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Bacillus thuringiensis Cry3Bb, Cry3Ca, and Cry7Aa have been reported to be toxic against larvae of the genus Cylas, which are
important pests of sweet potato worldwide and particularly in sub-Saharan Africa. However, relatively little is known about the
processing and binding interactions of these coleopteran-specific Cry proteins. The aim of the present study was to determine
whether Cry3Bb, Cry3Ca, and Cry7Aa proteins have shared binding sites in Cylas puncticollis to orient the pest resistance strat-
egy by genetic transformation. Interestingly, processing of the 129-kDa Cry7Aa protoxin using commercial trypsin or chymo-
trypsin rendered two fragments of about 70 kDa and 65 kDa. N-terminal sequencing of the trypsin-activated Cry7Aa fragments
revealed that processing occurs at Glu47 for the 70-kDa form or Ile88 for the 65-kDa form. Homologous binding assays showed
specific binding of the two Cry3 proteins and the 65-kDa Cry7Aa fragment to brush border membrane vesicles (BBMV) from C.
puncticollis larvae. The 70-kDa fragment did not bind to BBMV. Heterologous-competition assays showed that Cry3Bb, Cry3Ca,
and Cry7Aa (65-kDa fragment) competed for the same binding sites. Hence, our results suggest that pest resistance mediated by
the alteration of a shared Cry receptor binding site might render all three Cry toxins ineffective.

Coleoptera comprise the largest order of insects, with large dif-
ferences among families and species. Some of these species are

important crop pests causing losses that are particularly damaging
in developing countries. Sweet potato weevils of the genus Cylas
(Coleoptera: Brentidae) are considered to be globally the most
important pests of sweet potato [Ipomea batatas (L.) Lam.] (1).
Cylas puncticollis (Boheman) and Cylas brunneus (Fabricius) oc-
cur in East Africa, whereas Cylas formicarius (Summers) is found
in both tropical and subtropical areas worldwide (2, 3). Even small
populations of sweet potato weevils can produce crop losses of up
to 60 to 100% during the dry season (1). The adults lay eggs in the
storage root, where larva tunneling leads to rotting, rendering it
unsuitable for consumption (4). Current control strategies for
these insect pests have not been effective, justifying the need for
new control methods such as the use of insecticidal Cry proteins
from Bacillus thuringiensis (5–7).

Cry proteins have been employed successfully worldwide to
control insect pests used in formulated sprays and, more re-
cently, expressed in transgenic crops. Since the commercializa-
tion in 1996 of the first genetically modified crop expressing a
B. thuringiensis Cry toxin gene (Bt crop), the number of crops that
have been transformed to express other Cry proteins has been
steadily increasing (8). In addition, Bt crops are harmless to non-
target invertebrates, which are generally more abundant in Bt crop
fields than when managed with chemical insecticides (9). Hence,
the use of genetically engineered sweet potato plants expressing
Cry toxins could control these coleopteran pests, as Bt crops have
been shown to effectively control stem borers, ear feeders, and
rootworms (10). The first attempt to develop a Bt sweet potato
expressing Cry3A did not fully control C. formicarius due to low
accumulation of the Cry protein (6, 7). Similar results were ob-
served recently when Cry7Aa was expressed in the storage root
(11). Coexpression of several Cry toxins may be an alternative to
control this pest.

Molecular mechanisms that mediate the toxic activity of Cry

proteins have been extensively studied, especially for Cry1A
proteins active against lepidopteran larvae (12). Much less is
known for coleopteran-active Cry proteins. The mode of action
of B. thuringiensis Cry proteins is a multistep process that starts
with the ingestion of the proteins by the larvae. Cry proteins are
then solubilized in the midgut environment, and the protoxins are
processed by midgut proteases into smaller fragments. The active
proteins bind to specific receptors in the midgut brush border
membrane of susceptible larvae and subsequently insert into the
membrane, producing pores that lead to an osmotic imbalance
(13, 14) and/or trigger a cell death mechanism (15, 16). In both
cases, the final consequence is cell lysis and insect death (17).

The beetle-specific Cry3Bb, Cry3Ca, and Cry7Aa proteins have
been described as being active for the control of C. puncticollis (5),
although little is known about the interaction of these proteins in
the midgut of this insect. Recently, the cry3Ca and cry7Aa genes
have been used independently to transform several sweet potato
varieties with the aim of controlling sweet potato weevils (11, 18).
In addition, a modified Cry3Bb1 protein is expressed in transgenic
corn hybrids, which are commercially available (YieldGard), to
control corn rootworm larvae. The first generation of Bt crops was
based on the expression of one single Cry protein. Nowadays, the
trend is the combination of two or more genes expressing proteins
that do not share binding sites in order to delay the evolution of
resistance in target insect populations (19–21). Therefore, the aim
of the present study was to assess whether Cry3Bb, Cry3Ca, and
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Cry7Aa proteins share binding sites in C. puncticollis. This knowl-
edge will help in the design of insect resistance management strat-
egies to preserve the long-term use of Bt sweet potato crops cur-
rently under development.

MATERIALS AND METHODS
Insects. Last-instar larvae were harvested from infested sweet potato roots
and immediately frozen in liquid nitrogen at the National Crops Re-
sources Research Institute (NaCRRI), Namulonge, Uganda. These sam-
ples were then shipped on dry ice to the laboratory of the Universitat de
València and stored at �80°C upon arrival.

For the collection of C. puncticollis midgut fluid, third-instar larvae
were combined and centrifuged at 4,500 � g for 20 min. The supernatant
was then collected, kept at �20°C until shipment, and sent frozen to the
laboratory of the Universitat de València.

Bacillus thuringiensis Cry protein preparation. Cry3Bb, Cry3Ca, or
Cry7Aa proteins were obtained from B. thuringiensis strains BTS2260AA,
BTS02109P, and BTS137J, respectively (provided by Bayer CropScience,
Ghent, Belgium). The strains were grown in CCY medium (22) for 24 to
48 h at 29°C. After complete sporulation, spores and crystals were har-
vested and washed three times with 1 M NaCl–10 mM EDTA and twice
with 10 mM KCl. Cry3 proteins were solubilized and activated by bovine
pancreas �-chymotrypsin (type I-S) (Sigma-Aldrich), as described previ-
ously by Rausell et al. (23). Cry7Aa crystals were solubilized in 50 mM
carbonate buffer (Na2CO3-NaHCO3, pH 10.5)–10 mM dithiothreitol
(DTT) for 2 h at room temperature. The Cry7Aa protoxin was activated
with either bovine pancreas trypsin (type I) (Sigma-Aldrich) (1:5 [wt/wt]
protease/protoxin ratio) or bovine pancreas �-chymotrypsin (2:1 [wt/wt]
protease/protoxin ratio) for 3 h at 37°C. Alternatively, Cry7Aa protoxin
was processed with midgut fluid from C. puncticollis. Prior to use, the
midgut fluid was thawed on ice and centrifuged at 13,000 � g for 10 min
at 4°C, and the supernatant containing soluble proteases was recovered.
The protein concentration of the gut fluid was determined by the method
of Bradford (24), using bovine serum albumin (BSA) as a standard. The
Cry7Aa protein was incubated with gut juice (1:3 [wt/wt] total protein gut
juice/protoxin ratio) for 16 h at 30°C. Dilutions of the gut fluid were done
in phosphate-buffered saline (PBS) (10 mM Na2HPO4, 1 mM KH2PO4,
137 mM NaCl, 2.7 mM KCl [pH 7.4]).

At the end of the activation process, the insoluble material was re-
moved by centrifugation (12,000 � g for 10 min), and the purity of the
activated toxins was checked by 12% sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (12% SDS-PAGE). The activated toxins were
kept at �20°C until use.

The trypsin-activated Cry7Aa sample was dialyzed in 20 mM Tris-HCl
(pH 8.6) and further purified by anion-exchange chromatography in a
MonoQ 5/5 column using an Äkta 100 explorer system (GE Healthcare,
United Kingdom).

Brush border membrane vesicle preparation. Brush border mem-
brane vesicles (BBMV) from C. puncticollis whole last-instar larvae were
prepared by the differential magnesium precipitation method (25), as
modified by Escriche et al. (26). The protein concentration in the BBMV
preparation was determined by the method of Bradford, using BSA as a
standard.

Leucine aminopeptidase was used as a membrane enzymatic marker
for the BBMV preparations. Leucine aminopeptidase activity was mea-
sured as described previously by Hernández et al. (27). The specific activ-
ity of the leucine aminopeptidase in the BBMV preparation (1.5 � 0.1
�mol min�1 mg�1 protein [mean � standard deviation {SD}]) was en-
riched approximately 10-fold relative to the crude homogenate (0.15 �
0.01 �mol min�1 mg�1 protein [mean � SD]).

Labeling of Cry proteins. Activated Cry proteins were biotinylated by
using a protein biotinylation kit (GE Healthcare) according to the man-
ufacturer’s instructions. Prior to labeling, proteins were dialyzed over-
night at 4°C in 40 mM Na2CO3-NaHCO3 buffer (pH 8.6). After biotin
labeling, the mixture was loaded onto a PD10 desalting column (GE

Healthcare) equilibrated with PBS. The eluted fractions were analyzed by
12% SDS-PAGE.

Binding assays. Prior to use, BBMV were centrifuged for 10 min at
16,000 � g and suspended in binding buffer (PBS, 0.1% BSA [pH 7.4]).
Competition experiments were performed by incubating 50 ng of biotin-
ylated Cry3 proteins with 5 �g of BBMV or by incubating 100 ng of
biotinylated Cry7Aa protein with 20 �g of BBMV in binding buffer. In-
cubations were carried out for 1 h at 25°C in the absence or presence of an
excess of unlabeled proteins (50- to 200-fold excess) in a final volume of
100 �l. After incubation, samples were centrifuged at 16,000 � g for 10
min, and the pellets were washed with 500 �l of ice-cold binding buffer.
The final pellets, containing the bound biotinylated proteins, were sus-
pended in 10 �l of the same buffer and analyzed by 12% SDS-PAGE. The
separated proteins were electroblotted onto a nitrocellulose membrane
(Hybond-ECL; GE Healthcare). Biotinylated proteins were visualized af-
ter probing with streptavidin-conjugated horseradish peroxidase (1:2,000
dilution) with a chemiluminescence detection procedure (RPN2109; GE
Healthcare), using an ImageQuant LAS400 image analyzer. Each compe-
tition experiment was repeated a minimum of three times.

N-terminal sequence analysis of the Cry7Aa trypsin fragments. The
chromatography-purified trypsin-activated Cry7Aa fragments were sub-
jected to 10% SDS-PAGE and electroblotted onto a polyvinylidene di-
fluoride (PVDF) membrane. Protein bands were then cut out and sent for
sequencing. N-terminal amino acid sequencing was performed by using a
Procise 492 cLC (Applied Biosystems) at Alphalyse A/S (Odense, Den-
mark).

RESULTS
Proteolytic processing of Cry protoxins. Chymotrypsin treat-
ment of the Cry3Bb and Cry3Ca protoxins (approximately 73 kDa
each) produced polypeptides with masses of about 55 kDa and 53
kDa, respectively (data not shown). On the other hand, processing
of the Cry7Aa protoxin (129 kDa) with trypsin and chymotrypsin
provided similar proteolytic patterns, with two main fragments of
about 70 and 65 kDa (Fig. 1A). In contrast, the activation of the
Cry7Aa protoxin by gut fluid from C. puncticollis showed a single
band with a mass of about 65 kDa (Fig. 1B).

Binding of Cry3Bb, Cry3Ca, and Cry7Aa to BBMV. Biotin-
labeled Cry3Bb and Cry3Ca chymotrypsin-activated proteins
bound to BBMV from C. puncticollis. Homologous competition
with an excess of their respective unlabeled Cry3Bb or Cry3Ca
proteins substantially reduced binding of the biotinylated Cry3
proteins, indicating that most of the binding was specific (Fig. 2A
and B).

FIG 1 SDS-PAGE (12%) analysis of the protease-resistant fragments obtained
after different proteolytic processing of the solubilized Cry7Aa protoxin. (A)
Activation with commercial trypsin (T) or chymotrypsin (Ch). (B) Activation
with midgut juice from C. puncticollis (Mj). M, molecular mass marker (in
kDa); P, untreated solubilized Cry7Aa protein.
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The mixture of 70- and 65-kDa bands, resulting after either
trypsin or chymotrypsin treatment of Cry7Aa, was labeled with
biotin. Homologous-competition assays showed that the 65-kDa
fragment was able to bind and that this interaction was specific,
since it was competed with a 200-fold excess of unlabeled protein
(Fig. 2C and D). In contrast, no binding was observed for the
70-kDa fragment. To determine whether the lack of binding of the
70-kDa fragment is due to its in vitro processing to the 65-kDa
fragment during incubation with BBMV, both proteins were sep-
arated, individually labeled, and tested for binding. The results
showed that only the purified 65-kDa fragment bound specifically
to BBMV (Fig. 3C and D), whereas the 70-kDa fragment did not
bind to BBMV (Fig. 4C).

Heterologous competition among Cry3Bb, Cry3Ca, and
Cry7Aa. Heterologous competition of Cry3Bb with Cry3Ca
showed that both proteins were able to completely compete with

the labeled protein, suggesting that both proteins share the same
binding sites (Fig. 3A and B). Similarly, heterologous competition
of either labeled Cry3Bb or Cry3Ca with the purified 65-kDa
Cry7Aa protein showed that the latter competed with both labeled
proteins (Fig. 3A and B). In all cases, the heterologous competitor
was as effective as the homologous one, suggesting that there are
no unshared sites for these two Cry3 proteins.

Data for heterologous binding assays with the labeled 65-kDa
Cry7Aa protein and the other two Cry3 proteins are shown in Fig.
3C and D. The results showed that a 100-fold excess of unlabeled
Cry7Aa (65-kDa fragment) competes with most of the bound la-
beled Cry7Aa, whereas only part of the labeled Cry7Aa is displaced
by a 100-fold excess of either Cry3Bb or Cry3Ca. However, a 200-
fold excess of both Cry3 proteins substantially reduced labeled
Cry7Aa binding (Fig. 3D). These results suggest that Cry3Bb and
Cry3Ca recognize the same binding sites as Cry7Aa although with
a lower affinity.

To test whether the lack of binding of the labeled 70-kDa
Cry7Aa protein is due to alteration of the binding epitope during
the labeling process, the unlabeled fragment was used as a heter-
ologous competitor with labeled Cry3 proteins. The results
showed that the purified 70-kDa Cry7Aa protein was unable to
compete for the Cry3Bb or Cry3Ca binding sites, even when a
400-fold excess was used (Fig. 4).

N-terminal sequence analysis of Cry7Aa trypsin fragments.
The N-terminal sequence of the 70-kDa fragment obtained after
trypsin treatment was EQPEA, corresponding to Glu47, whereas
the N-terminal sequence of the 65-kDa trypsin-activated frag-
ment was IAGLL (Ile88).

In silico analysis of the Cry7Aa protein sequence compared to
other well-studied three-domain Cry proteins suggested that the
70-kDa fragment is produced by cleavage before the beginning of
helix �1, whereas the 65-kDa fragment comes from cleavage at the
end of helix �2.

DISCUSSION

Despite the large number of B. thuringiensis Cry proteins that
have been described (http://www.lifesci.sussex.ac.uk/home/Neil
_Crickmore/Bt/), only a few are known to be active against Cylas
spp. (5–7). Since relatively little is known about the processing and
binding interactions of beetle-specific Cry proteins, we studied the
interactions of three active Cry proteins (Cry3Bb, Cry3Ca, and
Cry7Aa) against the sweet potato weevil C. puncticollis. This

FIG 2 Homologous competition binding assays with BBMV from C. puncti-
collis. Biotinylated chymotrypsin-activated Cry3Bb (A), biotinylated chymot-
rypsin-activated Cry3Ca (B), biotinylated trypsin-activated Cry7Aa (C), or
biotinylated chymotrypsin-activated Cry7Aa (D) was incubated with (50� to
200�) or without (�) an excess of unlabeled activated protein. Input indicates
biotinylated Cry proteins. The double and single arrowheads indicate the 70-
kDa and 65-kDa fragments, respectively, obtained after trypsin or chymotryp-
sin processing of the Cry7Aa protein.

FIG 3 Binding of biotinylated Cry3Bb (A), Cry3Ca (B), and Cry7Aa (65-kDa
fragment) (C and D) proteins to C. puncticollis BBMV in the absence of com-
petitor (�) or in the presence of a 100-fold (A to C) or a 200-fold (D) excess of
competitor (lanes labeled 3Bb, 3Ca, and 7Aa [65-kDa fragment]).

FIG 4 Binding of biotinylated Cry3Bb (A), Cry3Ca (B), and Cry7Aa (70-kDa
fragment) (C) proteins to C. puncticollis BBMV in the absence of competitor
(�) or in the presence of a 200- or 400-fold excess of Cry7Aa (70-kDa frag-
ment).

Shared Binding Sites for Cry3 and Cry7 Proteins
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knowledge will also guide future attempts to produce Bt sweet
potato with multiple cry genes.

It is well known that Cry protoxins are processed to active
proteins by midgut proteases to exert their insecticidal activity
(12). We have shown that activation of solubilized Cry3Bb and
Cry3Ca with chymotrypsin renders the expected polypeptides
with masses of about 55 kDa and 53 kDa, respectively (23, 28).
Processing of the Cry7Aa protoxin with either trypsin or chymo-
trypsin provided two fragments of about 70 kDa and 65 kDa,
whereas activation by C. puncticollis gut fluid generated a single
65-kDa fragment. Previously reported results for the proteolytic
processing of Cry7Aa slightly differed from the results obtained in
this study. A single 72-kDa fragment was reported after activation
with either Colorado potato beetle gut juice or trypsin (29),
whereas Peferoen et al. (30) reported a single 66-kDa fragment
after trypsin treatment. These differences could be attributed to
differences in the experimental conditions used. The occurrence
of two fragments after in vitro proteolytic processing was also de-
scribed for another member of the Cry7 family (Cry7Ab3) and for
members of other families, such as Cry1Ab, Cry3Aa, Cry8D, and
Cry9Ca (31–37).

The present work is the first report of binding assays of beetle-
active Cry proteins with C. puncticollis BBMV. Although previous
studies have shown the ability of some Cry3 proteins to bind to
BBMV from Coleoptera (23, 38–41), this is the first time that Cry7
has been included in binding studies. Homologous-competition
assays carried out with chymotrypsin-activated Cry3Bb and
Cry3Ca proteins demonstrated that the binding of these two pro-
teins to C. puncticollis BBMV is specific. Furthermore, homolo-
gous-competition experiments with either trypsin- or chymo-
trypsin-activated Cry7Aa protein, consisting of a mixture of the
70- and 65-kDa fragments, showed that only the 65-kDa fragment
was able to bind to BBMV from C. puncticollis and that this bind-
ing was specific.

Heterologous-competition binding experiments have pro-
vided models for binding sites to predict or to explain patterns of
cross-resistance (42–45). The results with C. puncticollis could be
interpreted as that the three proteins bind to a single binding site,
although Cry3Bb and Cry3Ca bind with lower affinity. Alterna-
tively, the three proteins share a binding site with similar affinity,
and Cry7Aa has an additional binding site to which Cry3 proteins
bind with lower affinity. In either case, an alteration of the shared
binding site in C. puncticollis might confer resistance to these three
proteins. The occurrence of shared binding sites for Cry3 proteins
(Cry3Aa, Cry3Ba, and Cry3Ca) was previously described in a
study of BBMV isolated from Colorado potato beetle (23). Nev-
ertheless, this is the first study that demonstrated the occurrence
of shared binding sites between Cry3 and Cry7Aa proteins.

Cry7Aa belongs to the 130-kDa Cry protein family (29). In
general, processing of 130-kDa Cry proteins involves the removal
of 25 to 60 residues from the N-terminal end and approximately
half of the remaining protein from the C terminus (46, 47). Se-
quencing of the N-terminal end of the purified trypsin-activated
Cry7Aa fragments revealed that the 70-kDa fragment starts at
Glu47, whereas the 65-kDa fragment is produced after the removal
of the N-terminal sequence up to Ile88. The cleavage of the N
terminus has been described as a critical step for some Cry pro-
teins to be considered active proteins (48–53). Indirect evidence
based on the structure of the unprocessed Cry2Aa protein re-
vealed that the N-terminal region masks a region of the protein

that could be involved in the interaction between the protein and
the membrane of the target insect (54). Based on these results, the
differences in the binding abilities observed for the 70-kDa and
65-kDa Cry7Aa fragments could be due to the differences in the
N-terminal sequences. Similar results were described for the bee-
tle-specific Cry8Da protein, where processing by Japanese beetle
gut juice rendered two different polypeptides and only the small
fragment bound to BBMV proteins (37).

As the 70-kDa trypsin-activated fragment is unable to bind to
C. puncticollis BBMV, it was interesting to observe that it was
found to be active against C. puncticollis larvae (Runyararo J. Ru-
karwa, personal communication). These results, along with the
fact that the Cry7Aa protoxin is processed to the 65-kDa fragment
with C. puncticollis gut fluid, suggest that the 70-kDa fragment is
further processed in vivo to the 65-kDa fragment. These results are
highly relevant to the Bt sweet potato currently under develop-
ment, because the transgene expresses the toxic fragment starting
at position 59 upstream of the proteolytic cleavage site yielding the
65-kDa fragment (18). Thus, knowledge about the processing of
the Cry proteins (at the N and C termini) may assist in the design
of constructs for plant expression.

In summary, the current study provides evidence of the impor-
tance of proper proteolytic activation for the in vitro ability of
Cry7Aa to bind to the midgut receptors of C. puncticollis. Further-
more, based on the results of binding-site interactions, the devel-
opment of cross-resistance among Cry3Bb, Cry3Ca, and Cry7Aa
proteins due to binding-site modification appears to be possible
for C. puncticollis. Thus, from a resistance management stand-
point, combinations of Cry3Bb, Cry3Ca, or Cry7Aa proteins do
not seem to be suitable for the development of Bt sweet potato
plants.
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