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This study examined molecular and epidemiologic factors associated with Escherichia coli sequence type 131 (ST131) among
hospitalized patients colonized intestinally with fluoroquinolone (FQ)-resistant E. coli between 2002 and 2004. Among 86 pa-
tients, 21 (24%) were colonized with ST131. The proportion of ST131 isolates among colonizing isolates increased significantly
over time, from 8% in 2002 to 50% in 2004 (P � 0.003). Furthermore, all 19 clonally related isolates were ST131. Future studies
should identify potential transmissibility differences between ST131 and non-ST131 strains.

The increase in fluoroquinolone (FQ)-resistant Escherichia coli
(FQREC) over the past decade has been attributed mainly to

the widespread emergence of a single disseminated E. coli clonal
group, sequence type 131 (ST131) (1–4), which frequently exhib-
its multidrug resistance, most notably to FQs and extended-spec-
trum cephalosporins (ESCs) (5). E. coli isolates within phyloge-
netic group B2, including specifically E. coli ST131, may have a
greater capacity for successful and persistent colonization of the
gastrointestinal tract (6, 7). However, FQ resistance mechanisms
associated with ST131 status have only been characterized in clin-
ical isolates (8). In addition, few data exist on epidemiologic risk
factors for colonization or infection with E. coli ST131 (8–10).
Therefore, we sought to evaluate the association between E. coli
ST131 and molecular and epidemiologic characteristics among
intestine-colonizing FQREC isolates from a previously described
population of hospitalized patients (11, 12) that were assessed
during the initial rapid rise in prevalence of E. coli ST131.

As previously described (11, 12), three annual fecal surveil-
lance surveys were performed hospital wide at two university-
affiliated hospitals during 2002, 2003, and 2004. For the present
study, each subject could be included only once, with inclusion of
only the first sample for each subject. The University of Pennsyl-
vania Institutional Review Board approved the study.

FQREC was defined as isolates exhibiting a levofloxacin MIC
of �8 �g/ml. Detection of FQREC from fecal samples and evalu-
ation for specific mechanisms of FQ resistance were performed as
previously described (11–13). Overexpression of the multidrug
efflux pump AcrAB was measured using the organic solvent tol-
erance (OST) assay (14, 15). Genetic relatedness of E. coli isolates
was determined by pulsed-field gel electrophoresis (PFGE) anal-
ysis (11), with profiles analyzed using Fingerprinting II Informatix
software v3.0 (Bio-Rad Laboratories, Inc., Hercules, CA) and in-
terpreted according to established criteria (16). Clonal relatedness
was defined as �80% similarity.

The major E. coli phylogenetic group was determined by triplex
PCR (17). Group B2 isolates were evaluated for ST131 status by
detection of ST131-specific single-nucleotide polymorphisms
(SNPs) in mdh and gyrB (18) and for the O25b rfb genotype (19).
The H30 ST131 subclone was identified by established PCR-based

detection of subclone-specific SNPs in fimH (5, 8). For the (CTX-
M-15-associated) H30-Rx subclone within the H30 ST131 sub-
clone (20), primers were used that detect an H30-Rx-specific SNP
(G723A) within the allantoin protein-encoding gene, ybbW (21).
Isolates were screened for blaCTX-M-15 by PCR (21), tested for sus-
ceptibility to antibiotic agents by use of the semiautomated Vitek
2 identification and susceptibility system (bioMérieux, Durham,
NC), and interpreted according to Clinical and Laboratory Stan-
dards Institute criteria. Clinical data were abstracted as previously
described from the Pennsylvania Integrated Clinical and Admin-
istrative Research Database (13).

Associations between E. coli ST131 and molecular and clinical
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TABLE 1 Microbiologic characteristics of 86 ST131 and non-ST131 E.
coli fecal isolates from patients colonized with fluoroquinolone-resistant
E. colia

Variable

Result for:

P value
ST131
(n � 21)

Non-ST131
(n � 65)

No. (%) with H30 21 (100) NA
No. (%) with H30-Rx 7 (33) NA
Median levofloxacin MIC (IQR) 32 (32–32) 32 (32–32) 0.64
Median no. of gyrA mutations (IQR) 2 (2–2) 2 (2–2) 0.42
Median no. of parC mutations (IQR) 2 (2–2) 1 (1–1) �0.001
No. (%) with OST-positive status 3 (14) 38 (59) �0.001
No. (%) with blaCTX-M-15 0 (0) 1 (2) �0.99
a Data are presented as number (percentage) of isolates unless noted otherwise. NA, not
applicable; IQR, interquartile range; OST, organic solvent tolerance.
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characteristics were determined. Categorical variables were com-
pared using the Fisher exact test, and continuous variables were
compared using the Wilcoxon rank sum test. Multivariable anal-
yses were performed using multiple logistic regression (22), with
calculation of adjusted odds ratios (ORs) with 95% confidence
intervals (CIs). A stepwise selection procedure was used, with
variables with P values of �0.20 on bivariable analyses considered
candidate variables and maintained in the final model if their in-
clusion was statistically significant on likelihood ratio testing (23).
For all calculations, a two-tailed P value of �0.05 was considered

significant. All calculations were performed using STATA v13.0
(StataCorp LP, College Station, TX).

Over the 3-year study period, a total of 89 (11.5%) of 774
unique subjects were colonized with FQREC (12, 13). For the
present study, 86 FQREC isolates (each representing a unique
study patient) constituted the study population and were charac-
terized further. Of these, 21 (24%) were identified as ST131 by
dual-SNP PCR (Table 1). All 21 ST131 isolates represented the
H30 fimH-based subclone within ST131, and 7 (33%) of these
belonged specifically to the (CTX-M-15-associated) H30-Rx sub-
set within H30.

ST131 and non-ST131 isolates did not differ significantly for
the levofloxacin MIC or for the number of mutations in gyrA
(Table 1). However, these groups differed for specific gyrA muta-
tions; all 21 ST131 isolates, but only 51 (79%) of non-ST131 iso-
lates, exhibited Ser83¡Leu and Asp87¡Asn mutations (P �
0.02). ST131 isolates had a greater number of replacement parC
mutations compared to non-ST131 isolates. The most common
combination of replacement parC mutations among ST131 iso-
lates (88%) was Ser80¡Ile and Glu84¡Val. Results of antibiotic
susceptibility testing are shown in Table 2. ST131 isolates demon-
strated a low prevalence of ESC resistance, with the single ESC-
resistant isolate belonging to the H30-Rx subgroup within H30.

Among the 71 FQREC isolates that could be successfully char-
acterized by PFGE (13), 19 demonstrated clonal relatedness; all of
these were ST131. Thus, 19 (90%) of 21 ST131 isolates were clon-
ally related, compared to 0 (0%) of 50 non-ST131 isolates (P �
0.001). The 21 ST131 study isolates’ PFGE profiles were subse-

TABLE 2 Antibiotic resistance in relation to ST131 status among 86
fluoroquinolone-resistant fecal Escherichia coli isolates from colonized
hospital inpatients

Antibiotic

Prevalence of resistance,
no. of isolates
(column %)

P value
ST131
(n � 21)

Non-ST131
(n � 65)

Ampicillin-sulbactam 19 (92) 46 (72) 0.08
Cefazolin 6 (29) 20 (32) �0.99
Ceftazidime 1 (5) 12 (19) 0.17
Ceftriaxone 1 (5) 11 (17) 0.28
Gentamicina 7 (33) 22 (34) �0.99
Imipenem 1 (5) 0 (0) 0.24
Piperacillin-tazobactam 3 (14) 4 (6) 0.35
Trimethoprim-sulfamethoxazole 12 (57) 39 (60) �0.99
a Isolate resistance profiles were the same for tobramycin as for gentamicin.

FIG 1 Pulsed-field gel electrophoresis (PFGE) profiles of 21 ST131 fluoroquinolone-resistant fecal Escherichia coli isolates. Data columns to the right of the PFGE
profiles show the isolate number (left) and pulsotype (right). Pulsotypes were assigned by comparison to an existing large private PFGE profile reference library
(24). Pulsotypes 968, 945, 800, and 1110 (n � 17 isolates) were already established within the reference library; pulsotypes 1806, 1794, and 1805 (n � 4 isolates)
were newly assigned here. Note that since profiles were classified as to pulsotype based on �94% profile similarity to an index isolate’s profile, within the same
pulsotype, certain profiles could exhibit as little as 88% similarity.
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quently compared to an existing reference library comprising
PFGE profiles from 1,292 ST131 isolates (mostly human clinical
isolates) (24). The predominant pulsotypes (defined as having
�94% similarity to an index isolate) represented among the pres-
ent ST131 colonizing isolates were 968 and 800 (33% and 38% of
isolates, respectively) (Fig. 1). Pulsotypes 968 and 800 were also
the two most common pulsotypes in the reference library (29%
and 12% of isolates, respectively).

The by-year prevalence of ST131 rose steadily across the study
period (8% in 2002, 19% in 2003, and 50% in 2004; P � 0.003,
chi-square test for trend) (Table 3). In multivariable analyses (Ta-
ble 4), only study year was an independent risk factor for having an
ST131 isolate (OR, 3.89; 95% CI, 1.71 to 8.81; P � 0.001). The
dramatically increasing proportion of ST131 colonizing isolates
over time, which resulted in ST131 comprising half of FQREC
isolates during the final year, is in concordance with the increasing
prevalence of E. coli ST131 among clinical isolates over the past
decade (1–3). This suggests that ST131 has emerged as both a

highly prevalent pathogen causing clinical infections and a suc-
cessful colonizer in the hospital setting.

A majority of ST131 isolates exhibited a specific combination
of gyrA and parC replacement mutations, which confirms a close
association of the H30 ST131 subclone with a distinctive gyrA and
parC allele combination among FQREC clinical isolates, consis-
tent with the largely single-strain origin of FQ resistance within
ST131 E. coli isolates (8). Furthermore, all 19 clonally related study
isolates were ST131, suggesting that ST131 isolates, or those of the
particular pulsotypes observed here, may be characterized by in-
creased transmissibility compared with other E. coli strains. How-
ever, future studies are needed to evaluate the potential increased
risk of dissemination in the clinical setting. In addition, the pre-
dominance of pulsotype 968 (which is associated specifically with
FQ resistance) among both colonizing and clinical isolates (24)
suggests that this particular pulsotype may exhibit greater intesti-
nal fitness than others. This possible intestinal fitness advantage of
pulsotype 968, which has become predominant in the later years
in the emergence of ST131 may have contributed to the recent
expansion of ST131 in the clinical setting (24). However, further
research is needed to assess this hypothesized association.

In conclusion, our findings demonstrate a dramatically in-
creasing prevalence of ST131 over time (2002 to 2004) among
hospitalized patients with FQREC gastrointestinal tract coloniza-
tion. Our results highlight the importance of evaluation for po-
tentially increased transmissibility of ST131 isolates, including
specifically in the hospital setting, and of the development and
implementation of infection control interventions to reduce such
spread if it is documented.

TABLE 3 Bivariable analyses of risk factors for ST131 among hospital inpatients colonized intestinally with fluoroquinolone-resistant E. colia

Variable

Result for:

OR (95% CI) P value
ST131
(n � 21)

Non-ST131
(n � 65)

Yr of culture:
2002 2 (8) 23 (92)
2003 7 (19) 30 (81) 0.003
2004 12 (50) 12 (50)

Mean age (SD), yr 61.0 (15) 63.8 (16) 0.53
No. (%) female 6 (29) 28 (43) 0.53 (0.15–1.69) 0.31
No. (%) nonwhite 10 (48) 39 (60) 0.61 (0.20–1.84) 0.45
No. (%) in surgical service 9 (43) 17 (26) 2.12 (0.66–6.60) 0.18
No. (%) with nosocomial onset 14 (74) 41 (71) 1.16 (0.33–4.77) �0.99
No. (%) with admission to hospital 2 5 (24) 20 (31) 0.70 (0.18–2.40) 0.59
Mean (SD) hospital day of sampling 14.4 (14) 13.4 (24) 0.15
No. (%) in ICU on culture date 3 (14) 11 (17) 0.82 (0.13–3.60) �0.99
No. (%) with diabetes mellitus 5 (24) 26 (40) 0.47 (0.12–1.57) 0.20
No. (%) with malignancy 5 (24) 21 (32) 0.65 (0.17–2.22) 0.59
No. (%) with renal insufficiency 2 (10) 13 (20) 0.42 (0.04–2.16) 0.34
Mean (SD) Charlson comorbidity score 2.2 (2) 3.9 (4) 0.09
No. (%) with chemotherapy �30 days prior to sampling 3 (14) 5 (8) 2.00 (0.28–11.4) 0.40
No. (%) with immunosuppression �30 days prior to sampling 3 (14) 10 (15) 0.92 (0.15–4.12) �0.99
No. (%) taking antibiotics �30 days prior to samplingb

Any antibiotic 13 (62) 35 (54) 1.39 (0.46–4.42) 0.62
1st-generation cephalosporinc 7 (33) 12 (19) 2.21 (0.61–7.47) 0.22
Levofloxacin 10 (48) 13 (20) 3.64 (1.11–11.7) 0.02

a Data are presented as numbers (percentages) except where noted. OR, odds ratio; CI, confidence interval; SD, standard deviation; ICU, intensive care unit.
b Only results for antibiotics with a P value of �0.30 are shown.
c Cefazolin or cephalexin.

TABLE 4 Multivariable model of risk factors for recovery of ST131
isolates among hospital inpatients colonized with fluoroquinolone-
resistant E. coli

Variable OR (95% CI)a P value

Receipt of levofloxacin �30 days prior
to sampling

2.28 (0.68–7.68) 0.18

Yr of culture 3.89 (1.71–8.81) 0.001
Charlson comorbidity score 0.80 (0.64–1.01) 0.055
a OR, odds ratio; CI, confidence interval.
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