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ABSTRACT

CD4� T-cell responses are crucial for effective antibody and CD8� T-cell induction following virus infection. However, virus-
specific CD4� T cells can be preferential targets for human immunodeficiency virus (HIV) infection. HIV-specific CD4� T-cell
induction by vaccination may thus result in enhancement of virus replication following infection. In the present study, we show
that vaccine-elicited CD4� T cells expressing CD107a are relatively resistant to depletion in a macaque AIDS model. Comparison
of virus-specific CD107a, macrophage inflammatory protein-1�, gamma interferon, tumor necrosis factor alpha, and interleu-
kin-2 responses in CD4� T cells of vaccinated macaques prechallenge and 1 week postchallenge showed a significant reduction in
the CD107a� but not the CD107a� subset after virus exposure. Those vaccinees that failed to control viremia showed a more
marked reduction and exhibited significantly higher viral loads at week 1 than unvaccinated animals. Our results indicate that
vaccine-induced CD107a� CD4� T cells are depleted following virus infection, suggesting a rationale for avoiding virus-specific
CD107a� CD4� T-cell induction in HIV vaccine design.

IMPORTANCE

Induction of effective antibody and/or CD8� T-cell responses is a principal vaccine strategy against human immunodeficiency
virus (HIV) infection. CD4� T-cell responses are crucial for effective antibody and CD8� T-cell induction. However, virus-spe-
cific CD4� T cells can be preferential targets for HIV infection. Here, we show that vaccine-induced virus-specific CD107a�

CD4� T cells are largely depleted following infection in a macaque AIDS model. While CD4� T-cell responses are important in
viral control, our results indicate that virus-specific CD107a� CD4� T-cell induction by vaccination may not lead to efficient
CD4� T-cell responses following infection but rather be detrimental and accelerate viral replication in the acute phase. This sug-
gests that HIV vaccine design should avoid virus-specific CD107a� CD4� T-cell induction. Conversely, this study found that
vaccine-induced CD107a� CD4� T cells are relatively resistant to depletion following virus challenge, implying that induction of
these cells may be an alternative approach toward HIV control.

Virus-specific CD8� T-cell responses play a central role in the
control of human immunodeficiency virus (HIV) replication

(1–6). CD8� T cells, via their T-cell receptor, specifically recog-
nize viral epitopes bound to human leukocyte antigen (HLA) class
I molecules on the surface of virus-infected cells. Previous studies
on HIV-infected individuals have shown an association of several
HLA genotypes with delayed AIDS progression, implying possible
HIV control by effective CD8� T-cell responses (7–10). Current
vaccine trials in macaque AIDS models with simian immunodefi-
ciency virus (SIV) infection have shown that induction of effective
CD8� T-cell responses can result in reduction of postchallenge
viral loads (11–16). Furthermore, cumulative studies have shown
protection of SIV challenge by passive immunization with neu-
tralizing antibody in macaques, suggesting the possibility of HIV
protection by vaccine-induced effective antibodies (17–19).

Virus-specific CD4� T-cell responses are crucial for induction
of effective CD8� T-cell and antibody responses (20–28). CD4� T
cells, however, are targets for HIV, which can be an obstacle to
potent virus-specific CD4� T-cell responses following HIV infec-
tion (29–31). Because HIV preferentially infects HIV-specific
CD4� T cells, induction of HIV-specific memory CD4� T cells by
vaccination may increase the target cell pool for HIV infection and
thus enhance viral replication (32).

Our previous trial of a prophylactic vaccine regimen of a DNA

prime and a boost with a Sendai virus (SeV) vector expressing SIV
Gag (SeV-Gag) showed control of an SIV challenge in some vac-
cinated rhesus macaques (11). Vaccine-induced Gag-specific
CD8� T cells were shown to be responsible for this SIV control
(33, 34). However, the effect of SIV-specific CD4� T-cell induction
by vaccination on postchallenge virus replication remains unclear.
Virus-specific CD4� T cells can be divided into multiple subsets pro-
ducing a variety of cytokines following viral antigen stimulation (35,
36). In the present study, we examined changes in multiple subsets of
vaccine-induced CD4� T cells following SIV infection in a macaque
AIDS model. Comparison of SIV-specific CD4� T-cell profiles pre-
and postchallenge indicated that vaccine-elicited CD4� T cells ex-
pressing CD107a are relatively resistant to depletion whereas virus-
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specific CD107a� CD4� T cells are largely depleted in the postchal-
lenge acute phase of infection. These results imply that induction of
the latter CD4� T-cell subset by vaccination may result in enhanced
HIV replication after virus exposure.

MATERIALS AND METHODS
Samples. The present study used frozen peripheral blood mononuclear
cell (PBMC) samples derived from 18 vaccinated and 21 unvaccinated
Burmese rhesus macaques (Macaca mulatta) for analysis of SIV-specific
CD4� T-cell responses. Our previous SIVmac239 challenge experiments
using these animals (34, 37–40) were conducted at the Tsukuba Primate
Research Center, National Institute of Biomedical Innovation (NIBP),
and the Institute for Virus Research, Kyoto University (IVRKU), with the
help of the Corporation for Production and Research of Laboratory Pri-
mates. This study was approved by the Committee on the Ethics of Animal
Experiments of NIBP and IVRKU under the guidelines for animal exper-
iments at NIBP, IVRKU, and the National Institute of Infectious Diseases,
which is in accordance with the Guidelines for Proper Conduct of Animal
Experiments established by the Science Council of Japan (http://www.scj
.go.jp/ja/info/kohyo/pdf/kohyo-20-k16-2e.pdf).

Vaccinated animals received a DNA prime and an SeV-Gag boost. The
DNA used for the vaccination, CMV-SHIVdEN DNA (11), was con-
structed from an env- and nef-deleted simian-human immunodeficiency
virus (SHIV) molecular clone DNA (SIVGP1) and has the genes encoding
SIVmac239 Gag, Pol, Vif, Vpx, and a part of Vpr and HIV Tat and Rev.
Animals received 5 mg of CMV-SHIVdEN DNA intramuscularly. Six
weeks after the DNA prime, animals received a single boost intranasally
with 1 � 108 cell infectious units (CIU) of replication-competent SeV-
Gag (macaques R02-003, R02-012, R02-005, and R02-001) or 6 � 109

CIU of replication-defective F-deleted SeV-Gag (n � 14) (11, 41). There
were no differences observed for CD4� T-cell markers between animals
receiving replication-competent boosts and those receiving replication-
defective boosts. Vaccinated (3 months postboost) and unvaccinated an-
imals were intravenously challenged with 1,000 50% tissue culture infec-
tive doses (TCID50) of SIVmac239 (42). In our previous study (34, 38), the
geometric mean of viral loads at 6 months was approximately 2.5 � 105

copies/ml and the “M � 2 � SD” value (where M is the mean and SD is the
standard deviation) of log-transformed viral loads was 3.2 (corresponding
to 1.6 � 103 copies/ml) in unvaccinated animals possessing major histo-
compatibility complex class I (MHC-I) haplotype 90-120-Ie, which ex-
hibit a typical course of SIV infection in Burmese rhesus macaques. Ani-
mals whose viral load at 6 months was less than 1.6 � 103 copies/ml were
considered SIV controllers. The 21 unvaccinated animals included 17
with persistent viremia and 4 with undetectable or marginal levels of set-
point plasma viral loads (see Fig. S1 in the supplemental material).

Analysis of SIV-specific CD4� T-cell responses. We examined SIV-
specific induction of CD107a, macrophage inflammatory protein-1�
(MIP-1�), gamma interferon (IFN-�), tumor necrosis factor alpha (TNF-
�), and interleukin-2 (IL-2) in CD4� T cells as described previously (38,
43, 44). In brief, 5 � 105 PBMCs were prestimulated with 5 	g/ml immo-
bilized anti-human CD28 (BD) and 5 	g/ml immobilized anti-human
CD49d (Biolegend) in 96-well U-bottom plates at 37°C for 12 h, followed
by coculture at 37°C for 6 h in the presence of Alexa Fluor 647-conjugated
anti-human CD107a (Biolegend) with 1 � 105 autologous herpesvirus
papio-immortalized B-lymphoblastoid cell lines (B-LCLs) infected with
vesicular stomatitis virus G protein (VSV-G)-pseudotyped SIVGP1 for
SIV-specific stimulation or mock B-LCLs for nonspecific stimulation.
Monensin (final concentration, 0.7 	g/ml; BD) and brefeldin A (final
concentration, 10 	g/ml; Sigma-Aldrich) were added to the culture 1 h
after the start of coculture. The pseudotyped virus was obtained by
cotransfection of 293T cells with a vesicular stomatitis virus G protein
expression plasmid and an SIVGP1 DNA. SIV Gag capsid p27-positive
cells detected by immunostaining were 5 to 10% of B-LCLs infected with
VSV-G-pseudotyped SIVGP1. Immunostaining was performed using the
Fix & Perm fixation and permeabilization kit (Invitrogen) and the follow-

ing monoclonal antibodies: APC-Cy7-conjugated anti-nonhuman pri-
mate CD3 (BD), phycoerythrin (PE)-Texas Red-conjugated anti-human
CD4 (Invitrogen), Alexa Fluor 700-conjugated anti-human CD8 (BD),
PE-Cy7-conjugated anti-human IFN-� (eBioscience), Pacific Blue-con-
jugated anti-human TNF-� (Biolegend), peridinin chlorophyll protein
(PerCP)-Cy5.5-conjugated anti-human IL-2 (Biolegend), and PE-conju-
gated anti-human MIP-1� (BD). Dead cells were stained using the Live/
Dead Fixable Dead Cell stain kit (Invitrogen).

Flow cytometric analysis was performed using FlowJo. Each subset
positive for the marker of interest was determined in the dot plot gated by
CD4� T cells as shown in Fig. S2 in the supplemental material. The fre-
quency of each subset of SIV-specific CD4� T cells was calculated by
subtracting the frequency after nonspecific stimulation from that after
SIV-specific stimulation. As negative controls, we examined SIV-specific
CD107a�, MIP-1��, IFN-��, TNF-��, and IL-2� CD4� T-cell frequen-
cies in naive PBMCs derived from vaccinated (preprime; n � 13) and
unvaccinated (prechallenge; n � 16) animals. The “M � 2 � SD” values of
these negative controls, 0.031%, 0.034%, 0.028%, 0.017%, and 0.010%,
were considered cutoff values for SIV-specific CD107a�, MIP-1��, IFN-
��, TNF-��, and IL-2� CD4� T-cell frequencies, respectively. SIV-spe-
cific CD4� T-cell frequencies less than 0.01% are shown as 0.01% in the
figures, while statistical analyses were performed by using data in which
values below the cutoff were set as zero. SIV-specific CD107a� CD4�

T-cell frequencies, shown in Fig. 1C, were calculated as the sum of the
frequencies of CD107a� MIP-1��, IFN-��, TNF-��, or IL-2� CD4� T
cells determined by Boolean gating. In our previous analyses (41, 45),
SIV-specific IFN-�� CD4� T-cell frequencies peaked 1 week after SeV-
Gag boost and were largely reduced 1 week after the peak, followed by only
a gradual, 
2-fold decrease for a few months until challenge. In this study,
SIV-specific stimulation was performed by coculture with the E/T (effec-
tor [PBMCs]/target [B-LCLs infected with VSV-G-pseudotyped SIVGP1])
ratio of 5:1, while stimulation with the E/T ratio of 2.5:1 was confirmed to
induce similar levels of responses, implying that the E/T ratio of 5:1 is suffi-
cient for the stimulation.

Statistical analysis. Differences in two sets of measurements were ex-
amined by the Wilcoxon signed-rank test or the Mann-Whitney U test.
Multiple comparisons of measurements were performed by Friedman’s
test and Wilcoxon signed-rank test with Bonferroni’s multiple-compari-
son procedure or the Kruskal-Wallis test and Mann-Whitney U test with
Bonferroni’s multiple-comparison procedure. Correlation between T-cell
frequencies and viral loads was analyzed by the Spearman’s test. We set
significance levels of all statistical tests at P values of 
0.05.

RESULTS
SIV-specific CD4� T-cell responses pre- and postchallenge in
vaccinated macaques. In the present study, we analyzed SIV-spe-
cific T-cell responses using frozen PBMC samples derived from 18
vaccinated and 21 unvaccinated Burmese rhesus macaques (see
Fig. S1 in the supplemental material). These animals had been
used in our previous SIVmac239 challenge experiments (34, 37–
40). Vaccinated animals received a DNA prime and an SeV-Gag
boost, followed by an SIVmac239 challenge at 3 months post-
boost. Eleven vaccinated animals, referred to as vaccinated con-
trollers (v-C), showed undetectable or marginal levels of set-point
plasma viral loads, whereas the remaining seven, referred to as
vaccinated noncontrollers (v-NC), failed to control SIV replica-
tion (see Fig. S1 in the supplemental material).

We examined SIV-specific CD4� T-cell responses by measure-
ment of five markers, CD107a, MIP-1�, IFN-�, TNF-�, and IL-2,
after SIV-specific stimulation (35, 36, 38, 44). We used an env- and
nef-deleted SHIV molecular clone DNA, SIVGP1, to measure the
frequencies of T cells responding to SIVGP1-transduced cells (re-
ferred to as SIV-specific T cells) (11, 33). The DNA used for the
prime and SIVGP1 both encode SIVmac239 Gag, Pol, Vif, Vpx,
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and a part of Vpr (see Materials and Methods). A representative
gating schema for the flow cytometric analysis is shown in Fig. S2
in the supplemental material.

We first examined SIV-specific individual marker frequencies in
total CD4� T cells 1 or 2 months before and 1 week after SIVmac239
challenge in vaccinated macaques (Fig. 1A). Multiple comparisons
among the five markers prechallenge revealed that SIV-specific
TNF-�� CD4� T-cell frequencies were the highest while CD107a�

frequencies were the lowest. In contrast, SIV-specific CD4� T cells
postchallenge showed a different hierarchy of individual marker fre-
quencies, with the highest being CD107a� and IL-2� the lowest.

We then compared pre- and postchallenge SIV-specific
CD107a, MIP-1�, IFN-�, TNF-�, and IL-2 responses in CD4� T
cells (Fig. 1B). Remarkably, frequencies of SIV-specific MIP-1��,
IFN-��, TNF-��, and IL-2� subsets were significantly reduced
following challenge (P � 0.0005, P � 0.0004, P � 0.0009, and P �
0.0005, respectively), but no significant reduction was observed in
SIV-specific CD107a� CD4� T-cell frequencies. SIV-specific
TNF-��/IL-2� CD4� T-cell frequencies were above the cutoff
values (see Materials and Methods) in all vaccinated animals at
prechallenge but in only 4/17 at week 1 postchallenge. SIV-specific
MIP-1��/IFN-�� CD4� T-cell frequencies were above the cutoff
in 13/17 and 14/17 animals, respectively, prechallenge but in only
5/17 postchallenge. SIV-specific CD107a� CD4� T-cell frequen-
cies (CD107a� populations in SIV-specific MIP-1��, IFN-��,
TNF-��, or IL-2� CD4� T cells) were significantly reduced (P �

0.0005) (Fig. 1C). In contrast, SIV-specific CD107a� CD4� T-cell
responses were above the cutoff in nine vaccinees prechallenge
and in nine postchallenge. These results indicate that SIV-specific
CD4� T cells producing MIP-1�, IFN-�, TNF-�, and/or IL-2 are
efficiently elicited by the DNA-prime/SeV-Gag-boost vaccination
but are depleted in the acute phase postchallenge, whereas vac-
cine-elicited SIV-specific CD4� T cells expressing CD107a are re-
sistant to depletion following SIV infection.

We further examined whether vaccine-elicited SIV-specific
CD4� T cells producing MIP-1��, IFN-��, TNF-��, or IL-2�

together with CD107a are resistant to depletion postchallenge.
SIV-specific CD107a� TNF-�� and CD107a� IL-2� CD4� T-cell
frequencies were significantly reduced following SIV challenge
(P � 0.0125 and P � 0.0137, respectively), whereas no significant
reduction was observed in SIV-specific CD107a� MIP-1��

or CD107a� IFN-�� CD4� T-cell subset (Fig. 2A). SIV-specific
CD107a� MIP-1��, CD107a� IFN-��, CD107a� TNF-��, and
CD107a� IL-2� CD4� T-cell frequencies showed more profound
and significant reductions following challenge (P � 0.0005, P �
0.0001, P � 0.0011, and P � 0.0005, respectively) (Fig. 2B). Com-
parison of CD107a� and CD107a� populations in SIV-specific
TNF-�� and IL-2� CD4� T cells revealed that the latter
(CD107a�) subset was higher at prechallenge (Fig. 3A) whereas
the former (CD107a�) subset was predominant mostly in those
that remained above the cutoff values at week 1 postchallenge
(Fig. 3B). These results imply that vaccine-elicited CD4� T cells

FIG 1 SIV-specific CD4� T-cell responses before and after SIV challenge in vaccinated macaques. (A) SIV-specific CD107a�, MIP-1��, IFN-��, TNF-��, and
IL-2� frequencies in total CD4� T cells at 1 or 2 months prechallenge (left panel [n � 17; samples of macaque R01-008 prechallenge were unavailable]) and 1
week postchallenge (right panel [n � 18]). TNF-�� frequencies were significantly higher than those of any of the other four markers prechallenge, whereas
CD107a� frequencies were significantly higher than those of TNF-�� and IL-2� at week 1 postchallenge (Friedman’s test and Wilcoxon signed-rank test). (B)
Comparison of SIV-specific CD107a�, MIP-1��, IFN-��, TNF-��, and IL-2� CD4� T-cell frequencies prechallenge (pre) and at week 1 (wk 1) in vaccinated
animals (n � 17). Cutoff values are indicated by dotted lines (see Materials and Methods). No significant change in SIV-specific CD107a� CD4� T-cell
frequencies was observed, whereas other subset frequencies were significantly reduced following challenge (MIP-1��, P � 0.0005; IFN-��, P � 0.0004; TNF-��,
P � 0.0009; IL-2�, P�0.0005 by Wilcoxon signed-rank test). (C) Comparison of SIV-specific CD107a� CD4� T-cell frequencies prechallenge and 1 week postchallenge
in vaccinated macaques (n � 17). The prechallenge frequencies were significantly higher than those at week 1 (P � 0.0005 by Wilcoxon signed-rank test).
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producing these markers together with CD107a are relatively re-
sistant to depletion following SIV challenge.

SIV-specific CD4� T-cell responses pre- and postchallenge
in vaccinated noncontrollers and controllers. Next, we com-
pared SIV-specific CD4� T-cell responses in vaccinated noncon-
trollers (v-NC) and controllers (v-C). No significant difference
was observed in SIV-specific CD107a�, MIP-1��, IFN-��, TNF-

��, or IL-2� CD4� T-cell frequencies between these two groups
before SIV challenge (Fig. 4A), indicating that prechallenge SIV-
specific CD4� T-cell responses are not the major determinant for
SIV control in these vaccinated animals.

In vaccinated noncontrollers, SIV-specific MIP-1��, IFN-��,
TNF-��, and IL-2� CD4� T cells were significantly reduced fol-
lowing SIV challenge, while reduction in SIV-specific CD107a�

FIG 2 SIV-specific CD107a� and CD107a� CD4� T-cell responses pre- and postchallenge in vaccinated macaques. (A) Comparison of SIV-specific MIP-1��

CD107a�, IFN-�� CD107a�, TNF-�� CD107a�, and IL-2� CD107a� CD4� T-cell frequencies prechallenge and at week 1 postchallenge. No significant change
in SIV-specific MIP-1�� or IFN-�� CD107a� CD4� T-cell frequencies was observed, whereas frequencies of the other two subsets were significantly reduced
following challenge (TNF-��, P � 0.0125; IL-2�, P � 0.0137 by Wilcoxon signed-rank test). (B) Comparison of SIV-specific MIP-1�� CD107a�, IFN-��

CD107a�, TNF-�� CD107a�, and IL-2� CD107a� CD4� T-cell frequencies prechallenge and at week 1 postchallenge. All these frequencies were significantly
reduced following challenge (MIP-1��, P � 0.0005; IFN-��, P � 0.0001; TNF-��, P � 0.0011; IL-2�, P � 0.0005 by Wilcoxon signed-rank test).

FIG 3 Comparison of SIV-specific CD107a� and CD107a� CD4� T-cell responses in vaccinated macaques. (A) Comparison of frequencies of prechallenge
SIV-specific CD4� T-cell subsets inducing individual markers with (107a�) and without CD107a (107a�). Data for animals having SIV-specific MIP-1�� (n �
13), IFN-�� (n � 14), TNF-�� (n � 17), and IL-2� (n � 17) CD4� T-cell frequencies above individual cutoff values are shown. (B) Comparison of frequencies
of postchallenge SIV-specific CD4� T-cell subsets inducing individual markers with (107a�) and without CD107a (107a�). Data for animals having SIV-specific
MIP-1�� (n � 5), IFN-�� (n � 5), TNF-�� (n � 4), and IL-2� (n � 4) CD4� T-cell frequencies above individual cutoff values are shown.
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CD4� T cells was not significant (Fig. 4B). SIV-specific MIP-1��,
IFN-��, TNF-��, and IL-2� CD4� T-cell frequencies at 1 week
postchallenge were below the cutoff values in almost all noncon-
trollers, and even the CD107a� subsets were below the cutoff in
five of the seven. In contrast, SIV-specific CD107a� CD4� T-cell
frequencies were not reduced but rather increased following chal-
lenge in vaccinated controllers; 7 of the 10 showed an increase in
SIV-specific CD107a� CD4� T-cell responses (Fig. 4C). MIP-
1��, IFN-��, TNF-��, and IL-2� subsets postchallenge were
above the cutoff in 5/10, 5/10, 4/10, and 3/10, respectively, al-
though significant reductions in these subset frequencies were ob-
served. Thus, reductions in vaccine-elicited SIV-specific CD4� T
cells following SIV challenge were prominent in noncontrollers
but not in controllers.

Comparison of SIV-specific CD4� T-cell responses postchal-
lenge in unvaccinated animals, vaccinated noncontrollers, and
vaccinated controllers. We then examined SIV-specific individual
marker responses in CD4� T cells at week 1 postinfection in unvac-

cinated macaques (Fig. 5A). Unvaccinated animals showed a higher
frequency of SIV-specific CD107a� CD4� T cells than other markers,
as seen in vaccinees at week 1 postchallenge (Fig. 1A), implying that
the CD107a� subset in unvaccinated animals may also be relatively
resistant to depletion in the acute phase of SIV infection.

Next, we compared SIV-specific CD4� T-cell responses at 1
week postchallenge in unvaccinated animals, vaccinated noncon-
trollers, and vaccinated controllers (Fig. 5B). No significant dif-
ference in SIV-specific CD107a� CD4� T-cell responses was ob-
served among these groups, but there was a trend for a lower
frequency of this subset in vaccinated noncontrollers. SIV-specific
CD107a� CD4� T-cell frequencies were above the cutoff values in
10 of 21 unvaccinated animals and 7 of 11 vaccinated controllers
but only in 2 of 7 vaccinated noncontrollers. SIV-specific MIP-
1��, IFN-��, TNF-��, and IL-2� CD4� T cells were below the
cutoff in almost all vaccinated noncontrollers. Thus, SIV-specific
CD4� T-cell depletion occurred primarily following SIV chal-
lenge in vaccinated noncontrollers.

FIG 4 SIV-specific CD4� T-cell responses pre- and postchallenge in vaccinated noncontrollers (v-NC) and controllers (v-C). (A) Comparison of SIV-specific
CD107a�, MIP-1��, IFN-��, TNF-��, and IL-2� CD4� T-cell frequencies prechallenge in v-NC (n � 7) and v-C (n � 10; samples of macaque R01-008
prechallenge were unavailable]). No significant difference was detected between the two groups for any of the 5 markers. (B) Comparison of SIV-specific
CD107a�, MIP-1��, IFN-��, TNF-��, and IL-2� CD4� T-cell frequencies prechallenge and at week 1 postchallenge in v-NC. SIV-specific MIP-1��, IFN-��,
TNF-��, and IL-2� CD4� T-cell frequencies were significantly reduced following challenge (MIP-1��, P � 0.0313; IFN-��, P � 0.0360; TNF-��, P � 0.0156;
IL-2�, P � 0.0156 by Wilcoxon signed-rank test). (C) Comparison of SIV-specific CD107a�, MIP-1��, IFN-��, TNF-��, and IL-2� CD4� T-cell frequencies
prechallenge and at week 1 postchallenge in v-C. SIV-specific MIP-1��, IFN-��, TNF-��, and IL-2� CD4� T cells were significantly reduced following
challenge (MIP-1��, P � 0.0312; IFN-��, P � 0.0273; TNF-��, P � 0.0137; IL-2�, P � 0.0059 by Wilcoxon signed-rank test).
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Comparison of plasma viral loads in the acute phase in un-
vaccinated, vaccinated noncontroller, and controller groups.
Finally, we compared plasma viral loads in the acute phase in
unvaccinated, vaccinated noncontroller, and controller groups.
Interestingly, vaccinated noncontrollers showed significantly
higher viral loads at week 1 than unvaccinated as well as vaccinated
controllers (Fig. 6A). Even compared to the unvaccinated non-
controllers, vaccinated noncontrollers had significantly higher vi-
ral loads at week 1 (Fig. 6B). Unvaccinated but not vaccinated
animals showed a significant increase in viral loads from week 1 to
week 2 postchallenge (Fig. 6C), indicating that viral loads peaked
earlier in vaccinated macaques. At week 2, unvaccinated animals
had viral loads that were at levels similar to those of vaccinated
noncontrollers but significantly higher than those of vaccinated
controllers (Fig. 6A). These results suggest a higher acceleration of
viral replication in the acute phase following SIV infection in vac-
cinated noncontrollers than in unvaccinated animals.

DISCUSSION

Virus-specific CD4� T-cell responses are crucial for induction of
effective antibody and CD8� T-cell responses against virus infec-
tion. Current vaccine strategies include induction of neutralizing
antibody and/or CD8� T-cell responses, which are accompanied

by CD4� T-cell induction. Vaccine-induced CD4� T cells, how-
ever, can be the preferential targets for HIV/SIV infection. In the
present study, we found that vaccine-elicited SIV-specific
CD107a� CD4� T cells are depleted in the acute phase of infection
after SIV challenge. In contrast, our results indicate that SIV-spe-
cific CD4� T cells expressing CD107a are relatively resistant to
depletion following infection.

HIV is known to preferentially infect HIV-specific CD4� T
cells (32). Our results present the basis of this preference. How-
ever, the mechanism of relative resistance of the CD107a� popu-
lation in HIV/SIV-specific CD4� T cells to depletion following
infection remains undetermined. Analysis using PBMCs found no
significant difference in CCR5� frequencies among SIV-specific
CD107a�, MIP-1��, IFN-��, TNF-��, and IL-2� CD4� T cells
(see Fig. S3 in the supplemental material). CD107a� subset fre-
quencies were the lowest among the five markers after vaccination
(Fig. 1A), and if this subset’s responses were also lower following
infection, it may contribute to lower sensitivity to depletion. It is
difficult, however, to examine in vitro SIV infection and T-cell
responses under the conditions exactly reflecting what occurs in
vivo. It is also difficult to determine the possibility of changes in
SIV-specific CD4� T-cell function following infection.

It has been reported that virus-specific CD107a expression in

FIG 5 SIV-specific CD4� T-cell responses at week 1 postchallenge in unvaccinated and vaccinated macaques. (A) SIV-specific CD107a�, MIP-1��, IFN-��,
TNF-��, and IL-2� frequencies in CD4� T cells in unvaccinated macaques (n � 21). No significant difference was indicated by multiple comparisons
(Friedman’s test and Wilcoxon signed-rank test). (B) SIV-specific CD107a�, MIP-1��, IFN-��, TNF-��, and IL-2� CD4� T-cell frequencies in unvaccinated
animals (unvac; n � 21), vaccinated noncontrollers (v-NC; n � 7), and vaccinated controllers (v-C; n � 11).
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CD4� T cells is associated with cytotoxic CD4� T-cell function via
cytotoxic granules (46–49), which may confer resistance. Virus-
specific MIP-1��, IFN-��, TNF-��, and IL-2� rather than
CD107a� CD4� T cells are believed to be important for helper
function (27, 36). In particular, IFN-� is an important marker for
TH1 cells. However, our results indicate that vaccine-induced
CD4� T cells producing MIP-1�, IFN-�, TNF-�, or IL-2 are
largely depleted following SIV challenge. SIV-specific TNF-��

and IL-2� populations decreased postchallenge even in CD107a�

CD4� T cells, suggesting that these TNF-� and IL-2 responses
may confer higher sensitivity to depletion on CD4� T cells. Nev-
ertheless, the reduction of the CD107a� population postchallenge
was less prominent than that of CD107a� in SIV-specific TNF-��

and IL-2� CD4� T cells. Furthermore, the CD107a� population
of SIV-specific MIP-1�� or IFN-�� CD4� T cells showed no sig-
nificant reduction postchallenge. These results imply that the
CD107a� subset of vaccine-elicited CD4� T cells with helper
function may be relatively resistant to depletion following HIV/
SIV infection.

Our previous studies (33, 34, 39) showed that vaccine-induced
Gag-specific CD8� T-cell responses are responsible for the con-
trol of SIV replication in the vaccinated controllers used in the
present study. No significant difference in prechallenge SIV-spe-
cific CD4� T-cell responses was observed between vaccinated

controllers and noncontrollers, supporting a notion that vaccine-
induced CD4� T-cell responses are not the determinant for SIV
control in these animals. There was no correlation between pre-
challenge SIV-specific CD107a�, MIP-1��, IFN-��, TNF-��, or
IL-2� CD4� T-cell frequencies and viral loads at week 1. How-
ever, the noncontrollers showed a larger reduction in SIV-specific
CD4� T cells following SIV challenge and higher plasma viral
loads at week 1 than the controllers. Even the CD107a� as well as
IFN-�� subset frequencies at week 1 were inversely correlated
with viral loads at week 1 postchallenge in vaccinated animals (Fig.
7). These results imply that the reduction of vaccine-induced SIV-
specific CD4� T cells reflects killing of these cells by SIV within 1
week postchallenge. Vaccine-induced CD4� T cells would be sub-
jected to the killing without effectors such as CD8� T cells, which
protect these cells following infection.

SIV-specific MIP-1��, IFN-��, TNF-��, and IL-2� CD4� T
cells were mostly depleted at week 1 in vaccinated noncontrollers.
We found that viral loads peaked earlier in vaccinated than in
unvaccinated animals. Furthermore, vaccinated noncontrollers
that showed depletion of vaccine-elicited CD4� T cells had signif-
icantly higher viral loads at week 1 than unvaccinated animals.
While virus-specific CD4� T-cell responses are important in viral
control (50–52), our results suggest that induction of virus-spe-
cific CD4� T cells, especially CD107a� cells, by vaccination may
not lead to efficient CD4� T-cell responses following infection but
rather enhance or accelerate viral replication in the early acute
phase after HIV/SIV exposure. It is speculated that vaccinated
controllers elicited highly effective CD8� T-cell responses, which
could overwhelm this enhanced viral replication. Without this
enhancement, however, such highly potent effectors may not be
required for HIV/SIV control. Thus, it would be reasonable to
develop a vaccine to induce effective responses without inducing
HIV-specific memory CD107a� CD4� T cells. Indeed, our previ-
ous study suggested that vaccine induction of epitope-specific
CD8� T cells with the help of SeV-specific but not SIV-specific
CD4� T cells can result in effective CD8� T-cell responses against
SIV infection in the acute phase postchallenge (53). Alternatively,
induction of HIV-specific CD107a� CD4� T cells may be a prom-
ising HIV vaccine approach, although the strategy for induction of
these cells remains unknown (27, 54).

In summary, this study found that vaccine-elicited SIV-specific

FIG 6 Plasma viral loads at weeks 1 and 2 after SIVmac239 challenge. (A)
Comparison of viral loads in unvaccinated animals (unvac), vaccinated non-
controllers (v-NC), and vaccinated controllers (v-C) at weeks 1 (left panel)
and 2 (right panel). Multiple comparisons (Kruskal-Wallis test and Mann-
Whitney U test) indicated significantly higher viral loads at week 1 in v-NC
than unvac and v-C (P � 0.0086 and P � 0.0053, respectively) and significantly
lower viral loads at week 2 in v-C than unvac (P � 0.0329). (B) Comparison of
viral loads at week 1 between unvaccinated noncontrollers (unv-NC; n � 17)
and vaccinated noncontrollers (v-NC; n � 7). The load for the latter set was
significantly higher than for the former (P � 0.0028 by Mann-Whitney U test).
(C) Comparison of viral loads between weeks 1 and 2 in unvaccinated (left
panel) and vaccinated (right panel) animals. Unvaccinated animals showed
significantly higher viral loads at week 2 than week 1 (P � 0.0003 by Wilcoxon
signed-rank test).

FIG 7 Correlation analysis between SIV-specific CD4� T-cell frequencies at
week 1 and plasma viral loads at week 1. SIV-specific CD107a� (left panel) and
IFN-�� (right panel) CD4� T-cell frequencies were inversely correlated with
the viral loads (P � 0.0121, rho � �0.5774 for the left panel and P � 0.0444,
rho � �0.4788 for the right panel by Spearman’s test).

Terahara et al.

14238 jvi.asm.org Journal of Virology

http://jvi.asm.org


CD4� T cells expressing CD107a are relatively resistant to deple-
tion following infection in a macaque AIDS model. In contrast,
our analysis revealed massive depletion of SIV-specific CD107a�

CD4� T cells following SIV exposure. These results suggest a ra-
tionale for vaccine design to elicit effective antibody or CD8�

T-cell responses without induction of HIV-specific CD107a�

CD4� T cells toward HIV control.
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