JVI

Journals.ASM.org

Expression Library Immunization Can Confer Protection against
Lethal Challenge with African Swine Fever Virus

Anna Lacasta,®P Maria Ballester,® Paula L. Monteagudo,? Javier M. Rodriguez,® Maria L. Salas,® Francesc Accensi,®f

Sonia Pina-Pedrero,®9 Albert Bensaid,? Jordi Argilaguet,®" Sergio Lopez-Soria,® Evelyne Hutet,' Marie Frédérique Le Potier,’
Fernando Rodriguez®

Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autonoma de Barcelona, Bellaterra (Cerdanyola del Valles), Spain®; International
Livestock Research Intitute (ILRI), Nairobi, Kenyah; Centre de Recerca en Agrigenomica (CRAG), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain®; Centro Nacional de
Microbiologfa (ISCIll), Majadahonda, Madrid, Spain®; Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas-Universidad Auténoma
de Madrid), Madrid, Spain®; Departament de Sanitat i d’Anatomia Animals, Universitat Autdbnoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain';
Institut de Recerca i Tecnologia Agroalimentaries (IRTA), Barcelona, Spain?; Universitat Pompeu Fabra, Barcelona, Spain”; Agence Nationale de Sécurité Sanitaire de
I'’Alimentation, de I'Environnement, et du Travail (ANSES), Ploufragan, Bretagne, France'

ABSTRACT

African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our
laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54,
P30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable
antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8*
T cells in blood. Aiming to demonstrate the presence of additional CD8* T-cell determinants with protective potential, an ex-
pression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI
restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin.
Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75
strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 10* hemadsorbing
units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal chal-
lenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection
was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell
responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determi-
nants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification.

IMPORTANCE

African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries,
where it causes important economic losses and is currently in continuous expansion across Europe. Unfortunately, there is no
treatment nor an available vaccine. Early attempts using attenuated vaccines demonstrated their potential to protect pigs against
experimental infection. However, their use in the field remains controversial due to safety issues. Although inactive and subunit
vaccines did not confer solid protection against experimental ASFV infection, our DNA vaccination results have generated new
expectations, confirming the key role of T-cell responses in protection and the existence of multiple ASFV antigens with protec-
tive potential, more of which are currently being identified. Thus, the future might bring complex and safe formulations con-
taining more than a single viral determinant to obtain broadly protective vaccines. We believe that obtaining the optimal vaccine
formulation it is just a matter of time, investment, and willingness.

frican swine fever (ASF) is a highly contagious disease of do-

mestic and wild pigs that is endemic in many sub-Saharan
countries, where it causes important economic losses and is a par-
ticular problem in underdeveloped countries (1). The presence of
wildlife reservoirs (including ticks of the Ornithodoros spp.), the
rapid spread of the disease through direct and indirect contact,
and the lack of an efficient vaccine are important reasons for the
failure of ASF eradication in countries where the disease is en-
demic (2, 3). The complex epidemiological situation currently
existing in Africa together with the recent reintroduction of the
virus in Europe forces a continuous reevaluation of risk assess-
ment (4). Confirming the most-adverse previsions for 2014, ASF
cases in wild boars have so far been reported in two countries from
the European Union, Lithuania and Poland, where very recently
an outbreak also affecting domestic pigs was declared. Despite the
fact that little is known about the mechanisms involved in protec-
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tion, seminal evidence has demonstrated the key role that hu-
moral responses (5-7) and specific CD8™" T cells (8, 9) can play in
protection. Future vaccine designs against African swine fever vi-
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rus (ASFV) should take lessons from these findings, garnered by
using in vivo models of homologous protection with attenuated
viruses first described in the 1960s (10-12). Different attempts to
develop an efficient and safe vaccine against ASF have been made,
so far with not very consistent results. Thus, immunization with
baculovirus-expressed recombinant p54 and p30 ASFV proteins
(13, 14), with the viral hemagglutinin (15), or with a combination
of p54, p30, p72, and p22 (16) has yielded different protective
outcomes, also depending on the ASFV strain used for the chal-
lenge. These studies have, more recently, been extended to the
field of immunization with DNA (17, 18). Interestingly, the out-
come of the immune response and, consequently, the level of pro-
tection afforded by the DNA vaccines dramatically changed de-
pending on the plasmid version used. Thus, immunization with
pCMV-sHAPQ, encoding a fusion of p54, p30, and the extracel-
lular domain of the viral soluble hemagglutinin (sHA), induced
strong cellular and specific antibody responses that did not, how-
ever, protect pigs from lethal challenge (17). Conversely, a plas-
mid construction encoding a ubiquitin fusion of the same anti-
gens (pCMV-UbsHAPQ) protected 33% of the immunized pigs
against the lethal ASFV challenge; however, only partial protec-
tion was provided. Importantly, protection correlated with the
presence of vaccine-induced CD8 ™" T-cell responses in the surviv-
ing pigs; the vaccines were targeted mainly against two specific
9-mer peptides located within the hemagglutinin antigen (18).
These results confirmed the key role that specific CD8™ T cells can
play in the partial protection conferred by our DNA vaccines.
Aiming to increase the protective potential of our DNA vaccines,
we decided to expand this strategy to the rest of the ASFV genome,
alinear double-stranded DNA molecule ranging between 170 and
193 kbp and encoding approximately 150 major open reading
frames (ORFs) (19-22). An expression library containing more
than 4,000 individual plasmid clones was constructed and was
used in two independent experiments with farm pigs. Both exper-
iments yielded the same results, with finally 6 out of 10 immunized
pigs (60%) surviving the lethal challenge with the virulent E75
strain. These results were further confirmed in an experiment us-
ing specific-pathogen-free (SPF) pigs, where protection was cor-
related with the detection of specific T-cell responses at the time of
sacrifice. In summary, our results clearly demonstrate the pres-
ence of additional protective determinants within the ASFV ge-
nome and create the possibility for their future identification.
Complex formulations containing more than a single viral deter-
minant might present clear advantages for more broadly protec-
tive vaccines.

MATERIALS AND METHODS

ASFV DNA library construction. The ASFV DNA expression library was
built based on the Ba7l1V genome (GenBank accession number
ASU18466) previously cloned into the pBR325 and pBR322 plasmids
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TABLE 1 ASFV EcoRI and Sall restriction fragments used in the ELI
construction

Covered region of

Name of  Restriction Length ~ Ba71V genome No. of colonies
fragment  enzyme(s) (bp) (positions) (for each frame)
SB Sall 23,991 35267-59257 190

SD Sall 18,706 107235-125940 190

SE Sall 16,188 133347-149534 190

RB EcoRI 14,829 77738-92566 190

RA/SC EcoRI/Sall 13,191 16978-30168 160

RC’ EcoRI 11,731 99861-111591 144

RC EcoRI 11,572 63173-74744 112

RD’ EcoRI 10,789 159313-170101 95

SH Sall 8,895 149534-158428 72

(23). The EcoRI, Sall, and EcoRI-Sall restriction fragments from the
ASFV genome were split from the corresponding pBR plasmids to obtain
(i) one EcoRI-Sall DNA restriction fragment (RA/SC), (ii) four Sall re-
striction fragments (SD, SB, SE, SH), and (iii) four EcoRI restriction frag-
ments (RC, RC’, RD’, RB). The nine selected fragments corresponded to
different regions of the ASFV genome, and their sizes ranged from 8.9 to
24 kbp (Table 1). Once purified using the MinElute reaction cleanup kit
(Qiagen, Barcelona, Spain), the 9 restriction fragments were individually
digested with Sau3Al, a restriction enzyme recognizing the ¥ GATC?' se-
quence, commonly found, on average, once every 300 to 500 bp within the
ASFV genome. The resulting DNA fragments were purified and ligated
using Quick ligase (New England BioLabs, Ipswich, MA, USA) into the
unique BgIII/Bcll or BglIT cloning sites of the pCMV-UbiqF1/F2 or
pCMV-UbigF3 plasmid, respectively (24). By this method, all DNA frag-
ments were cloned in the three different reading frames as fusions with
ubiquitin under the control of the cytomegalovirus (CMV) mammalian
expression promoter (all plasmids were originally derived from pCMV;
Clontech, Palo Alto, CA, USA). Afterward, the plasmids were transformed
in electrocompetent Escherichia coli cells (ElectroMAX DH10B; Invitro-
gen, Barcelona, Spain), using the settings 2,000 V, 25 wF, and 200 (), in
1-mm cuvettes (Bio-Rad, Waltham, MA, USA). Individual clones were
picked for each restriction fragment and plasmid frame to be individually
inoculated into a 96-well format. The number of colonies to be picked in
order to ensure the representation of all Sau3AI fragments in the three
possible frames was calculated using the formula #n = In(1 — P)/In(1 —
1/n), where n is the number of clones needed to have a probability (P) of
finding any particular sequence in the library equal to 0.9 when the ratio of
the genome size to the average cloned fragment size is # (Table 1). Indi-
vidual clones encoding p54, p30, or hemagglutinin fragments were iden-
tified using standard DNA-DNA colony hybridization using the ECL Di-
rect labeling and detection system kit (Amersham Bioscience, Bath,
United Kingdom) according to the manufacturer’s recommendations.
The presence of certain Sau3Al fragment sequences (in silico determined)
of key genes in the library was confirmed by means of standard PCR using
the primer pairs included in Table 2. The PCRs were performed under the
following conditions: (i) a 3-min denaturation at 95°C, (ii) 35 cycles that
included 30 s at 95°C followed by 30 s at the melting temperature (7,,,) and

TABLE 2 Primer pairs and T,,s used in the conventional PCR to check the presence of in silico-determined Sau3AI sequences from the key genes in

the ASFVUPIP

ASFV gene Forward primer (5’ to 3") Reverse primer (5 to 3") T,, (°C)
B646L CCTCAAACCCCTAAATACT ATCGGAGATGTTCCAGGTA 56
A179L ATCACTACGGCATACAACT TAACTGTACACAGGATCTG 54
A224L GATGCACGAAATCAAAGCT AATGATCTTATGAATGTATTTTC 54
G1340L CAGGTCTGGGCGTTATAGA TTTTACACTAATAATTTCCTG 56
1329L GATTATAACATACTCAGAAAAC ATATTTTTTACAAATAGAACGC 54
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1 minat 72°C, and (iii) an additional cycle of 10 min at 72°C. All molecular
cloning techniques were carried out as described by Maniatis et al. (25),
with slight modifications.

Replicas of all library plates were performed and stored at —70°C with
15% (vol/vol) glycerol.

To obtain the plasmid DNA for vaccination, glycerol-conserved plates
were thawed to obtain replica plates, on which cells were grown; finally,
0.5-pl volumes from individual clones were combined and used as a
starter culture (2 ml) to inoculate 1 liter of Luria-Bertani broth (LB)
medium supplemented with 100 pg/ml ampicillin. The plasmid pool was
purified using the EndoFree plasmid megakit (Qiagen, Barcelona, Spain)
by following the manufacturer’s instructions to ensure that our DNA
preparation was free of endotoxins. The resulting ASFV DNA library was
named ASFVV"™® and quantified by means of spectrophotometry (ND-
1000 spectrophotometer; NanoDrop, Wilmington, DE, USA).

Animals and animal safety. Experiments at the Centre de Recerca en
Sanitat Animal (CReSA; Barcelona, Spain) were performed using 7-week-
old male farm pigs (Landrace X Large White). DNA immunization was
done on the experimental farm of the Universitat Autonoma de Barcelona
(UAB), and ASFV challenges were carried out at the biosafety level 3
facilities of CReSA. Animal care and procedures were carried out in ac-
cordance with the guidelines of the Good Experimental Practices (GEP)
and under the supervision of the Ethical and Animal Welfare Committee
of the UAB. Work done with SPF Large White pigs was carried out at
high-security facilities at Anses, Ploufragan, France. This animal experi-
ment protocol was approved by the French national ethics committee
ComEth Anses/ENVA/UPEC (approval number 10-0077), and the exper-
iments were performed according to the animal welfare experimentation
agreement given by the Direction des Services Vétérinaires des Cotes
d’Armor (AFSSA registration number B-22-745-1), under the responsi-
bility of Marie-Frédérique Le Potier (agreement number 22-17).

Virus strains. Two different ASFV strains were used in the in vivo and
in vitro experiments: the highly virulent E75 ASFV strain and the cell
culture-adapted strain E75CV1. The E75 strain was isolated from the 1975
Spanish ASF outbreak and amplified in pig leukocytes afterwards. The
attenuated E75CV 1 strain was obtained after 4 consecutive passages of the
E75 isolate in CV1 cells (green monkey kidney fibroblasts), as previously
described by Ruiz-Gonzalvo and Coll (11).

Genetic immunization and infection. Both farm pigs (5 pigs per im-
munization group [immunized with either ASEVV" or pCMV-Ub]) and
SPF pigs (8 pigs immunized with ASFVVP!™® and 4 pigs immunized with
pCMV-Ub), were immunized with two doses of 600 pg of DNA (1.5 ml
saline/each) at 2-week intervals at, respectively, 7 and 9 weeks of age.
One-third of each vaccine dose was intramuscularly injected into the fem-
oral quadriceps, one-third was injected into the trapezius muscle of the
neck, and the last third was subcutaneously injected into the ear, accord-
ing to a protocol already optimized at CReSA (17). Two weeks after the
last immunization, farm pigs were finally intramuscularly challenged with
alethal dose of 10* 50% hemadsorbing units (HAUsy) of the virulent E75
ASFV isolate (experiments 1 and 2), while SPF pigs received the same dose
of the cell culture-adapted E75CV1 ASFV isolate (experiment 3), an ASFV
strain that was previously described as attenuated for farm pigs (11). In
this particular experiment, 4 SPF pigs remained nonimmunized and non-
infected as an extra control for the assay. The rationale behind this exper-
iment was to try to evaluate the full potential of our experimental vaccine
protocol under less stringent conditions by challenging the animals with a
sublethal dose of ASFV. Clinical and pathological observations were re-
corded and scored according to recently reported guidelines (26).

ASFV detection. Serum samples and nasal swabs were collected before
(day 0) and at different times after viral challenge. Viremia was deter-
mined by a hemadsorption assay as described previously (17). Titers were
calculated by the Reed and Muench method (27) and expressed as HAU 5o/
ml. A quantitative real-time PCR (qQPCR) method was developed to quan-
tify the viral DNA from nasal swab—phosphate-buffered saline (PBS) sus-
pensions and tissues (retropharyngeal lymph node, tonsils, and spleen).
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Viral DNA was obtained from 200 pl of swab-PBS suspensions using the
NucleoSpin blood kit (Macherey-Nagel, Diiren, Germany) according to
the manufacturer’s recommendations.

PCR primers were designed using Primer Express software (Applied
Biosystems, Foster City, CA, USA). An 85-bp-long fragment from the
ASFV serine protein kinase gene (R298L) was amplified using the primers
5'-GTCCAGGCCGGAACAACA-3' (forward) and 5'-CCTTTCCACCT
TTGCTGTAGGA-3" (reverse). PCR amplifications were performed in
triplicate in a 20-pl final volume containing 2 pl of sample, 900 nM each
primer, and 10 pl of SYBR green PCR master mix (Applied Biosystems,
Foster City, CA, USA) using an ABI 7500 Fast real-time PCR system (Ap-
plied Biosystems, Foster City, CA, USA) under the following conditions:
10 min at 95°C and 40 cycles of 15 s at 95°C and 1 min at 60°C. A disso-
ciation curve was drawn in order to assess the specificity to the amplifica-
tion. A standard curve and quantification was achieved by amplification
of an 891-bp-long fragment from the ASFV serine protein kinase gene
using the following primers: 5'-ATGTCCAGGCCGGAACAAC-3' (for-
ward) and 5-CTACTCCTAGTTCCGAAATAGGC-3" (reverse). The
PCR product was extracted from agarose gel, purified with NucleoSpin
extract II (Macherey-Nagel, Diiren, Germany), and quantified using the
NanoDrop ND-1000 spectrophotometer (NanoDrop Products, Wil-
mington, DE, USA). Tenfold dilutions, ranging from 2 to 2 X 10° mole-
cules, were used to obtain standard curves. The limit of detection of the
qPCR assay was as low as two viral DNA copies, which was equivalent to
2.69 log,, copies per swab. Results were expressed as log,, numbers of
genome equivalent copies (GEC) per ml of nasal swab.

The results of the qPCR showed a slope of 0.98 in correlation with the
results of the hemadsorbing assay (OIE-validated assay) in serum sam-
ples, as tested with 20 serum samples: 10 from the control group and 10
more from the ASFVU® group (all from day 7 postinfection [p.i.]). Two
more prechallenge samples were included as negative controls in both
assays. Samples used correspond to those for experiment 1.

Analysis of immune responses against ASFV. Development of T-cell
immune responses to ASFV was analyzed by a gamma interferon (IFN-y)
enzyme-linked immunosorbent spot (ELISPOT) assay as described pre-
viously (17, 18). Briefly, peripheral blood mononuclear cells (PBMCs)
were separated from whole blood by density gradient centrifugation with
Histopaque 1077 (Sigma-Aldrich, Madrid, Spain). Ninety-six-well plates
(Costar 3590; Corning) were coated overnight with 8.3 pg/ml of anti-
IFN-vy capture antibody (clone P2G10; BD Pharmingen, NJ, USA), and
5 X 10° PBMCs were dispensed per well and cultured with the E75 ASFV
isolate as a stimulus at 10> HAU,/well in triplicate. After 20 h of incuba-
tion, cells were removed, plates were incubated with anti-IFN-y-biotin-
ylated antibody at 2.5 pg/ml (clone P2C11; BD Pharmingen, NJ, USA),
followed by streptavidin-peroxidase labeling (Biosource, San Diego, CA,
USA), and finally, the reaction was developed by adding insoluble tetram-
ethylbenzidine (TMB) (Calbiochem, Merck Group, Darmstadt, Ger-
many) and incubating the reaction mixture for at least 10 min. PBMCs
stimulated with either RPMI 1640 or 5 p.g/ml phytohemagglutinin (PHA)
were also included as negative and positive controls of the assay, respec-
tively. The specific frequencies of IFN-y-secreting cells per million
PBMCs were obtained after subtracting the spot counts obtained with
unstimulated cells.

ASFV-specific antibodies in pig sera were detected by the OIE in-
ternationally prescribed enzyme-linked immunosorbent assay (ELISA)
(28, 29).

Flow cytometry. Surface PBMC staining was performed as previously
described (30), using the following antibodies: anti-SWC3 for monocytes
and macrophages (hybridoma clone BA1CI11), anti-p30 for virus detec-
tion (hybridoma clone 1D9), anti-CD4a-peridinin chlorophyll (PerCP)-
Cy5.5 (clone 74-12-4), anti-CD21-phycoerythrin (PE) (clone B-ly4) for B
cells, and anti-CD8-Alexa Fluor 647 (clone 76-2-11) (BD Pharmingen,
NJ, USA). Hybridoma supernatants (generously provided by J. Domin-
guez) were used without dilution, and secondary anti-IgG1-antigen-pre-
senting cell (APC) (Vitro Group, Salamanca, Spain)- and anti-IgG2a-Cy2
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(Sigma-Aldrich, Madrid, Spain)-conjugated anti-isotype antibodies and
the primary conjugated antibodies were used at a dilution of 1:100. Cell
phenotypes were analyzed by flow cytometry (BD FACSAriaI) using triple
anti-CD4a-PerCP-Cy5.5, anti-CD21-PE, and anti-CD8-Alexa Fluor 647
stains for better analysis of the doubly positive CD4™ CD8™ T cells; dou-
ble anti-SWC3 and anti-p30 stains were used for better analysis of the
infected monocytes/macrophages.

Statistical analysis. Variance, normal distribution, and homogeneity
were determined for each population. Differences between experimental
groups were assessed by a Student ¢ test. The significance level was set at P
value of <0.05 by means of Sigma Plot software (v10.0; Systat Software,
Inc., CA, USA).

RESULTS

(i) DNA immunization with ASFVUP® confers partial protec-
tion against ASFV challenge. A total of 4,029 clones representing
130 kbp of the Ba71V genome and spanning about 76% of the
complete genome were obtained (Table 1) and make up the ASFV
DNA expression library (ASFVU®). Each one of the individual
clones from the ASFVU"™* contains a random DNA fragment
from the ASFV genome cloned within the pCMV-Ub plasmid to
optimize its class I antigen presentation after its in vivo adminis-
tration (31). The presence of random Sau3AlI restriction frag-
ments representing key genes was confirmed by using specific
primers selected from the Ba71V genome sequence (Table 2).
ASFVVPP was next used to immunize farm pigs (experiment 1),
with the aim of evaluating its protective potential. As expected, all
control pigs (5 animals) died before day 10 after the E75 challenge.
Conversely, 3 out of 5 (60%) ASFV""*_immunized pigs survived
the lethal challenge. The two pigs that did not survive succumbed
at day 10 postinfection (p.i.), after a delay compared to the first
death recorded in the control group (Fig. 1A). A duplicate exper-
iment independently performed by following an identical experi-
mental procedure (experiment 2) yielded the same protective pro-
portions (60%) (Fig. 1A) and confirmed the protective potential
of ASFVVP with 6 out of 10 immunized pigs surviving the lethal
challenge.

Surviving pigs showed lower titers of virus in blood (Fig. 1B) and
also in nasal excretions (Fig. 1C) than nonsurviving ASFVUPi-
immunized pigs or control animals. Despite all animals develop-
ing typical ASF symptoms, including fever, the surviving animals
recovered general body condition and normal temperature by
days 11 to 12 p.i. The total recovery of the surviving pigs correlated
with the absence of viremia and nasal shedding from day 21 p.i.
Confirming these results, no virus was detectable in any of the
tissues tested, including retropharyngeal lymph node, tonsil, and
spleen, in any animal, and results coincided with the lack of mac-
ro- and microscopic lesions compatible with ASF during post-
mortem examination (data not shown).

(ii) ASFVV""™® DNA immunization also protects SPF pigs
from lethal ASFV challenge. ASFV"""™ was next used to immu-
nize SPF pigs (experiment 3) in order to extend our studies to pigs
with a more controlled sanitary status, thus facilitating the analysis
of the immunological assays performed (the absence of previous
nonrelated infections that might mask the specific immune re-
sponses induced by our vaccines should reduce the background
found in farm pigs for some of our immunological assays). DNA-
vaccinated SPF pigs did not show any local reaction at the site of
injection or any other adverse effect. This observation fits with the
fact that all DNA-immunized pigs exponentially gained weight
during the immunization period at rates similar to those of non-
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FIG 1 (A) Percentages of surviving ASFVV™_immunized pigs versus control
animals after E75 lethal challenge. Results from experiments 1 and 2 are
shown. (B) Virus detection in blood by hemadsorption. (C) Nasal-excretion
virus titers detected by qPCR present after E75 challenge. Results shown are
from experiment 1. Results from individual surviving ASEVVP™®-immunized
pigs (ASFVUDblib 2, ASFVUDIib 3, ASFVUDblib 5) are represented as a contin-
uous black line, while averages and standard deviations are represented as a
dashed black line with I bars, respectively, for nonsurviving ASEV"™-immu-
nized pigs and as a dotted black line for control pigs. no-surv., no surviving

pigs.

immunized control animals (Fig. 2A). In spite of the attenuated
behavior of the cell culture-adapted E75CV1 strain in farm pigs,
the challenge of SPF pigs with 10* HAU of E75CV1 had, however,
adirectimpact on the growth curve of nonprotected pigs. Thus, all
four pigs preimmunized with the empty pCMV-Ub plasmid (con-
trol group) practically stopped growing from the day of challenge
until the end of the assay (Fig. 2A), all dying before day 14 p.i. (Fig.
2B). In clear contrast, four out of eight (50%) pigs preimmunized
with ASFVY® showed growth kinetics similar to that of unin-

jviasm.org 13325


http://jvi.asm.org

Lacasta et al.

>

-8~ ASFVUblib surv.
- ASFVUblib no surv.
—A- pCMV-Ub
—=- Non-infected

-2}
?

Weight (kg)
8

10 T

1 T T T L] 1 Ll 1 1
-30 26 20 15 10 5 0 5 10 15 20

Days after-infection
B
100 l— - ASFVUblib
.g 80- —— pCMV-Ub
=
7 60
5
2 40'
(]
& 20
c T T 1 1 T 1 = F 1 L 1 1
0 2 4 6 8 10 12 14 16 18 20 22

Days after-infection

C - —e— ASFVUblib surv.
- ASFVUblib no surv.

n -A- pCMV-Uo

< 414 -=- Non-infected

)

e

=

®

5 404

=%

£

)

'_

T T ) I 1 1 1
6 8 10 12 14 16 18 20 22
Days after-infection

LI —
0 2 4

FIG 2 Average growth dynamics with the corresponding standard deviations
(A), percentages of survivors (B), and average temperature evolutions of sur-
viving ASEVUP™®_immunized pigs, nonsurviving ASFVV*™_immunized pigs,
and infected and noninfected control group animals (C) in experiment 3.

fected control animals (Fig. 2A), corresponding to those capable
of surviving the ASFV challenge (Fig. 2B). Compared to control
pigs, surviving pigs also showed milder signs of ASF disease, in-
cluding in general body condition, anorexia, lethargy, shivering,
cyanosis, prostration, and rectal temperature, all of which were
monitored daily, and these results coincided with the growth kinetics.
Thus, pig numbers 3, 4, 7, and 8, immunized with ASFEV"™, showed
a delay and peaks of fever shorter than those of nonprotected pigs,
which showed a prolonged hyperthermia, starting as soon as day 3
p.i. for some of the animals and lasting to the end time point
(Fig. 2C).

(iii) Surviving SPF pigs control viremia and ASFV shedding.
Viremia peaked at day 7 p.i. in all four control pigs (pCMV-Ub
immunized) from experiment 3, with one of them showing an
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accelerated response detectable as soon as day 4 p.i. Similar
viremia titers were also found for three of the ASFVV""-immu-
nized pigs, again coinciding with those showing ASF clinical signs
indistinguishable from those of the control pigs (Fig. 3A). Surviv-
ing pigs, however, showed either a clear reduction of 2 to 3 logs in
their maximum virus titers in sera (pigs 3 and 4) or even no de-
tectable virus at any time postchallenge (pigs 7 and 8) (Fig. 3A,
lines overlapping the x axis).

The number of ASFV-infected macrophages found in blood
(SWC3"/p30™ cells) at day 7 p.i. showed a good correlation with
viremia, confirming it as a potential complementary marker fol-
lowing the ASFV infection in vivo (17, 32). Thus, the number of
ASFV-infected macrophages found per milliliter of blood was sig-
nificantly lower in surviving pigs than in nonsurviving ASFVV?1-
immunized pigs and control animals (P value < 0.05) (Fig. 3B).
Additionally, the serum concentrations of IFN-a (Fig. 4A) and
tumor necrosis factor alpha (TNF-a) (Fig. 4B) in surviving pigs
remained below those detected in nonsurviving pigs, in all cases
reaching their maximum peaks at day 7 p.i., again coinciding
with the larger number of ASFV-infected macrophages found
in blood (Fig. 3B). While the differences observed at day 7 p.i.
were statistically significant for IFN-a (P value < 0.01 [be-
tween ASFVVP'® survivors and controls]), surviving animals
also tended to show lower concentrations of TNF-« in their
serum than nonprotected pigs.

As expected, the ASFV shedding kinetics coincided with
viremia results. Only one control animal secreted virus as soon as
day 4 p.i., and titers peaked in all animals at day 7 p.i. (Fig. 5).
Protected pigs 7 and 8, immunized with ASFVV"™*, showed a dra-
matic reduction in viral shedding compared with control pigs, as
described for viremia. Thus, pigs 7 and 8 showed no and very little
virus at day 7 p.i., respectively, the time at which the differences
became especially significant from the statistical point of view
(P value < 0.01) (Fig. 5). Interestingly, survivors did not secrete
detectable virus at the time of sacrifice, and as described for sur-
viving farm pigs, no virus was detectable in any of the tissues tested
postmortem (data not shown).

(iv) ASFVVP® confers partial protection in the absence of
detectable antibodies prior to challenge. Confirming previous
results with plasmids encoding ubiquitinated ASFV antigens, no
specific anti-ASFV antibodies were detectable by ELISA in any of
the pigs immunized with ASFVU"™ prior to challenge (experi-
ment 3) (Fig. 6A). The B-cell numbers found in blood and the
optical density (OD) values obtained also confirmed no specific
B-cell priming in surviving pigs after ASFV challenge; both the
antibody (Fig. 6A) and the B-cell kinetics (Fig. 6B) were indistin-
guishable from those found in control pigs. The number of blood
monocytes (SWC3 ™ cells) and blood CD4™ T cells from surviving
pigs did not show any evident expansion after ASFV challenge
(Fig. 7A and B, respectively), similar to what occurred with B cells.
The fact that CD8™ T cells (both singly and doubly positive CD4 ™
CD8™) were the only cellular subset analyzed that showed a sta-
tistically significant expansion in the surviving pigs from day 5 p.i.
(Fig. 7C and D) seems to confirm the presence of specific CD8™"
T-cell responses prior to ASFV challenge. Interestingly, surviving
SPF pigs showed at the time of sacrifice not only anti-ASFV anti-
bodies (Fig. 6A) but also virus-specific T cells in their blood (Fig.
8)’; unfortunately, all attempts to quantify the specific T-cell re-
sponses induced directly after vaccination with ASEVY""™® failed.
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FIG 3 (A) Evolution of virus titers in the blood of individual ASFVV""*-immunized animals and the average and standard deviations for the infected control
group animals, measured by hemadsorption assay. Results shown are from experiment 3. (B) Kinetics of the detection of ASFV-infected monocytes/macrophages
(Inf. M) (SWC3™" p30™) per milliliter of total blood detected by flow cytometry of infected SPF animals throughout their infection with E75CV1. Graphs show

average values and standard deviations per group (*, P < 0.05).

DISCUSSION

Expression library immunization (ELI) is a very useful tool to
confer protection against rather-complex pathogens (33, 34). In
order to increase their immunogenicity, modified ELI vaccines
can be generated by either targeting the encoded antigens to sites
of the immune induction (35) or improving their intracellular
degradation and their presentation to specific antigen-presenting
pathways (31). In this report, we present clear evidence demon-
strating the protective capability of the ASFVV"'™, a DNA library
encoding short restriction fragments from the ASFV genome as
fusions with ubiquitin to increase their proteasomal degradation
and to enhance the induction of specific CTL responses (36, 37).
These results confirm and extend those recently obtained by im-
munizing with an individual plasmid encoding three ASFV anti-
gens in frame with ubiquitin (18). The presence of ubiquitin in the
vaccine was determinant, since vaccination with ASFV library
DNA bearing ASFV genome fragments as fusions with the extra-
cellular domain of hemagglutinin, ASFV*"A failed to induce
protection against ASFV lethal challenge (data not shown), per-
haps due to the presence of low, albeit detectable, exacerbating
anti-ASFV antibodies, as has been described before (18). The fact
that the partial protection provided by the ASFV"°!® was obtained
in the absence of antibodies seems to give strength to this hypoth-
esis and points out once more the relevance of CD8" T-cell re-
sponses in protection against ASFV. We are currently attempting
to identify as many cytotoxic-T-lymphocyte (CTL) determinants
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as possible from the ASFVU"™, following protocols already de-
scribed (18).

Regarding the optimization of our ELI libraries, we strongly
believe that there is room for improvement when one takes into
account the fact that large proportions of the ASFV genome be-
came misrepresented or not represented at all. Thus, the left end of
the ASFV genome was excluded and most of the central region and
right end of the genome were included within the ASFVV"®, Fur-
thermore, the 5'and 3’ends of the EcoRI, Sall, and EcoRI-Sall
restriction fragments from the ASFV genome became excluded
from the ASFVV" due to their incompatibility for ligation to the
unique cloning sites of pCMV-UbiqF1/F2 or pCMV-UbiqF3
(BglII and BclI). Finally, several ORFs became misrepresented
within the ASFVYP"™® due to the presence of termination codons
upstream and in frame with their initial AUG, frequently found
through their genome (GenBank accession number ASU18466).
A theoretical calculation of all these hazards leads to an ELI that, in
spite of being based on 76% of the genome, carries in frame with
ubiquitin DNA fragments from around 80 ORFs and corresponds
to more than the 50% of the genes represented by one or more
Sau3Al fragments. We are currently in the process of individually
sequencing the 4,029 clones from the ASFVV™ to select those in
frame with ubiquitin for further in vivo and in vitro studies. Com-
parative immunization experiments using both the ASFVY" " and
the newly generated library (exclusively encoding in-frame ASFV
OREFs) should allow us to confirm (or discard) the presence of
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FIG 4 Kinetics of the detection of IFN-a (A) and TNF-« (B) in sera of infected SPF animals throughout their infection with E75CV1 (experiment 3). Graphs
show average values and standard deviations per group (¥, P < 0.05; **, P < 0.01).
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FIG 5 Evolution of virus titers in nasal swabs of individual ASEV"""™-immu-
nized animals and the average and standard deviations for the infected control
group animals, measured by qPCR. Results shown are from experiment 3.

CTL determinants within noncoding regions of the ASFV genome
(38) and their potential protective potential.

The use of SPF pigs not only allowed confirmation of the pro-
tective capabilities of ASFVV™ but also demonstrated that the
immune response induced by them could even confer a very solid
protection in a certain proportion of animals showing no clinical
signs of disease nor detectable ASFV at any time postinfection in
any tissue tested.

The differential protection observed between SPF pigs and
farm animals most probably comes from the different virulences
of the ASFV isolates used. In agreement with this assumption,
control pigs infected with E75 became sick and viremic 4 days
earlier than SPF pigs challenged with E75CV1; the control pigs
also died 4 days earlier on average. These data suggest the possi-
bility of using a less aggressive virus for a challenge experiment if
the overall goal is to identify the real potency of our vaccine pro-
totypes and/or to identify potential protective candidates. The fact
that some SPF pigs infected with a lethal dose of 10* HAUs, of
E75CV1 showed a robust protection (measured as described
above) points toward an underestimation of the protective capa-
bility of our DNA vaccines, considering the heterologous nature
of the ASFV challenge. We must keep in mind that our ASFVV>'®
was made from the Ba71V genome, a virus strain closely related to
E75 in time and location. However, cross-protection studies car-
ried out in our laboratory clearly demonstrated the nonhomolo-
gous nature of both ASFV strains (A. Lacasta and F. Rodriguez,
unpublished data). In fact, the original reason for selecting
E75CV1 as challenge material in our SPF experiments relied on
the fact that this strain, E75, adapted to grow in CV 1 cells and, with
the same virus stock, behaved as a highly attenuated virus in farm
pigs (11; Lacasta and Rodriguez, unpublished data). In contrast,
E75CV1 behaved with surprising virulence in SPF pigs, killing all
control animals within 13 days after infection. These results seem
to coincide with those previously reported by King et al, although
not deeply discussed at the time (12). In that report, the authors
describe some unexpected adverse effects while infecting SPF pigs
with OURT88/3, an attenuated strain of ASFV, although they are
far from the dramatic adverse effects found with E75CV1, most
probably due to genetic differences between the two attenuated
ASFV strains. Several explanations might account for the exacer-
bated sensibility of the SPF pigs to ASFV. It might reflect the dif-
ferential degrees of maturation of their innate immune systems in
a comparison with farm pigs continuously subjected to external
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FIG 6 Detection of ASFV-specific antibodies by ELISA (A) and kinetics of
blood B-cell expansion in SPF pigs shown by flow cytometry (B). Results
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aggressions in the form of multiple-microorganism infections
(39). Additionally, the endogamy existing in SPF pigs provoked a
clear polymorphism reduction of many receptors involved in the
innate immune response, such as the pattern-recognizing recep-
tors (PRR), including Toll-like receptors (TLR), which is an addi-
tional risk for pneumonia susceptibility (40). Together with these
potential explanations, many other differences in the infection
model cannot be ruled out.

These results may open up new avenues of investigation (as an
example, investigation of the reasons behind the resistance to
ASFV of bush pigs in Africa). Additionally, experimentally work-
ing with SPF pigs has several advantages, above all the facilitation
of the readout of the immune responses induced by our vaccines
in almost an absence of background (very evident for the
ELISPOT assays) and also the dissection of the mechanisms in-
volved in immunoprotection, including immunodominance (9).

Even though quantitatively lower than those induced by other
methods, DNA immunization has been demonstrated to be very
efficient at inducing broad CD8 T-cell responses that in turn
might also bring important advantages, such as avoiding immu-
nodominance and the risk of immune evasion (41, 42), phenom-
ena demonstrated for other viruses (43) and more recently de-
scribed for ASFV (9). Thus, DNA immunization has confirmed
the potential to break ASFV immunodominance, thus modifying
the T-cell repertoire induced after ASFV infection and opening
up the possibility of designing new immunization strategies with
the potential to confer protection against heterologous viruses (9).

Unfortunately, the lack of identified CTL epitopes other than
those previously defined for hemagglutinin (18) complicated the
readout of the immune responses induced, limiting the in vitro
stimulation to the live virus.
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The ASFVY"'™® induced by far the best protection afforded by a
DNA vaccine against ASFV and allows optimism for the future
since the plasmid concentration was administered at a suboptimal
concentration (0.15 pg/plasmid/dose instead of the optimal 600
pg/plasmid/dose).

As described before for pCMV-UbsHAPQ (18), the partial
protection afforded by the ASFVV" was independent of the pres-
ence of specific antibodies before ASFV challenge, and no boost-
ing was observed after ASFV challenge, coinciding with no signif-
icant variations in peripheral B-cell numbers between surviving
animals and nonsurviving pigs. A similar picture was found for
both monocyte/macrophages and CD4™ T cells, blood cell types
that followed similar kinetics independently of the animal group
and did not suffer any clear expansion at later time points postin-
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FIG 8 Detection of ASFV-specific T cells at day 21 p.i. by an IFN-y ELISPOT
assay of surviving pigs and a nonimmunized/noninfected control pig. Results
shown are from experiment 3.
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fection. Conversely, both singly positive CD8" and doubly posi-
tive CD4™ CD8™ T cells from surviving pigs suffered a statistically
significant expansion, detectable from very early after ASFV infec-
tion, lasting until the end of the experiment, and correlating with
the control of the virus from blood, nasal excretions, and lym-
phoid tissues. These T-cell subsets most probably corresponded
with the presence of specific cytotoxic and memory T cells (44, 45)
induced by vaccination with ASFVVPHP,

Lack of full protection did not imply the appearance of carrier
animals since surviving pigs cleared the virus from blood, nasal
fluids, and the postmortem tissues tested (lymph nodes, tonsil, and
spleen) to at least below detectable levels, thus reducing to the
minimum the risk of transmission to susceptible recipients. Last
but not least, vaccination with ASFVV"™ protected pigs from the
usual cytokine storm typically found in highly virulent pathogens
targeting the immune system (46—48). Thus, pigs vaccinated with
ASFVVPP showed reduced levels of both TNF-a and IFN-« in
their sera compared with control pigs. The reduction of TNF-a
levels in sera corresponds with a number of ASFV-infected mac-
rophages in their blood that was lower than that found in control
pigs, perfectly fitting with previous observations associating the
presence of TNF-a with the amount of infected cells and the tissue
damage present (49-52). Conversely, the concomitant detection
of IFN-a at late times postinfection with E75CV1 in SPF control
pigs contrasts with results recently described using a virulent Cau-
casian ASFV strain (53). A potential explanation for these diver-
gent results might come from genomic differences existing be-
tween these two ASFV isolates affecting specific genes as well as
between the numbers of ORFs present in their genomes (54). The
fact that some of these genes, such as the A238L mutant gene, or
several multigene family members have previously been described
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as being involved in IFN type I regulation (55) and have been
described as virulence factors (56—58) fits our current hypothesis.

We are currently attempting to identify as many CTL deter-
minants as possible from the ASFVV"™® following protocols
already described by our laboratory (18). Fibroblasts isolated
from ASFVV"™®_vaccinated and surviving pigs will be trans-
fected with individual ASFVV"™® plasmids and then used as
APCs. Once identified, the corresponding ASFV polypeptides
will be subjected to a detailed in silico prediction of CTL
epitopes (59). This two-step method coupled with the above-
mentioned readouts has allowed the identification of a few pro-
tective CTL determinants in vitro (18).

As for many other pathogens, the main restriction found at the
time of devoting our work to vaccine discovery comes from the
absence of a real correlation between in vitro and in vivo protec-
tion. Thus, the only unarguable proof for an antigen to become a
real vaccine candidate comes from its potential to clinically pro-
tect individuals (60). Confirming this theory, in vitro screening of
both B- and T-cell epitopes identified ASFV determinants that,
however, failed to induce any measurable protection (61, 62). This
is most probably the main reason why there are only a few reports
identifying optimal vaccine candidates screened from successful
ELI libraries obtained from large and complex pathogens (63).
The fact that we are working with a real infection model allows for
optimism. In fact, preliminary results obtained in our laboratory
have allowed us to describe the presence of multiple protective
antigens present throughout the genome. The expression vector
to be chosen for the final vaccine delivery is also being investigated
in our laboratory.
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