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We evaluated the antituberculosis (anti-TB) activity of five �-lactams alone or in combination with �-lactamase inhibitors
against 41 clinical isolates of Mycobacterium tuberculosis, including multidrug-resistant and extensively drug-resistant strains.
Of those, tebipenem, an oral carbapenem, showed the most potent anti-TB activity against clinical isolates, with a MIC range of
0.125 to 8 �g/ml, which is achievable in the human blood. More importantly, in the presence of clavulanate, MIC values of tebi-
penem declined to 2 �g/ml or less.

Tuberculosis (TB) resistant to all the first- and second-line an-
ti-TB drugs, first reported as totally drug-resistant TB (TDR-

TB) in 2009, is beginning to jeopardize public health worldwide
(1). TDR-TB has been considered to be an incurable disease for
which no therapeutic alternatives exist (2). To overcome such
drug-resistant TB (DR-TB), 10 anti-TB drug candidates are cur-
rently undergoing clinical trials (3). However, some of the trials
have been postponed or suspended due to undesirable adverse
reactions resulting from long-term and multidrug administra-
tion. Therefore, further investigation of novel candidates and reg-
imens is urgently needed to establish and optimize the treatment
of refractory DR-TB. According to the World Health Organiza-
tion and recent reports, the efficacy, safety, and tolerability of
amoxicillin plus clavulanate (AMX-CLA) and carbapenems alone
or in combination with CLA have been demonstrated in patients
suffering from intractable DR-TB (4–8). The clinical usefulness of
AMX-CLA, however, has been disputed because of insufficient
evidence. Furthermore, although carbapenems such as mero-
penem (MEM) and imipenem (IPM) are reasonable alternatives
to parenteral drugs such as aminoglycosides and cyclic peptides,
the route of administration is unfavorable for TB patients and is
regarded as unsuitable for prolonged therapy (9). Moreover,
MEM needs to be used with AMX-CLA for the time being, because
there is no combination drug containing MEM and CLA (10). For
these reasons, there is a strong need for a more realistic �-lactam.
In the present study, we evaluated the anti-TB activities of five
�-lactams alone or in combination with �-lactamase inhibitors
against clinical isolates of Mycobacterium tuberculosis, including
multidrug-resistant TB (MDR-TB) and extensively drug-resistant
TB (XDR-TB) strains.

MICs for each agent against the M. tuberculosis H37Rv labora-
tory strain and 41 clinical isolates that are stored in our laboratory
were determined two times by means of a broth microdilution
method according to a previous report (11). These strains were
precultured until the mid-log phase in Middlebrook 7H9 broth
(Difco, United States) supplemented with 10% ADC (5% bovine
serum albumin fraction V, 2% dextrose, and 0.005% bovine liver
catalase), including 0.05% Tween 80. The bacterial culture was
suspended in fresh 7H9-ADC and adjusted to a McFarland tube
no. 1 (optical density at 530 nm [OD530] � 0.16 to 0.2) and then

diluted 1:100 using the same broth. Two-fold serial dilutions of
each agent were prepared in a volume of 100 �l using 96-well
microtiter plates, and then 100 �l of bacterial suspension was
inoculated into each well. The plates were incubated in an atmo-
sphere of 5% CO2 with a relative humidity of 95% at 37°C for 7 to
10 days.

Agent suppliers and the sample preparation procedure are
shown in Table S1 in the supplemental material. MIC50 and MIC90

values of each agent against clinical isolates were defined as MICs
at which either 50% or 90% of strains were inhibited. The width of
MIC distribution was represented as a binary number. The extent
of drug resistance was assessed based on the criteria in accordance
with previous reports and information published by the European
Committee on Antimicrobial Susceptibility Testing (12–14). As
for pyrazinamide (PZA) resistance, sequence analysis of the pncA
gene was implemented using the primers F1 (5=-GTGATCTATC
CCGCCGGTTG-3=) and R1 (5=-GAACCCACCGGGTCTTCGA
C-3=). An 830-bp amplicon contains the complete pncA coding
region and a putative promoter region (15). Briefly, PCRs were
performed using PCR master mix (Promega, United States) under
the following conditions: initial denaturation at 94°C for 5 min, 35
cycles of denaturation (94°C for 0.5 min), annealing (63°C for 0.5
min), and extension (72°C for 1.5 min), and a final extension at
72°C for 7 min. PCR products were then purified using PCR
cleanup gel extraction (Macherey-Nagel, Germany). DNA se-
quencing was performed via BigDye Terminator v3.1 cycle se-
quencing with an Applied Biosystems 3130 genetic analyzer (Life
Technologies, United States). As shown in Table S2 in the supple-
mental material, one frameshift and 11 point mutations, includ-
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ing two synonymous mutations, were identified. These mutation
points, except for the silent mutation, have been reported to con-
fer PZA resistance according to the TB Drug Resistance Mutation
Database. Unfortunately, the PCR product of XDR-TB strain no.
7 was not detected even using two sets of primers, implying that
the anteroposterior region of the pncA gene is completely dis-
rupted (see Table S2). To confirm the existence of genome DNA,
PCRs were carried out using the previously reported primer sets
for amplifying the rpoB gene and IS6110 insertion sequence (16,
17). All the PCR products of DR-TB strains for rpoB and IS6110
genes were detected (data not shown).

To our knowledge, CLA has been set at 2.5 to 8 �g/ml when
assessing in vitro whether CLA potentiates the anti-TB activi-
ties of �-lactams in in vitro studies (11, 18–20). In clinical use,
CLA has been principally coadministered with AMX either at
125 mg or 250 mg three times a day, with peak serum levels
reported to be 2.55 �g/ml and 5.9 �g/ml, respectively (21, 22).
In light of these findings, we determined MICs for �-lactams
alone or in the presence of �-lactamase inhibitors to be fixed at
either 2 �g/ml or 4 �g/ml. As shown in Table 1, there were
striking differences in MIC values between �-lactams alone
and �-lactams plus �-lactamase inhibitors, whereas an in-
creased concentration of �-lactamase inhibitors barely affected

the MIC values. The best synergistic effect was observed in
aminopenicillins plus CLA. For instance, susceptibility of M.
tuberculosis H37Rv to AMX increased by 32- to 128-fold owing to
the presence of CLA (Table 1). Among the five �-lactams exposed
solely, tebipenem (TBM) exhibited the most potent anti-TB activ-
ity against M. tuberculosis, with a MIC value of 0.5 to 1 �g/ml
(Table 1). Of note, MIC values for TBM plus �-lactamase inhibi-
tors declined by up to one-eighth compared to that for TBM
alone. On the other hand, biapenem (BPM) alone showed potency
similar to that of MEM alone, with a MIC value of 1 to 2 �g/ml,
and exerted up to a 4-fold increase in susceptibility in the presence
of �-lactamase inhibitors (Table 1).

Next, we determined MICs for �-lactams alone or in combi-
nation with �-lactamase inhibitors (4 �g/ml) against 20 drug-
susceptible (DS) and 21 DR clinical isolates of M. tuberculosis.
Considering all the evaluation results for MIC range, MIC50, and
MIC90, susceptibility of DS-TB strains for �-lactams alone was, in
descending order, TBM � MEM � BPM � ampicillin (AMP) �
AMX (Table 2). Similar results were obtained when combined
with either CLA or avibactam (AVI) (Table 2). In the same man-
ner, susceptibility of MDR-TB and XDR-TB strains for �-lactams
alone was, in descending order, TBM � BPM � MEM � AMX �
AMP, with MIC50 values of 2 �g/ml, 2 �g/ml, 8 �g/ml, 32 �g/ml,
and 64 �g/ml, respectively (Table 3). Remarkably, �-lactams with
and without �-lactamase inhibitors tended to be more effec-
tive against MDR-TB and XDR-TB strains than against DS-TB
strains, implying that the cell wall components of DR-TB strains
are altered by various mutations. The MIC ranges for MEM-CLA
and AMX-CLA against MDR-TB and XDR-TB were 0.25 to 2
�g/ml and �0.25 to 16 �g/ml, respectively; they were in accor-
dance with the previous report (0.23 to 1.25 �g/ml and 0.32 to 10

TABLE 1 Antimicrobial activity of each drug against Mycobacterium
tuberculosis H37Rv

Agent (abbreviation) Inhibitor
Concn of inhibitor
(�g/ml) MIC (�g/ml)

Meropenem (MEM) None 0 1–2
CLA 2 0.25–0.5
CLA 4 0.5
AVI 2 0.5–1
AVI 4 0.25–0.5

Biapenem (BPM) None 0 1–2
CLA 2 0.5
CLA 4 0.25–0.5
AVI 2 0.5
AVI 4 0.5–1

Tebipenem (TBM) None 0 0.5–1
CLA 2 0.125
CLA 4 0.125
AVI 2 0.25
AVI 4 0.125–0.25

Ampicillin (AMP) None 0 16–32
CLA 2 0.25–0.5
CLA 4 0.25
AVI 2 1–2
AVI 4 0.5–1

Amoxicillin (AMX) None 0 16–32
CLA 2 0.25–0.5
CLA 4 0.25
AVI 2 1–2
AVI 4 0.5–1

Clavulanate (CLA) 64
Avibactam (AVI) 512
Isoniazid (INH) 0.031–0.063
Ethambutol (EMB) 1–2

TABLE 2 Antituberculosis activities of each drug against drug-
susceptible clinical isolates of Mycobacterium tuberculosis (n � 20)

Agent (abbreviation) Inhibitor
MIC range
(�g/ml)

Distribution
width

MIC (�g/ml)

50% 90%

Meropenem (MEM) None 1–32 5 16 32
CLA �0.063–8 �7 2 4
AVI 0.25–16 6 4 8

Biapenem (BPM) None 1–32 5 16 32
CLA 0.25–8 5 2 4
AVI 0.5–8 4 4 8

Tebipenem (TBM) None 0.25–8 5 4 8
CLA �0.063–2 �5 1 1
AVI �0.063–4 �6 1 2

Ampicillin (AMP) None 2–�128 �6 64 128
CLA �0.125–32 �8 2 4
AVI �0.125–32 �8 8 16

Amoxicillin (AMX) None 2–�128 �6 128 128
CLA �0.125–32 �8 2 16
AVI �0.25–32 �8 16 16

Clavulanate (CLA) 32–256 3 128 256
Avibactam (AVI) 64–�512 �2 NC NC
Isoniazid (INH) 0.25–0.5 1 0.5 0.5
Rifampin (RIF) �0.125 NCa �0.125 �0.125
a NC, not calculated.
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�g/ml, respectively) (Table 3) (11). Intriguingly, the MIC range
for TBM alone against MDR-TB and XDR-TB strains was compa-
rable with that for AMX-CLA (Table 3). Carbapenems possessed
narrow-range MIC spectra and more potent activity against clin-
ical isolates of M. tuberculosis than aminopenicillins (Tables 2 and
3) (11). The difference in anti-TB activity between them is ascrib-
able to the mechanisms of action in relation to L,D-transpeptidases
(LDTs) and an Ambler class A �-lactamase, BlaC. The drug target
LDTs, which are involved in the biosynthesis of peptidoglycan
(PG) cross-linking containing 3¡3 interpeptide bonds, have been
considered to be effectively inactivated by carbapenems but not
aminopenicillins (23–25). In addition, carbapenems, including
TBM, have been reported to be relatively resistant to decomposi-
tion by BlaC that is constitutively produced by M. tuberculosis and
triggers the hydrolysis of the �-lactam ring (26, 27). Taken to-
gether, carbapenems might be ideal compounds to combat
MDR-TB and XDR-TB. There was no apparent cross-resistance
between existing anti-TB drugs and the �-lactams/�-lactamase
inhibitors tested (Table 3; see also Table S2 in the supplemental
material).

Overall, TBM plus CLA showed the most potent anti-TB activ-
ity, with MIC values of 2 �g/ml or less. Tebipenem pivoxil (TBM-

PI) is an oral carbapenem for the treatment of respiratory and
otolaryngologic infections. Fortunately, for patients with infec-
tious diseases, TBM is available without cilastatin, which blocks
the hydrolysis of carbapenems in kidneys, owing to the stability to
dehydropeptidase 1 (drug’s interview form, Meiji Seika Pharma
Co., Ltd., Japan). Additionally, TBM has been reported to scarcely
interact with CYP3A4 and CYP2B6 (28, 29). More importantly,
TBM has been proved to exhibit good distribution into the pul-
monary epithelial lining fluid in an animal model, which allows
TBM to be used for lung disease (28). The dosage form of TBM is
fine granules, which is suitable for infants and young children.
Also, the tablet form has been developed for the treatment of adult
infectious diseases (30). Under fasting conditions, the maximum
plasma level of TBM after single dosing of either 200 mg TBM-PI
fine granules or tablets has been reported to be 9.4 � 1.6 �g/ml or
6.6 � 1.7 �g/ml, respectively, which is the same or more than the
MIC range for TBM alone (0.125 to 8 �g/ml) (Table 3) (31, 32).
Contrary to the time-dependent �-lactams, the bactericidal activ-
ity of tebipenem has been reported to correlate closely with area
under the curve (AUC)/MIC and maximum concentration of
drug in serum (Cmax)/MIC rather than the percentage of time
above MIC (%TMIC) against respiratory pathogens such as Strep-

TABLE 3 Antituberculosis activities of each drug against multidrug- and extensively drug-resistant clinical isolates of Mycobacterium tuberculosisa

Agent (abbreviation) Inhibitor MIC range (�g/ml) Distribution width

MIC (�g/ml)

50% 90%

Meropenem (MEM) None 0.5–16 5 8 16
CLA 0.25–2 3 0.5 2
AVI 0.5–4 3 1 4

Biapenem (BPM) None 0.5–16 5 2 16
CLA 0.25–4 4 0.5 4
AVI 0.25–4 4 1 4

Tebipenem (TBM) None 0.125–8 6 2 4
CLA �0.063–1 �4 0.25 1
AVI 0.125–1 3 0.5 1

Ampicillin (AMP) None 0.25–�128 �9 64 128
CLA �0.125–8 �6 0.5 8
AVI 0.25–32 7 2 8

Amoxicillin (AMX) None 0.25–�128 �9 32 128
CLA �0.125–16 �7 0.5 8
AVI �0.125–32 �8 4 16

Clavulanate (CLA) 32–128 2 64 128
Avibactam (AVI) 64–�512 �3 512 �512
Amikacin (AMK) �0.5–�512 �10 1 �512
Isoniazid (INH) 2–�32 �4 16 64
Rifampin (RIF) 1–�128 �7 128 256
Streptomycin (STR) �0.25–�256 �10 4 512
Ethambutol (EMB) 0.5–16 5 4 16
Moxifloxacin (MXF) �0.063–4 �6 0.5 2
Levofloxacin (LVX) 0.125–16 7 2 8
Ethionamide (ETH) 1–�64 �6 128 128
p-Aminosalicylic acid (PAS) �0.031–�32 �10 0.125 16
Cycloserine (CS) 8–64 3 16 64
Clarithromycin (CLR) 0.125–16 7 4 16
a Drug-resistant strains of tuberculosis (n � 21) include multidrug-resistant strains (n � 5), pre-extensively drug-resistant strains (n � 13), and extensively drug-resistant strains
(n � 3).
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tococcus pneumoniae and Haemophilus influenzae (33). In concen-
tration-dependent drugs, such as fluoroquinolones and amin-
oglycosides, a tolerable and higher dosage is preferable to achieve
a sufficient peak serum concentration and AUC. Therefore, in
order to set treatment regimens of MDR-TB and XDR-TB, dose
optimization using Monte Carlo simulation could be warranted.
Intriguingly, tebipenem has a longer postantibiotic effect and
postantibiotic sub-MIC effect against other bacteria than oral
cephem antibiotics (33). This evidence suggests that tebipenem
could be useful for the treatment of TB in spite of its short half-life
(32).

In conclusion, TBM with and without CLA would assist the
treatment of DR-TB, especially XDR-TB and TDR-TB. Further
investigation is needed to evaluate the clinical usefulness of TBM
and develop a more effective oral carbapenem.
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