominated the upper part of the transition zone,
including Betaproteobacteria (12.5%), mostly affiliated with Burk-
holderiales (7.7%), Deltaproteobacteria (12.9%) mostly affiliated
with Desulfurobacterales (4%) and Syntrophobacterales (9.6%),

and Gammaproteobacteria (23.8%) mostly affiliated with the
Methylococcales (22.4%). In addition to proteobacterial groups,
Bacteriodetes (13.2%), Actinobacteria (22.3%), Cyanobacteria
(16.9%), Plantomycetes (8.3%), Verrucomicrobia (1.1%), Chloro-
biales (1.8%), and Chloroflexi (8.5%) were also abundant in the
upper part of the transition zone (Fig. 4A; see Table S2 in the
supplemental material). Interestingly, between depths of 33 m and
40 m, a 10-fold increase in candidate divisions, including OP3
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(4%), OP8 (4%), OP11 (4%), OP9/JS1 (8%), RF3 (5.6%), and
WWE1 (7%) was observed (Fig. 4A and B). The upper part of the
transition zone was further marked by a distinct increase in ar-
chaeal OTU abundance. Several of these OTUs were affiliated with
the methanogenic Methanomicrobiales (7%) and Methanosarcina-
les (3%), ammonia-oxidizing Thaumarchaeota (1.4%), and
anaerobic methane-oxidizing (ANME) archaea belonged to the
rare biosphere (�1%). The remaining archaeal OTUs (44.5%)
shared similar identity to Halobacteriales and Methanomicrobiales
and could not be assigned to a specific phylum. Overall, the mi-
crobial community structure in the upper part of the transition
zone was similar to other methane-rich meromictic lake ecosys-
tems (17, 46). However, the diversity and abundance of bacterial
candidate divisions and the relative proportion of unassigned Ar-
chaea are unprecedented. Indeed, 25 of the currently estimated 30
bacterial candidate divisions were recovered from the upper part
of the transition zone. Their recently established affiliation to su-
perphyla and the availability of single amplified genomes (SAGs)
is summarized in Table S7 (2).

The taxonomic compositions of the lower part of the transition
zone and the monimolimnion were similar for the samples from
depths of 40 and 45 m of the upper part of the transition zone. The
most abundant Bacteria were affiliated with candidate divisions
OP3 (1.5%), OP8 (3.6%), OP9/JS1 (6.1%), OP11 (4.1%), WWE1
(6.1%), and Chloroflexi (22.3%). Depth-specific trends were ob-
served for the Chloroflexi, which increased in abundance between
45 m and 120 m. This trend has also been reported for Chloroflexi
in meromictic Arctic Lake A and Lake Pavin in France (15, 17).
Similar to the upper part of the transition zone, OTUs affiliated
with methanogenic Methanomicrobiales (5.2%) and Methanosar-
cinales (4.5%) and unassigned Archaea (30.5%) were also recov-
ered. Moreover, ANME-1 abundance approached 1% at a depth
of 50 m and remained present throughout the monimolimnion.

Cooccurrence analysis. To identify putative interactions be-
tween microbial community members in the Sakinaw Lake water
column, we constructed a cooccurrence network. The resulting
network contained 130,101 positively correlated cooccurrences
(edges) between 1,528 OTUs (nodes) and was composed of four
modules corresponding to previously defined water column com-
partments. Twenty-two OTUs in the network contained �1,000
reads, and collectively, these OTUs represented 40% of total reads
in the network (Fig. 5A). Three of these OTUs were indicators for
the mixolimnion, one was a multilevel indicator for the mixolim-
nion and upper part of the transition zone, eight were multilevel
indicators for the lower part of the transition zone and moni-
molimnion, and four were multilevel indicators for the upper part
of the transition zone, lower part of the transition zone, and moni-
molimnion (see Fig. S2 and Table S8 in the supplemental mate-
rial). Eight of the multilevel indicators revealed highest abundance
in the monimolimnion and displayed a unique correlation pattern
that was not observed for other abundant OTUs in the network.
Closer inspection of these OTUs revealed linkages between OP8,
OP9/JS1, OD1, WWE1, Chloroflexi, Methanomicrobiales, Metha-
nosarcinales, and one unassigned archaeal OTU (Fig. 5B). Previ-
ous studies have posited a role for OP8, OP9/JS1, OD1, WWE1,
and Chloroflexi in providing methanogenic substrates, specifically
acetate and hydrogen (3, 5, 6, 11, 47).

Linkages between OP8, OP9/JS1, and hydrogenotrophic metha-
nogenic Methanomicrobiales in the monimolimnion are consistent
with interspecies hydrogen transfer and competition for acetate

during syntrophic acetate oxidation (SAO). In support of this ob-
servation, no linkages were observed between OP8 and OP9/JS1 or
between OP8, OP9/JS1, and aceticlastic methanogens affiliated
with Methanosarcinales. Conversely, linkages between WWE1,
Methanomicrobiales, and Methanosarcinales suggest that this can-
didate division is unlikely to perform SAO. To validate network
results, we evaluated whether publicly available near-complete
(see also Table S9 in the supplemental material) Sakinaw Lake
OP8, OP9/JS1, and WWE1 SAGs encode components of the
Wood-Ljungdahl pathway, which is proposed to run in reverse
during SAO (2). Candidate divisions OP8 and OP9/JS1 harbored
a complete set of genes encoding the carbonyl and methyl
branches of the Wood-Ljungdahl pathway, while WWE1 harbored
only a subset, including genes encoding 5,10-methylene-tetrahydro-
folate dehydrogenase/methenyl tetrahydrofolate cyclohydrolase and
CO-dehydrogenase/acetyl coenzyme A (acetyl-CoA) synthase (Fig.
5C) (48).

DISCUSSION

The water column in Sakinaw Lake (British Columbia, Canada) is
a highly stratified ecosystem, in which microbial community
members partition into distinct subpopulations on the basis of
water column redox gradients. This stratification is stabilized by a
steep salinity gradient that persists below the oxygen interface.
Richness estimates revealed higher diversity in the redox transi-
tion zone and monimolimnion than in the mixolimnion, which is
likely supported by a continuous supply of nutrients and sub-
strates as previously described for other stratified lakes (49, 50).
Microbial community cluster analysis mirrored patterns observed
for physicochemical parameters. This distribution pattern pro-
motes hypotheses related to redox-driven niche partitioning and
metabolic coupling in the Sakinaw Lake water column.

The microbial community structure in the oxygen-rich, sunlit,
and entirely fresh mixolimnion (5 m to 30 m) is dominated by
Actinobacteria, Cyanobacteria, and Alphaproteobacteria affiliated
with SAR11 consistent with other freshwater ecosystems recently
described by Newton and colleagues (51). Moreover, eukaryotic
OTUs ware also abundant in surface waters and strong correla-
tions (Spearmann’s rank correlations of �0.99) between SAR11
and eukaryotic opisthokonta as well as SAR supergroup OTUs
were identified, indicating potential grazing relationships.

The microaerophilic upper part of the redox transition zone
(between 33 and 45 m deep) provides a habitat for abundant aer-
obic methane oxidizers affiliated with the Methylococcales (22.4%
at a depth of 33 m). As O2 concentrations decrease below 33 m,
Proteobacteria abundance increases, consistent with patterns ob-
served in other meromictic lake ecosystems (17, 45, 52–54). At
depths between 33 and 36 m, where concentrations of SO4

2�, Fe,
and Mn are at their highest, OTUs affiliated with putative sulfate-
reducing Deltaproteobacteria are abundant. Interestingly, candi-
date phylum RF3 OTUs increased between 36 and 40 m within the
SMTZ. In marine sediments, the anaerobic oxidation of methane
(AOM) is associated with similar gradients of H2S and CH4 (55).
AOM is driven by syntrophic interactions between sulfate-reduc-
ing bacteria (SRB) and ANME (56, 57). While no genomic se-
quence information is currently available for RF3, its niche in the
Sakinaw Lake water column suggests a potential role in sulfur or
methane cycling. Moreover, OTUs affiliated with ANME-1 were
recovered from the rare biosphere in the upper part of the redox
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transition zone and increased in abundance within the moni-
molimnion, consistent with water column AOM potential.

As the water becomes more sulfidic in the lower part of the
redox transition zone between 50 and 55 m and the monimolim-
nion between 60 and 120 m, the diversity and abundance of
MDM, with the potential to mediate cometabolic or syntrophic
interactions, increases (3–6). With more than 25 candidate divi-
sions accounting for 40% of SSU rRNA gene sequences and high
numbers of unassigned Archaea, MDM enrichment in Sakinaw
Lake is unprecedented. Abundant bacterial candidate divisions
were affiliated with OD1, OP3, OP8, OP9/JS1, OP11, and WWE1.
With the exception of WWE1, all of these candidate divisions have
been previously recovered from other meromictic lake ecosystems
(10, 16, 17). Furthermore, genomic potential for OD1, OP3, OP9/
JS1, and OP11 has been recently inferred from metagenomic or
single-cell genomic approaches (3, 6, 58, 59).

Metagenomic reconstruction of OD1 and OP11 genomes re-
vealed the potential for fermentative metabolism as well as poly-
sulfide reduction to H2S (6). Perry inspected sulfur chemistry in
Sakinaw Lake in the early 1990s and reported a remarkably high
concentration of polysulfide below the oxygen-sulfide interface
(40). Based on this evidence, OD1 and OP11 could contribute to
the high H2S concentrations in Sakinaw Lake through polysulfide
reduction. Candidate division OP3 has been proposed to be mag-
netotactic with the ability for anaerobic respiration (58, 59). The
availability of alternative TEAs in Sakinaw Lake is restricted to the
redox transition zone, suggesting that OP3 in the monimolimnion
could encode an alternative energy metabolism to previously
studied OP3 genomes. The genomic potential for OP9/JS1 recov-
ered from hot spring sediments revealed a saccharolytic, fermen-
tative lifestyle with the potential for cellulose degradation and hy-
drogen production (3). In contrast, enrichment cultures from
acetate-amended sulfate-rich, anoxic marine sediments revealed
[13C]acetate uptake by OP9/JS1 (60). On the basis of these obser-
vations, Webster and colleagues (60) suggested that OP9/JS1
could be acetate oxidizers using SO4

2� as a terminal electron ac-
ceptor. In Sakinaw Lake, this would be possible only in the upper
part of the redox transition zone where SO4

2� is available suggest-
ing a fermentative lifestyle below the transition zone. In support of
this conclusion, sulfate-reducing genes such as dsr could not be
recovered from recently published OP9/JS1 SAGs from Sakinaw
Lake (2).

In addition to bacterial candidate divisions, Chloroflexi and
methanogenic Archaea affiliated with Methanomicrobiales and
Methanosarcinales are abundant in the lower part of the redox
transition zone and monimolimnion. In many aquatic ecosys-
tems, sediments are considered the main source of CH4 produc-
tion. However, the potential role of water column methanogenesis
in Sakinaw Lake should not be underestimated and has been pre-
viously reported for other meromictic lakes. Under methanogenic
conditions, microbial communities commonly consist of primary
and secondary fermenting bacteria, which degrade polymeric sub-
strates into hydrogen (H2), carbon dioxide (CO2), and organic
acids, including acetate, formate, propionate, and butyrate. These
substrates in turn are used by hydrogenotrophic and aceticlastic
methanogens to convert CO2 and acetate, respectively, into meth-
ane (61). Energy yields during the degradation of organic mat-
ter into CH4 are low, and syntrophic interactions between
community members are needed to make the process energet-
ically more favorable (62). A common strategy used by well-

studied syntrophs affiliated with the Syntrophobacterales and hy-
drogenotrophic methanogens is to overcome energy constraints
by interspecies hydrogen transfer (63, 64). A similar interaction is
established during syntrophic acetate oxidation (SAO), where
acetogenic bacteria are proposed to run the Wood-Ljungdahl cy-
cle in reverse while transferring four hydrogen molecules to meth-
anogens (48).

Consistent with syntrophic growth modes associated with wa-
ter column methanogenesis, Syntrophobacterales and Methanomi-
crobiales were abundant in the lower part of the transition zone
and monimolimnion of Sakinaw Lake. Moreover, several MDM,
including WWE1, OP9/JS1, OP8, and OD1 manifested statisti-
cally significant cooccurrence (Spearman’s rank correlations of
�0.99) patterns among themselves and between known methano-
gens and putative fermentative Chloroflexi (5, 6, 47). These cooc-
currence patterns are consistent with syntrophic interactions driv-
ing interspecies hydrogen transfer between OP8, OP9/JS1, and
Methanomicrobiales as well as competition for acetate between
OP8, OP9/JS1, and Methanosarcinales. Metabolic reconstruction
focused on the Wood-Ljungdahl pathway using recently pub-
lished Sakinaw Lake OP8 and OP9/JS1 SAG sequences revealed
complete pathway coverage in both candidate divisions with the
potential to mediate SAO. In contrast, 5,10-methylene-tetrahy-
drofolate dehydrogenase/methenyl tetrahydrofolate cyclohydro-
lase and CO dehydrogenase/acetyl-CoA synthase were the only
Wood-Ljungdahl pathway components identified in WWE1.
Given that WWE1, but not OP8 and OP9/JS1, were linked to
aceticlastic methanogens in the network, we suggest that this can-
didate division has the potential to produce acetate as a metabolic
end product from butyrate oxidation, as recently proposed for
WWE1 in a terephthalate-degrading methanogenic bioreactor
(11). Syntrophic acetate oxidation has been speculated to be an
important syntrophic pathway in methanogenic bioreactors (48,
65). The Sakinaw Lake water column thereby provides an inter-
esting convergence of natural and engineered ecosystems with po-
tential applications for design and operation of anaerobic biore-
actors built for bioremediation and energy generation.

In conclusion, Sakinaw Lake is a model ecosystem in which to
study population structure and metabolic potential of MDM. By
combining cooccurrence networks with SAG-enabled metabolic
reconstruction, we posit that SAO in the monimolimnion is
linked to active methane cycling. Network analysis has previously
been combined with biogeochemical measurements to predict
physiology and function of candidate divisions (66); however, to
our knowledge, this study is the first to reconstruct syntrophic
relationships based on convergent cooccurrence patterns and sin-
gle-cell genomic evidence. Process-oriented studies combined
with phylogenetic staining and high-spatial-resolution secondary
ion mass spectrometry (NanoSIMs) are now needed to validate
predicted syntrophic interactions and provide quantitative in-
sights into methane cycling within the Sakinaw Lake water col-
umn.
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