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Invasive infections caused by filamentous fungi are a major threat for immunocompromised patients. Innate/acquired resis-
tance to antifungal drugs might necessitate combination therapies. We assessed the potential combination of voriconazole with
miltefosine, an original drug with antifungal activity against 33 clinically relevant mold isolates, including both azole-suscepti-
ble and -resistant Aspergillus. Using complete inhibition as an endpoint, interactions were indifferent for 32/33 isolates. An al-
ternative 50% inhibition endpoint showed synergistic interactions for 14/33 isolates. Antagonism was absent.

Invasive fungal infections (IFI) due to filamentous fungi are a
major threat for immunocompromised patients. Aspergillus fu-

migatus is the most common IFI, but other species, such as Asper-
gillus flavus, Aspergillus niger, or the naturally azole-resistant
Aspergillus ustus, are also frequently retrieved (1). Currently, the
antifungal armamentarium for systemic filamentous infection is
restricted to 3 classes: azoles, echinocandins, and polyenes. Echi-
nocandins are only fungistatic against filamentous fungi, and
breakthrough of mold IFI during echinocandin treatment has
been reported (2). Broad-spectrum antifungal polyene is associ-
ated with frequent adverse effects. Moreover, the recent emer-
gence of azole-resistant Aspergillus strains is disquieting and po-
tentially a threat for human health (3, 4). Finally, genera such as
Scedosporium or Fusarium exhibit low susceptibility to all antifun-
gals. To overcome acquired or innate antifungal drug resistance
and improve IFI management, combinations of drugs belonging
to different classes have been tested and may be useful (5–7).

Miltefosine is an alkylphosphocholine with antineoplastic and
especially antiparasitic properties. Despite its very frequent gas-
trointestinal side effects and a strict contraindication in pregnant
women, the drug is now widely used for leishmaniasis treatment
(8). The activity of miltefosine against fungi has also been demon-
strated, both in vitro and in a mouse model of disseminated cryp-
tococcosis (9). However, its use for fungal infections in humans is
extremely rare. In the present in vitro study, we investigated the
potential synergy of a combination of voriconazole and miltefos-
ine against different clinically relevant molds.

We used 33 clinical isolates collected in two French hospitals
(Pitié Salpêtrière and Hôpital Européen Georges Pompidou,
Paris) (Table 1): 12 A. fumigatus isolates with wild-type cyp51A, 5
cyp51A-mutated A. fumigatus isolates (4 with the TR34/L98H al-
teration and one with the newly described sole Y121F alteration
[10]), 3 A. ustus isolates, 3 A. flavus isolates, 3 Aspergillus section
Nigri isolates (2 A. niger and 1 Aspergillus tubingensis), 4 Scedospo-
rium apiospermum isolates, and 3 Fusarium solani isolates. Iden-
tification was confirmed by molecular sequencing (internal tran-
scribed spacer [ITS] region, beta-tubulin, and calmodulin genes).
For miltefosine, MICs were determined using the EUCAST
method. A complete inhibition endpoint was determined visually
and by spectrophotometric analysis. Alternatively, as previously
reported by Widmer et al. (9), the MIC for miltefosine was defined

as the concentration producing at least 50% inhibition after 48 h
of incubation at 35°C for Aspergillus (72 h for Fusarium and Sce-
dosporium). This alternative endpoint was determined uniquely
by spectrophotometric analysis. We used the checkerboard
method to test combinations of voriconazole and miltefosine. The
MICs of each drug alone and the combinations of the two were
determined concomitantly on the same plate. The volume of each
drug dispensed was 50 �l, to reach a volume of 100 �l per well.
Each well was then inoculated with 100 �l of a suspension con-
taining 2 � 105 to 5 � 105 CFU/ml, yielding a final inoculum of
1 � 105 to 2.5 � 105 CFU/ml per well and a final concentration
between 0.5 and 32 mg/liter for miltefosine and between 0.008 and
4 mg/liter for voriconazole. Interaction was determined by calcu-
lating the fractional inhibitory concentration index (FICI) as
follows: FICI � (MIC of voriconazole combination/MIC of vori-
conazole alone) � (MIC of miltefosine combination/MIC of
miltefosine alone). A FICI value of �0.5 indicated synergy be-
tween the two drugs, whereas a value of �4 indicated antagonism.
Values between 0.5 and 4 indicated indifference (11). Each isolate
was tested at least two times. The Candida parapsilosis strain
ATCC 22019 was used as a quality control.

The duplicates gave similar results (i.e., with �1 2-fold dilu-
tion difference, except for 2 isolates with two 2-fold dilution dif-
ferences and one isolate with five 2-fold differences) and identical
FICI interpretations (except for one isolate) (see the supplemental
material for detailed per-isolate data). The results of antifungal
synergy testing are summarized in Table 1. When the 100% inhi-
bition endpoint was used, for the non-cyp51A-mutated A. fumiga-
tus isolates, the geometric mean MICs for voriconazole and milte-
fosine were 0.73 mg/liter (range, 0.25 to 1 mg/liter) and 10.7 mg/
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liter (range, 4 to 32 mg/liter), respectively. As expected, the MIC of
voriconazole for A. ustus was higher (4 to 8 mg/liter). In accor-
dance with a previous work (1), A. flavus isolates had higher MICs
for miltefosine (�32 mg/liter) than other species. Scedosporium
and Fusarium isolates also had high MICs for both voriconazole
and miltefosine. For all isolates except one, the combination of
voriconazole and miltefosine had only an indifferent effect. Inter-
estingly, the MICs of miltefosine were in the range of the achiev-
able plasma concentrations (12).

When the less stringent 50% inhibition endpoint was used, we
observed synergy (FICI � 0.5) between voriconazole and milte-
fosine for 5 non-cyp51A-mutated A. fumigatus isolates and indif-
ference for the 7 others. Interestingly, synergy was observed for
one A. ustus isolate among three. No synergistic effect was ob-
served for the five A. fumigatus cyp51A-mutated isolates, although
for one isolate the duplicates gave distinct results, i.e., “synergy”
and “indifference,” with FICI values of 0.375 and 0.625, respec-
tively. Finally, synergistic effect was observed in the 3 Aspergillus
section Nigri isolates, in 3 of 4 Scedosporium isolates, and in 2 of 3
Fusarium isolates. Importantly, for all fungi, antagonism was not
detected.

Very few case reports have described the use of miltefosine as
an antifungal in humans. Miltefosine has been used successfully in
a combination therapy with voriconazole and terbinafine against
Scedosporium prolificans (13) and in a case of S. prolificans medi-
astinitis (14). In animal models against disseminated cryptococ-
cosis or candidiasis, some authors found that miltefosine was ef-
fective (9), whereas others reported that it provided only limited
effectiveness (15, 16). The drug’s potential effect against molds,
either alone or in combination, has not yet been tested.

It is important to note that no recommendations exist for the
reading and the determination of miltefosine MICs against molds.
In 2006, Widmer et al. used a 50% inhibition endpoint (9), while
more recently, other authors chose a 100% inhibition endpoint
(17). For our study, we determined interactions using both of
these endpoints.

Recently, Biswas et al. reported an in vitro synergistic effect for
miltefosine in combination with azoles against some Fusarium or
Scedosporium isolates as well as several mucormycete strains but
decided not to test the combinations against azole-susceptible
strains (17). However, even when a strain is susceptible to both
drugs independently, a combination may still be useful to poten-
tially clear the pathogen more quickly and stave off the emergence
of resistance.

As for our study, when using a 50% inhibition endpoint, syn-
ergy between miltefosine and voriconazole was observed for 5/12
A. fumigatus and 1/3 A. ustus isolates but not for the five cyp51A-
mutated isolates. However, it should be noted that the MIC geo-
metric mean for miltefosine was reduced more than 7-fold when
in combination with voriconazole (4.6 versus 0.62 mg/liter). We
observed a similar trend with A. flavus isolates. In both cases, a lack
of synergistic effect was due to the only one-dilution difference of
voriconazole MIC between the drug alone and the drug used in
combination. Finally, no antagonism was detected. Taking these
data into account, the use of miltefosine, either alone or in com-
bination with voriconazole, to treat aspergillosis or other mold
infections may be of interest. Results of the present study should
be further assessed in Galleria mellonella and murine and/or other
animal models.
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