Skip to main content
. 2014 Feb 7;9(12):1862–1871. doi: 10.1093/scan/nst187

Table 1.

Results of behavioral model fitting

Participant Gain
Loss
α λ Log-likelihood α λ Log-likelihood
1 0.12 0.02 −3.60 0.12 0.02 −5.75
2 0.42 0.74 −18.15 0.94 0.77 −12.15
3 0.53 0.74 −16.30 0.71 0.89 −16.96
4 0.74 0.03 −8.38 0.75 0.03 −9.12
5 0.13 0.02 −3.60 0.73 0.03 −3.60
6 0.33 0.02 −5.74 0.54 0.47 −9.39
7 0.12 0.02 −9.56 0.13 0.02 −5.74
8 0.12 0.02 −5.74 0.33 0.02 −5.74
9 0.12 0.02 −8.38 0.13 0.02 −9.56
10 0.17 0.85 −20.71 0.13 0.02 −7.28
11 0.56 0.81 −17.36 1.11 0.03 −0.00
12 0.33 0.03 −9.12 0.47 0.43 −9.38
13 0.33 0.50 −14.04 0.44 0.73 −17.34
14 0.34 0.03 −3.60 0.34 0.03 −3.60
15 0.74 0.03 −5.75 0.76 0.03 −5.74
16 0.21 0.02 −0.00 0.32 0.93 −23.41
17 0.13 1.11 −24.70 0.20 1.14 −26.02
18 0.34 0.03 −7.27 1.07 0.71 −9.39

The ‘envy’ parameter α reflects the degree to which an individual cares about inequality, and the ‘temperature’ parameter λ reflects decision randomness. Log-likelihoods show the goodness of fit (the closer to zero, the better the fit).