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The resistance of multidrug-resistant Acinetobacter baumannii (MDRAB) isolates to most traditional antibiotics results in huge
challenges for infection therapy. We investigated the in vitro activities of both L- and D-lycosin-I against MDRAB. These two
compounds displayed high antibacterial activities and rapid bactericidal effects against MDRAB. Moreover, the compounds re-
tained their activity even at high salt (Mg2� or Ca2�) concentrations. These results demonstrate the potential of lycosin-I to be
developed as a new antibiotic.

Acinetobacter baumannii is one of the predominant pathogens
associated with nosocomial infections (1–3). The abuse of an-

tibiotics over the last 2 decades has led to the continuous emer-
gence of multidrug-resistant A. baumannii (MDRAB) isolates (4,
5). The clinical severity of infections with MDRAB isolates with
intrinsic and acquired resistance has been exacerbated by the lim-
ited number of effective antibiotics. Although polymyxins and,
possibly, tigecycline are considered to be the last resort of reliable
treatments (6–8), the emergence of MDRAB resistance to these
two types of antibiotics has been reported worldwide (9–11),
which has created a pressing need to discover effective new alter-
native agents.

Antimicrobial peptides (AMPs) are recognized as innate im-
mune compounds that can be extracted from insects, bacteria,
animals, and plants (12–17). AMPs that possess broad-spectrum
activity against bacteria and a low risk of resistance acquisition
have brought new hope for overcoming microbial drug resistance
(18).

In a previous study, we isolated an AMP named lycosin-I from
the venom of the spider Lycosa singoriensis (19). The rapid inhibi-
tion of various standard strains of bacteria and fungi by lycosin-I
was observed (20), but its effectiveness for the treatment of clinical
isolates, particularly multidrug-resistant microorganisms, re-
mains unexplored. In this study, we investigate the in vitro anti-
bacterial properties of two isomers of lycosin-I, namely, wild-type
lycosin-I (L-lycosin-I) and an unnatural lycosin-I isomer (D-lyco-
sin-I), against MDRAB clinical isolates.

Unique A. baumannii isolates were collected from the Second
Xiangya Hospital during the period of January to July 2013. The
identification and analysis of the antibiotic susceptibilities of these
strains was performed using a BD Phoenix-100 automated micro-
biology system (Diagnostic Systems, Sparks, MD) and an API 20
NE system (bioMérieux, Inc.). Without molecular identification,
we must acknowledge that some isolates of the Acinetobacter cal-
coaceticus-Acinetobacter baumannii complex which were not
Acinetobacter baumannii could not be excluded in our research.
The results were interpreted according to the breakpoints sug-
gested by the Clinical and Laboratory Standards Institute (CLSI)
(21). The A. baumannii strains which were resistant to various
kinds of agents, especially carbapenem antibiotics, were classified
as MDRAB strains (22, 23), and the strains that were sensitive to

most of the conventional clinical antibiotics were regarded as
drug-susceptible isolates.

The presence of a series of genes was determined using PCR
with specific primers (see Table S1 in the supplemental material).
All PCR assays were performed using Red Load Taq master (Jena
Bioscience, Jena, Germany) in a Techne thermocycler (Techne,
United Kingdom). The higher prevalence of these genes in
MDRAB isolates (see Table S2) further confirms the multidrug
resistance of the MDRAB strains at the genetic level.

Three AMPs were used: the L isomer of lycosin-I (L-lycosin-I),
the D isomer of lycosin-I (D-lycosin-I), which consists of L- and
D-amino acid residues (RKGWFKAMKSIAKFIAKEKLKEHL),
and a scrambled lycosin-I (S-lycosin-I), which was synthesized
from the N terminus to the C terminus of lycosin-I (LHEKLKEK
AIFKAISKMAKFWGKR). The peptides were synthesized and pu-
rified as described in our previous study (19).

MICs of lycosin-I. The MICs of the three isomers of lycosin-I
and several other clinical drugs were determined through the
broth microdilution method in accordance with the CLSI proto-
col (Table 1; see also Table S2 in the supplemental material) (21).
With MICs ranging from 8 to 32 �g/ml, L- and D-lycosin-I exhib-
ited more potent inhibitory activities against both drug-suscepti-
ble A. baumannii and MDRAB isolates than most of the tradi-
tional drugs tested, except polymyxin B, which was reported to be
of high toxicity (24, 25). However, no distinct differences were
observed between L- and D-lycosin-I. The MICs of S-lycosin-I
ranged from 128 to �256 �g/ml, which indicates that this com-
pound exhibits only slight activity against the microorganisms
tested. There were no distinct differences between the MIC ranges
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of L- and D-lycosin-I against MDRAB and drug-susceptible iso-
lates.

Time-kill kinetics of lycosin-I. The time-kill curves for two
types of lycosin-I (L-and D-) were determined against one repre-
sentative isolate each of MDRAB and drug-susceptible A. bau-
mannii, respectively, at a concentration equal to 4� MIC. Bacteria
from an overnight culture were diluted with LB broth in flasks to
a bacterial density of approximately 5 � 108 CFU/ml and cultured
to the exponential phase. Viable colonies (CFU/ml) were counted
0, 5, 10, 20, 30, 40, 50, and 60 min after antibiotic addition through
serial dilution using sterile saline and plating of 0.01-ml amounts
of the serial dilutions onto LB agar. As shown by the results in Fig.
1, both L- and D-lycosin-I displayed rapid bactericidal activity
against both multidrug-resistant and drug-susceptible isolates at a
concentration equal to 4� MIC. L- and D-lycosin-I reduced the
numbers of CFU by approximately 50% during a 30-min expo-
sure period and by 100% within 50 min. In comparison, S-lyco-
sin-I exhibited no obvious bactericidal activity.

Salt tolerance of lycosin-I. To determine the effects of MgCl2

and CaCl2 on the antibacterial activities of the two types of lyco-
sin-I (L and D), the MICs of lycosin-I against one representative
isolate each of MDRAB and drug-susceptible A. baumannii were
measured in the presence or absence of 5 mM Mg2� and Ca2�, and
the growth inhibition curves were plotted. The results are dis-
played in Fig. 2. The MICs of L- and D-lycosin-I against MDRAB
and drug-susceptible strains were 4- and 2-fold higher after expo-
sure to 5 mM Ca2� and Mg2�, respectively. Our results indicate
that a high concentration of Ca2� or Mg2� reduces the antibacte-
rial activity of these two types of lycosin-I and that Ca2� exerted a
more suppressive effect. However, it is worth noting that, despite
their slightly reduced inhibitory activities, L- and D-lycosin-I re-
tained their potent ability to inhibit the growth of the tested iso-
lates in the presence of 5 mM Mg2� and Ca2�, with MICs of 16
�g/ml and 32 �g/ml, respectively. There were no significant dif-
ferences in salt sensitivity between L- and D-lycosin-I.

It is clear that the membrane permeabilization mechanism is
the dominant mechanism through which AMPs kill bacteria (18,
20). This mechanism of action is not highly specific toward a pro-
tein target, which indicates that it may escape the mechanisms
involved in multidrug resistance (26). The higher efficiency of
lycosin-I against MDRAB compared to that of traditional drugs
makes it a prospective candidate for overcoming multidrug resis-
tance. We compared the in vitro activities of L- and D-lycosin-I
against MDRAB but found no significant differences in their
MICs and time-kill kinetics, confirming the hypothesis that the
antimicrobial activity of AMPs is not mediated by a chirality-de-
pendent interaction with the membrane (27). The fact that lyco-
sin-I exerts its activity against bacteria by acting on a surface target
rather than interacting with a chiral center may be one of the
reasons for the low risk associated with the acquisition of resis-
tance to this compound. S-Lycosin-I displays very low inhibitory
activity and no bactericidal effects on our tested isolates, even at
high concentrations, which indicates that the amino acid sequence
of the peptide plays a vital role in its inhibitory activity against
bacteria, particularly through its binding to the membranes of
target cells.

Human body fluids with high salt concentrations can deacti-
vate AMPs. Thus, we must consider the salt sensitivity of these two
types of lycosin-I, which may lead to decreases in their activity in
vivo (28, 29). Our results demonstrated that L- and D-lycosin-I

TABLE 1 MICs of three types of lycosin-I and various traditional
antibiotics against Acinetobacter baumannii

Druga

MIC (�g/ml) for:

MDRAB isolates (n � 18)
Drug-susceptible A.
baumannii isolates (n � 15)

Range 50% 90% Range 50% 90%

L-Lycosin-I 8–32 8 16 8–32 8 16
D-Lycosin-I 8–32 8 16 8–32 8 16
S-Lycosin-I 128–�256 256 �256 128–�256 256 �256
AMK �256 �256 �256 4–16 8 16
SCF 32–�256 64 �256 4–16 8 16
SAM 32–�256 256 �256 4–16 8 16
IPM 32–256 64 256 1–4 2 4
MEM 32–�256 64 128 1–4 2 4
MIN 4–32 4 32 1–4 1 4
CIP �256 �256 �256 1 1 1
PMB 1–8 2 8 0.125–1 0.25 1
TGC 4–32 4 16 0.125–1 0.25 1
a AMK, amikacin; SCF, cefoperazone-sulbactam; SAM, ampicillin-sulbactam; IPM,
imipenem; MEM, meropenem; MIN, minocycline; CIP, ciprofloxacin; PMB, polymyxin
B; TGC, tigecycline.

FIG 1 Time-kill curves for representative Acinetobacter baumannii isolates exposed to three types of lycosin-I (4� MIC). (A) Results for MDRAB isolate (isolate
9) exposed to three types of lycosin-I (inoculum, 5 � 108 CFU/ml). (B) Results for drug-susceptible isolate (isolate 25) exposed to three types of lycosin-I
(inoculum, 5 � 108 CFU/ml). All of the data are expressed as the means of three independent experiments � standard errors.
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would retain their activity at high salt concentrations (5 mM
Mg2� or Ca2�), which may indicate that they can be utilized in
vivo.

Currently, there are limited choices that are effective in the
clinical treatment of MDRAB infections. The in vitro activities of
L- and D-lycosin-I against MDRAB strains were found to be higher
than those of the traditional antibiotics tested in our study. These
compounds were demonstrated to have potential for the develop-
ment of novel antibiotics, which offers new hope for overcoming
microbial drug resistance.
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