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Over the past 60 years, human intracranial electrophysiology (HIE) has been used to characterize seizures in patients with epilepsy. Secondary to the
clinical objectives, electrodes implanted intracranially have been used to investigate mechanisms of human cognition. In addition to studies of memory
and language, HIE methods have been used to investigate emotions. The aim of this review is to outline the contribution of HIE (electrocorticography,
single-unit recording and electrical brain stimulation) to our understanding of the neural representations of emotions. We identified 64 papers dating
back to the mid-1950s which used HIE techniques to study emotional states. Evidence from HIE studies supports the existence of widely distributed
networks in the neocortex, limbic/paralimbic regions and subcortical nuclei which contribute to the representation of emotional states. In addition,
evidence from HIE supports hemispheric dominance for emotional valence. Furthermore, evidence from HIE supports the existence of overlapping neural
areas for emotion perception, experience and expression. Lastly, HIE provides unique insights into the temporal dynamics of neural activation during
perception, experience and expression of emotional states. In conclusion, we propose that HIE techniques offer important evidence which must be
incorporated into our current models of emotion representation in the human brain.
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INTRODUCTION

The study of the neural representation of emotions is one of the

cornerstones of cognitive neuroscience research. One encompassing

definition sees emotions as helping to coordinate, adapt and reinforce

sets of changes to the brain and body towards the triggering event

(Adolphs et al., 2010). Despite enormous progress over the past 15

years in our understanding of the neural representation of emotions in

the human brain thanks to functional neuroimaging, several recent

meta-analyses point out continued controversy over many central con-

cepts (e.g. Murphy et al., 2003; Phan et al., 2002; Kober et al., 2008;

Lindquist et al., 2012). For instance, despite general agreement that

emotional states causes wide-spread brain activation, some investiga-

tors postulate that the data support the existence of discrete emotional

processing centers in the brain while others see the data as supporting

less discrete, more network-based processing. The more locationist

view argues that a small set of discrete emotions (e.g. anger) are rep-

resented by discrete, evolutionarily conserved anatomical systems in

the brain (e.g. amygdala) (Adolphs et al., 1994; Bechara et al., 1995;

Calder et al., 1996; Scott et al., 1997; Adolphs et al.1999; Schmolck and

Squire, 2001; Vytal and Hamann, 2010; Lench et al., 2011). The con-

trary position is a distributionist view which argues that no single

macro-anatomical structure uniquely specializes for individual emo-

tion categories and proposes a dimensional view (i.e. positive and

negative valence, high and low arousal) of emotions. In certain

views, emotion categories are composed of even more basic psycho-

logical units called ‘psychological primitives’ (Cunningham and

Zelazo, 2007; Barrett, 2011, 2012; LeDoux, 2012; Lindquist and

Barrett, 2012; Lindquist et al., 2012; Russell, 2012; Barrett and

Satpute, 2013; Lindquist et al., 2013; Hamann, 2012). While these

distributionist theories either focus on some combination of the psy-

chological and the neural levels, the ones we will focus on will primar-

ily be of the neural level.

While to some extent the dispute over what the evidence shows may

stem from presuppositions of the investigators, it is possible that limi-

tations in methods used to investigate human emotions are fueling this

dispute. Techniques typically used in the neuroscience of emotion

depend on the organisms under study. Human studies primarily use

some form of neuroimaging (e.g. fMRI, EEG, MEG) and either tem-

porary (e.g. TMS) or permanent lesion participants. One limitation

could be the spatiotemporal resolution of functional neuroimaging.

Perhaps the processing units of interest can be better dissociated at a

level smaller and faster than conventional neuroimaging can detect? A

second limitation stems from caveats of inferring causality from lesion

studies. Lesion map data primarily come from stroke patients with the

possibility of wide lesions that effect cortical, subcortical and white

matter regions (Duffau, 2012). Even focal lesions that are localized

to a single region have been shown to produce different behavioral

results in different participants (Feinstein, 2013). The individual vari-

ability and lack of control leads to many third-variable confounds that

hurt causal inferences.

To alleviate some of these issues, studying animal models opens up

an array of different invasive techniques with the best spatiotemporal

resolution possible. Research with non-human models typically uses

invasive forms of electrophysiology [e.g. single neuron recordings,

local field potentials (LEPs), etc.] and lesion techniques. While these

studies in rodents and non-human primates have contributed to our

understanding of emotion and pro-social behavior (LeDoux, 2000;

Burgdorf and Panksepp, 2006), there are numerous, complex behav-

iors unique to humans that are not possible to study in animals yet are

critical to the understanding of hypothesized neural emotion models.

Human Intracranial Electrophysiology

Human intracranial electrophysiology (HIE) techniques have been

used since the 1950’s for characterization of epilepsy in people who

experience seizures despite optimal treatment with medications. The

clinical goal of HIE is to establish which regions of the brain generate

seizures and to determine if surgical removal of this tissue is possible.

Following the implantation of intracranial electrodes, regions of the

brain that are epileptogenic are identified. In addition, areas around
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epileptogenic tissue are tested for cognitive and sensorimotor function

by electric current stimulation via the implanted electrodes.

Secondary to the clinical goals, HIE techniques can be used for re-

search by allowing measurement of localized brain activity during the

performance of cognitive tasks (Engel et al. 2005; Adolphs. 2007). The

type of brain activation seen using HIE techniques depends mainly on

the type of electrode used for recording. If macroelectrode contacts

(2–5 mm discs) are used, then LFPs can be recorded. If microelectrodes

(20–40 m wires) are used, then activity of single neurons is seen and

referred to as single-unit activity (SUA). In addition to measurements

of brain activation, electrical brain stimulation (EBS) via macroelec-

trode contacts can be used to determine if temporary neural suppres-

sion or activation leads to an effect on cognitive function.

Advantages of HIE Methods

HIE methods allow for the measurement of electrical activity similar to

scalp EEG but with greater spatial resolution, better gamma frequency

resolution (30–150 Hz activity) and higher signal-to-noise ratio

(Mukamel and Fried, 2012). Compared to functional MRI, HIE tech-

niques offer comparable spatial resolution but with microsecond tem-

poral resolution which is on the same order of magnitude as the speed

of cognitive processing. Furthermore, HIE recordings are somewhat

immune to muscle and eye movement artifact (Kovach et al., 2011).

This allows for the study of phenomena involving motor actions which

is difficult when using functional MRI, such as laughter.

An additional major advantage of HIE methods includes the ability

to deliver targeted EBS which is useful for making causal inferences.

Methods like EEG, fMRI and intracranial recordings can establish co-

variance between brain and behavior but temporal precedence and

third-variable exclusion is necessary to make a causal inference. HIE

stimulation techniques have the advantage of the stimulation having

temporary effects (vs lesion) and having the ability to record from the

same electrodes used for stimulation (vs TMS). Intraoperative stimula-

tion procedures can also afford the opportunity to stimulate subcortical

and white matter tracts (Duffau, 2010). The induction of distinct be-

haviors with EBS offers compelling evidence that this brain region is in

some way involved in the neural representation of that emotional state.

Signal analysis techniques used in HIE are similar to techniques for

scalp EEG (Makeig et al., 2004). If the question is focused on looking at

the neural signal during a specific event, there are time-locking meth-

ods for looking at the evoked potentials or the frequency distribution.

If the question is focused on looking at the similarity of processing

across brain areas, then techniques that are similar to fMRI network

analysis can be used (Lachaux et al., 2003).

Limitations of HIE techniques

Several significant limitations of HIE techniques exist. First, the

recordings are performed in patients with epilepsy, not neurotypical

subjects. While it is true that parts of their brains are impaired, it is not

correct to assume that the entire brain is pathological. A historical

example of how data from intracranial patients can inform healthy

brain activity is Wilder Penfield’s work on the somatotopic organiza-

tion of primary sensory and motor cortex. Intracranial electrodes are

generally implanted to cover wide areas of the brain with the goal of

understanding which brain regions are pathological and which are

healthy. Electrodes which record from pathological brain areas are

excluded from analysis.

Second limitation of HIE research is the issue of limited spatial

coverage in a single patient. In fact, as many as 10 000 intracranial

recording sites would be necessary to get the same whole-brain spatial

coverage as fMRI (Lachaux et al., 2003). This limitation can be par-

tially circumvented by hypothesis-driven study designs which ask

questions about focal networks. For instance, a typical intracranial

electrode placement for suspected temporal lobe epilepsy may cover

the amygdala, hippocampus, temporal pole, temporal neocortex and

occipital-temporal cortex. This implant strategy may allow for the

testing of hypotheses regarding visual processing of fear-inducing

stimuli. However, this implant strategy does not allow for the under-

standing of how the rest of the brain functions during the task.

Third limitation of HIE research involves inferences which can be

drawn from EBS. EBS can either activate a brain region (e.g. causing

hand movements during stimulation of the motor cortex), inhibit a

brain region (e.g. causing language arrest during stimulation of Broca’s

area), or activate a whole sub-network distant to the site of stimulation

(David et al., 2010; Mandonnet et al., 2010). Therefore, the experience

of fear during stimulation of the amygdala may result from activation

of the amygdala itself, may result from activation of a distant brain

region via neural connections, or conversely may result from disinhib-

ition of a distant brain region by inhibition of the amygdala.

Furthermore, it is difficult to assess from stimulation experiments

the extent of the brain volume which is influenced by the stimulation.

Some of these uncertainties have been addressed by reports of good

motor outcomes in surgical resections up to 1 cm of cortical distance

from eloquent regions mapped by stimulation (Gregorie and Goldring,

1984). In addition, during EBS it is often noted that adjacent electrode

sites are not affected by the stimulation.

The authors are interested in the use of HIE to study the neural basis

of emotions because the methodology has many strengths which com-

plement conventional neuroimaging. The goals of this review are 2-

fold. First, we aim to organize the findings from half-a-century of HIE

research into human emotions. Second, we aim to draw conclusions

on what the evidence from HIE adds to our present understanding of

the neural representation of emotions. By the end of the manuscript,

we will see how the current HIE evidence gives answers to the follow-

ing questions: (i) Are emotional responses localized specifically and

consistently to specific brain regions or are they widely distributed? (ii)

Do experience, expression and perception share any neural machinery?

(iii) Is there any (absolute or relative) hemispheric lateralization

during emotion?

CRITERIA FOR INCLUSION

A Pubmed and Google Scholar search was performed using the fol-

lowing keywords: emotions, social, face, intracranial, iEEG, EcOG, cor-

tical stimulation, deep brain stimulation, laughter, intraoperative, sad,

fear, mirth, dyad. For the purpose of finding as many articles as pos-

sible for this review, three delineating terms for different emotion

phenomena needs to be defined. We will be defining emotional per-

ception as the cognitive capability to perceive the emotion of another

human being. Emotional expression will be defined as the motoric act

associated with having an emotion. This is independent from the emo-

tional experience, which is the subjective feeling associated with an

emotional event. Several related topics were not included in this re-

view. Studies investigating reward processing, learning, and decision

making were omitted (for review, see Oya et al., 2005; and Lega et al.,

2011). Second, studies aimed at investigation of DBS in treatment of

mood disorders were not included (for review, see Holtzheimer and

Mayberg, 2011). Lastly, studies of pain experience were not included

(for review, see Selimbeyoglu and Parvizi, 2010). Only English-

language articles and chapters were used.

QUALITATIVE FINDINGS

Overview of articles

Sixty-four studies which investigated emotional processing using HIE

methods were identified. Year of publication ranged from 1954
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to 2012. Twenty-one studies examined neural activity during percep-

tion of emotional states in others (Table 1). Twenty-seven studies

examined neural activity during the experience of negatively valenced

emotional states (Table 2) and 12 papers during the experience of

positively valenced emotional states (Table 3). Eleven studies examined

neural activity during the motoric expression of emotional states

(Table 4). Some papers are listed under more than one table. The

investigated brain regions include significant portions of the temporal,

frontal, parietal and occipital neocortex, multiple limbic areas includ-

ing the hippocampus, amygdala, insula and cingulate gyrus, and sev-

eral subcortical regions including the subthalamic nucleus, substantia

nigra, zona incerta and various parts of the internal capsule. To see this

same data organized by brain regions, please refer to tables in the

Supplementary Data.

The studies reviewed varied in many ways. There was a lack of

consistent methodological standardization in the study designs, stimu-

lus presentation, recording techniques, analysis techniques and elec-

trode localization methods. In addition, most authors did not describe

the exact type of epilepsy that the patient was suffering from or how

trials or electrodes with epileptic activity were excluded from the ana-

lysis. For these reasons, quantitative meta-analysis was not possible

with this data. In turn, data were organized in a semi-quantitative

fashion based on reported neuroanatomy and descriptions of emo-

tional processes.

Perception of emotional states in others

Most investigators used pictures of static faces with emotional expres-

sions as stimuli and recorded neuronal activity in the fusiform gyrus,

the amygdala and multiple regions of the temporal and frontal lobes

(Table 1). Other tasks included studying emotional prosody either in a

specific emotion framework or on a positive/negative gradient scale.

Experience of positively and negatively valenced emotional
states

Emotional experience was studies by two distinct methods. The first

method involved measuring neural activity during the presentation of

emotionally provocative stimuli, such as International Affective Picture

System (IAPS) pictures. These pictures were designed to evoke changes

in different aspects of emotion experience in general (e.g. valence and

arousal) and do not elicit a specific emotion per se. The second

method involved subjective reports of emotional states induced by

electrical stimulation of various brain regions (Tables 2 and 3).

Stimulation findings are primarily incidental in that the emotional

experience was spontaneously elicited and self-reported by the patients.

Motoric execution of emotional expression

Studies in this section include reports of elicitation of facial expression

of an emotional state with the subject reporting no associated emotional

experience. Regions of the brain include areas of the frontal lobe and

subcortical structures (Table 4). Many of these expressions elicited were

complex phenomena like laughing or crying without the appropriate

emotion. The more subtle emotional expressions elicited are taken on

face value from the clinician’s reports but future researchers should take

care that these motoric acts are specific to emotions and not under

voluntary control for communicative purposes (Fridlund, 1991).

DISCUSSION

The study of emotions in the human brain using HIE techniques dates

back almost 60 years to the pioneering work of Wilder Penfield.

Studies reviewed can be divided into two main types. The first type

includes studies which aimed to measure brain activation during view-

ing of emotionally provoking stimuli. The types of stimuli included

presentation of faces with emotional facial expressions (e.g. Ekman

Table 1 Emotion perception

Study Year Type of study Areas Results

Krolak-Salmon et al. 2003 ERP, Stimulation Anterior insula Regions with differential potentials for disgust face perception also elicit negative valence
experience during stimulation

Krolak-Salmon et al. 2004 ERP Amygdala Amygdala active in fear perception > other emotions
Tsuchiya et al. 2008 ERP Fusiform, STS Fusiform gyrus participates in emotion decoding
Pourtois et al. 2010a ERP Fusiform Early face response and late emotion and eye direction response
Pourtois et al. 2010b ERP Amygdala Different early and late responses in amygdala. Only late modulated by attention.
Jung et al. 2011 ERP Lateral orbitofrontal OFC active in negative emotion processing
Rømer-Thomsen et al. 2011 ERP ACC ACC showed differences between happy and sad faces �500 ms
Ojemann et al. 1992 Single unit Right lateral temporal SUA to facial emotion perception.
Fried et al. 1997 Single unit Hippocampus, amygdala SUA to facial emotion encoding and recognition.
Fried et al. 1982 Stimulation Lateral temporal Impaired judgment of emotional facial expressions.
Péron et al. 2010a Stimulation STN Impairment of recognition for sad and fearful facial expressions
Péron et al. 2010b Stimulation STN Impairment in recognizing the emotional prosody in speech stimuli.
Mukamel et al. 2010 Single Unit SMA, MTL Responsive firing for emotional face perception and execution
Brück et al. 2011 Stimulation STN Enhanced processing of highly-conflicting emotional messages.
Marinkovic et al. 2000 ERP, Stimulation Anterior inferior PFC Intracranial recording and stimulation evidence found cortex sensitive for faces (including

hallucinations of faces when stimulated). Area was resected and produced deficits in
emotional face recognition (especially fear)

Sato et al. 2011 iEEG Amygdala Greater gamma-band activity in response to fearful compared with neutral facial expressions
between 50 and 150 ms

Biseul et al. 2005 Stimulation STN Impaired recognition of fear expressions
Schroeder et al. 2004 Stimulation STN Impaired recognition of angry expressions
Dujardin et al. 2004 Stimulation STN Impaired recognition of angry and sad expressions
Drapier et al. 2008 Stimulation STN Impaired recognition of fear and sad expressions. Apathy scores had also worsened after DBS

implantation.
Le Jeune et al. 2008 Stimulation, PET STN, orbitofrontal Impaired recognition of fear faces. These results positively correlate with glucose metabolism

in the right orbitofrontal cortex.

Abbreviations: ACC, Anterior cingulate cortex; ERP, Event-related potentials; iEEG, Intracranial electroencephalography; MTL, Medial temporal lobe; PET, Positron emission tomography; PFC, Prefrontal cortex; SMA,
Supplementary motor cortex; STN, Subthalamic nucleus; STS, Superior temporal sulcus
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faces), presentation of emotionally provoking pictures (e.g. IAPS pic-

tures) and audio presentations of emotionally provoking stories. In

these studies, brain activity was measured using one of several meth-

ods: time-locked analysis of evoked LFPs, frequency analysis of syn-

chronization or desynchronization, or change in the firing frequency of

a neuron if recording SUA. Second type of study involved EBS of

specific brain regions and measuring of either self-reports of descrip-

tions of evoked emotional states or measuring the ability of the patient

to detect emotional states in others.

Synthesis of reviewed articles

HIE techniques offer evidence in support of six conclusions with re-

gards to the neural representation of emotions:

(1) Evidence from HIE methods supports a model of widely distrib-

uted representations of emotions spanning the subcortical nuclei,

the limbic/paralimbic regions and the neocortex (Figure 1).

Evidence from HIE suggests that subcortical nuclei play an im-

portant role in representation of emotional states. Stimulation of

subcortical nuclei such as the STN can impair perception of sad-

ness, fear and anger and impair recognition of emotional prosody

in speech stimuli (Table 1). Stimulation of STN, zona incerta,

substantia nigra pars reticulata, fields of Forel, globus pallidus

interna and ventral intermediate nucleus of thalamus can induce

experience of sadness and crying (Table 2) while stimulation of the

nucleus accumbens, anterior limb of the internal capsule, and

ventral STN has been associated with sensation of joy and mirth

(Table 3). In addition, recording of LFPs and stimulation of amyg-

dala, hippocampus, insula, orbitofrontal cortex, temporal pole and

anterior cingulate cortex clearly points to limbic/paralimbic rep-

resentation of emotional states (Tables 1, 2 and 3). Furthermore,

HIE evidence implicates neocortical regions in representation of

emotional states. Stimulation of the basal temporal lobe, superior

Table 2 Experience of negative emotional states

Study Year Type of study Areas Results

Oya et al. 2002 ERP Amygdala Response to negative emotions
Naccache et al. 2005 ERP Amygdala Response to emotional words
Kawasaki et al. 2001 Single Unit vmPFC Response to negative emotional states
Penfield 1958 Stimulation ITL Fear
Penfield and Perot 1963 Stimulation STG, TPJ Fear
Bancaud et al. 1994 Stimulation STG Fear
Meletti et al. 2006 Stimulation MTL, Amygdala Of the 79 emotional responses elicited, 67 were fearful, 9 were happy, and 3 were

sad. 12% of these responses were in the amygdala and these were all fear
responses.

Lanteaume et al. 2006 Stimulation Amygdala Right amygdala induced negative emotions, especially fear and sadness. Left amyg-
dala was able to induce either pleasant (happiness) or unpleasant (fear, anxiety,
sadness) emotions.

Halgren et al. 1978 Stimulation Amygdala, Hippocampus Fear, sadness, anger.
Mazzola 2009 Stimulation Insula Fear, anxiety
Feindel and Penfield 1954 Stimulation Insula Fear
Ostrowsky et al. 2002 Stimulation Temporal pole Anxiety, sadness
Gordon et al. 1996 Stimulation Temporal pole Positive and negative emotions
Mullan et. al 1959 Stimulation MTG, STG, Insula Fear
Van Buren 1961 Stimulation MTL Fear, laughter
Fish et al. 1993 Stimulation Amygdala, Hippocampus Fear
Blomstedt et al. 2008 Stimulation STN Stimulation caused acute transient depression with crying and feeling of not wanting

to live.
Benedetti et al. 2004 Stimulation STN, zona incerta, substantia nigra pars

reticulata
Zona incerta and the dorsal pole of the subthalamic nucleus produced autonomic

responses that were constant over time. In contrast, the stimulation of the ventral
pole of the subthalamic nucleus and the substantia nigra pars reticulate produced
autonomic and emotional responses that were inconstant over time and varied
according to the condition.

Tommasi et al. 2008 Stimulation STN, substantia nigra, zona incerta, fields of
forel

Stimulation caused acute transient depression.

Bejjani et. al 1999 Stimulation Left substantia nigra Stimulation caused acute transient depression with crying and feeling of
hopelessness.

Okun et al. 2004 Stimulation STN All leads elicited pathological crying but one lead elicited fear, one elicited anxiety,
and the rest had no emotion at all.

Brázdil et al. 2009 ERP Medial and lateral temporal, medial and lateral
PFC, posterior parietal, precuneus and insula

Unpleasant pictures elicited more activity in temporal and frontal regions. Significant
findings to emotional stimuli were found in rarely investigated regions (posterior
parietal, precuneus and insula).

Krolak-Salmon et al 2003 ERP, Stimulation anterior insula Regions with differential potentials for disgust face perception also elicit negative
valence experience during stimulation

Smith et al. 2006 Stimulation cingulate, OFC, MTL, amygdala and insula Negative responses were more associated with right-sided stimulation. Positive
responses were found in each hemisphere (left ACC, right insula).

Vicente et al. 2009 Stimulation STN Lower levels of differentiating sad and fearful videos and less intense feelings
towards negative valence videos.

Sabolek et al. 2009 Stimulation STN, substantia nigra Acute fear induced with right substantia nigra stimulation. Depressive feelings
induced with caudal STN stimulation.

Burdick et al. 2011 Stimulation STN, Globus pallidus interna, Vim STN and GPi DBS were associated with higher anger scores. It was not confirmed if
this was a lesion or a stimulation effect.

Abbreviations: ACC, Anterior cingulate cortex; ERP, Event-related potentials; iEEG, Intracranial electroencephalography; ITL, Inferior temporal lobe; MTG, Middle temporal gyrus; MTL, Medial temporal lobe; PET,
Positron emission tomography; PFC, Prefrontal cortex; OFC, Orbitofrontal cortex; SMA, Supplementary motor cortex; STG, Superior temporal gyrus; STN, Subthalamic nucleus; TPJ, Temporoparietal junction; Vim,
Ventral intermediate nucleus; vmPFC, Ventral medial prefrontal cortex
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temporal gyrus, middle temporal gyrus, temporal-parietal junc-

tion, inferior frontal gyrus and supplementary motor area has

been shown to induce states of fear and mirth (Tables 2 and 3).

(2) HIE methods supports the idea that emotional state categories

(such as fear) are represented in multiple brain areas (Figure 2).

Evidence comes especially from EBS studies. For example,

self-reported experience of fear has been evoked by EBS of the

amygdala, insula, inferior temporal lobe, middle temporal gyrus,

superior temporal gyrus, hippocampus, temporo-occipital junc-

tion and even substantia nigra (Table 1). Furthermore, experience

of mirth has been evoked by EBS of left inferior temporal lobe, left

inferior frontal gyrus, supplementary motor area, cingulate gyrus,

parahippocampal and fusiform gyri (Table 1). Further evidence

comes from ERP studies showing for instance that the hippocam-

pus, amygdala, pre-frontal cortex, insula and precuneus activate

during presentation of fearful stimuli (Brázdil et al., 2009).

(3) HIE methods support the existence of right hemisphere dominant

networks for representation of negatively valenced emotional

states (e.g. fear) and left-hemisphere dominant networks for posi-

tively valenced emotions states (e.g. mirth) (Figure 3). Evidence

for hemispheric dominance for emotional valence comes primarily

from qualitative analysis of EBS studies. Multiple investigators

report the induction of negatively valenced emotional states (e.g.

fear, anger, sadness) with EBS of the right hemisphere and

Table 4 Isolated motoric expression of emotion

Study Year Type of study Areas Results

Davis et al. 2005 Single unit Caudal ACC Attention-demanding stroop task involving emotional content can alter the firing rate
Mukamel et al. 2010 Single unit SMA, MTL Responsive firing for emotional face perception and execution
Chassagnon et al. 2008 Stimulation Cingulate motor area In one patient, the urge to laugh without mirth was elicited
Fried et. al 1998 Stimulation SMA The duration and intensity of the laughter increased with stimulation current. Smiling was

induced at lower currents. The patient consistently contributed the laughter to some
outside source.

Sperli et al. 2006 Stimulation Right cingulate Stimulation induced smiling and laughing without mirth.
Schmitt et al. 2006 Stimulation SMA and pre-motor area Laughter without mirth was elicited.
Bartolomei et al. 2005 iEEG ACC, orbitofrontal, amygdala, temporal pole Negative motoric expression preceding seizures located in ACC, Orbitofrontal, and Temporal

Pole. These expressions also associated with signal decorrelation between orbitofrontal and
amygdala.

Arroyo et al. 1993 Stimulation ACC, parahippocampal, fusiform Patient with gelastic seizures without mirth had onset at left ACC. Other patients elicited
laughter with mirth when stimulated around the fusiform and parahippocampal gyri.

Krolak-Salmon et al. 2006 iEEG, Stimulation SMA Stimulation of left pre-SMA consistently got a smile or a laugh from the patient when
stimulated (needed at least 0.6 mA at 50 Hz). The patient reported the mirth followed
the movement. At .8mA, crying followed the laughter. The field potentials in this area
responded mainly for happy faces.

Wojtecki et al. 2007 Stimulation STN Pathological crying
Low et al. 2008 Stimulation Caudal internal capsule Pathological crying
Hiyoshi et al. 1989 iEEG Lateral and mesial temporal lobe Disgust expression with mesial temporal focus and happy expression with lateral temporal

focus.

Abbreviations: ACC, Anterior cingulate cortex; iEEG, Intracranial electroencephalography; MTL, Medial temporal lobe; SMA, Supplementary motor cortex; STN, Subthalamic nucleus

Table 3 Experience of positive emotional states

Study Year Type of study Areas Results

Satow et al. 2003 Stimulation Left ITL Mirth or mirth with laughter depending on intensity of stimulation
Gordon et al. 1996 Stimulation Temporal pole Positive and negative emotions
Van Buren 1961 Stimulation MTL Fear, laughter
Meletti et al. 2006 Stimulation MTL, Amygdala Of the 79 emotional responses elicited, 67 were fearful, 9 were happy, and 3 were sad. 12%

of these responses were in the amygdala and these were all fear responses.
Lanteaume et al. 2006 Stimulation Amygdala Right amygdala induced negative emotions, especially fear and sadness. Left amygdala was

able to induce either pleasant (happiness) or unpleasant (fear, anxiety, sadness) emotions.
Smith et al. 2006 Stimulation ACC, OFC, MTL, amygdala, and insula Negative responses were more associated with right-sided stimulation. Positive responses

were found in each hemisphere (left ACC, right insula).
Haq et al. 2011 Stimulation ALIC, Nucleus accumbens After stimulation, patients felt mirth followed by a smile or laugh. For sites with smiling or

laughing, the mood was congruent in 28 of 31 conditions. For sites with smiling or
laughing, mood positively correlated with voltage.

Krack et al. 2001 Stimulation STN Laughter with mirth was elicited in two Parkinson’s patients. When the stimulation was set to
the therapeutic parameters, there is an improvement in akinesia symptoms

Stefan et al. 2004 Stimulation Temporal, frontal, parietal Ictal pleasantness localized mainly to temporal mesiobasal areas, but also found it localized in
frontal and parietal in a minority of patients.

Greenhouse et al. 2011 Stimulation Ventral STN Ventral contact stimulation led to an increase of positive emotion.
Fernandez-Baca Vaca 2011 Stimulation Left IFG Mirth and laughter
Arroyo et al. 1993 Stimulation ACC, parahippocampal, fusiform Patient with gelastic seizures without mirth had onset at left ACC. Other patients elicited

laughter with mirth when stimulated around the fusiform and parahippocampal gyri.

Abbreviations: ACC, Anterior cingulate cortex; ALIC, Anterior limb of the internal capsule; ITL, Inferior temporal lobe; MTL, Medial temporal lobe; OFC, Orbitofrontal cortex; STN, Subthalamic nucleus
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positively valenced emotional states (e.g. mirth) with EBS of the

left hemisphere (Tables 2 and 3). However, HIE studies do not

suggest absolute separation of emotional valence by hemisphere,

only dominance. For example, stimulation of the left amygdala

can induce either pleasant (e.g. happiness) or unpleasant (e.g.

fear) emotions (Lanteaume et al., 2006).

(4) Evidence from HIE methods supports the existence of distinct yet

partially overlapping neural systems for emotion perception,

emotion experience, and formation of emotional motoric acts

(Figure 4). This conclusion is supported by EBS studies, by LFP

recordings, and by SUA recordings. EBS of regions in the neocor-

tex, limbic/paralimbic cortex or deep nuclei has been shown to

induce motoric expressions of emotional states without the

accompanied emotional state as reported by the patient. For ex-

ample, EBS of the left SMA cortex elicited ‘laughter without

mirth’, and stimulation of the STN induced ‘crying without sad-

ness’ (Table 4). An interesting EBS study by Satow et al. found the

experience of ‘mirth only’ with low EBS intensities and ‘mirth

accompanied by laughter’ at high EBS intensities (Satow et al.,

2003). These findings suggest that neural regions for emotion ex-

pression and emotion experience are distinct but partially overlap-

ping. Further support for this conclusion comes from LFP

recordings and EBS studies of the amygdala. The amygdala acti-

vates during perception of negatively valenced emotional faces,

during experience of negatively valenced emotional states and

EBS of the amygdala can induce the experience of negatively

valenced emotional states (Tables 1, 2 and 3). Lastly, this conclu-

sion is supported by single unit recordings in the SMA and basal

temporal cortex by Mukamel et al. which revealed that not only

the same region, but also the same neuron can fire during percep-

tion and during motoric execution of emotional faces (Mukamel

et al., 2010). These findings are largely consistent with concepts

gleamed from fMRI (Grimm et al., 2006; Schiller and Delgado,

2010; Satpute et al., 2013).

(5) HIE methods elucidate the dynamics of neural activation

(Figure 5). The high temporal resolution of HIE methods offers

a unique window into the mechanics of human cognition. A fan-

tastic example comes from recording of LFPs during processing of

facial expressions as reported by multiple investigators. In these

studies, intracranial macroelectrodes are placed over occipital, lat-

eral temporal, amygdalar and orbitofrontal regions. Following the

presentation of a photograph depicting a face with emotional ex-

pression, initial activation occurs in the primary visual cortex

�100 ms following stimulus presentation. Next, activation in the

fusiform face area (FFA) occurs at 120–200 ms following presen-

tation of facial stimuli but not to non-facial stimuli (e.g. Pourtois

et al., 2010a). Next, the FFA and the superior temporal gyrus

(STG) activate to morphing emotional faces between 200 and

500 ms (Tsuchiya et al., 2008). Surprisingly, activation of the

amygdala to fearful expressions occurs within 200 ms following

stimulus presentation, which precedes activation in the FFA,

STG and orbitofrontal cortex (Krolak-Salmon et al., 2004). This

suggests that the amygdala may modulate the activity of the FFA

in a retrograde fashion. Last, activation of the orbitofrontal cortex

occurs 500–1000 ms following presentation of fearful stimuli (Jung

et al., 2011). Amygdala and temporal lobe findings are consistent
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Fig. 1 HIE studies which reported neural representation of emotional states separated by region.

Exploring emotions using invasivemethods SCAN (2014) 1885

,
``
''
``
''
etal 
``
''
``
''
,
,
etal 
,
approximately 
 to 
-
,
 - 


with previous EEG/MEG reviews (Pessoa and Adolphs, 2010) but

much faster (<200 ms) activity has been observed in frontal scalp

EEG findings (Barrett and Bar, 2009). Localizing neural sources

from scalp responses is problematic and it cannot be assumed that

the electrical activity came from parenchyma adjacent to the

cortex. Nonetheless, it is interesting that sub-100 ms activity has

been observed in scalp studies and where this activity is localized

would be an excellent future direction.

(6) HIE methods suggest that the processing function of brain regions

may change with respect to the temporal latency from the
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Fig. 2 HIE studies which reported neural representation of emotion separated by emotion type.
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Fig. 3 Valence-based hemispheric dominance of emotions in HIE studies
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Fig. 4 Graphic conceptual depictions of two distinct models of the neural representation of emotion
processing. (A) Emotion experience, perception and expression are distinctly represented in the brain.
(B) Emotion experience, perception and expression share partial overlapping representation. HIE
studies support this model.
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stimulus onset. The FFA shows early activation to faces independ-

ent of facial emotion at �200 ms and distinct late activation based

on facial emotion and eye direction at �500 ms (Pourtois et al.,

2010a). This finding provides evidence to suggest that the role of a

certain brain region in cognitive processing may change depend-

ing on the latency from stimulus presentation, i.e. the FFA pro-

cesses all faces early and only later processes facial emotion. The

high temporal resolution of HIE suggest a slightly different model

of emotion processing as compared to fMRI. HIE model suggests

that FFA processes most of the information during perception of

static and dynamic facial expressions, the only difference being the

latency from stimulus presentation.

CONCLUSIONS AND COMPARISON TO NON-HIE EVIDENCE

Evidence from HIE methods supports several general conclusions.

First, HIE offers strong evidence against the existence of super-specia-

lized macro-anatomical structures for representation of single emotion

categories (e.g. amygdala for fear) but rather offers evidence that their

representation is more broadly distributed between the subcortical

nuclei, the limbic/paralimbic regions, and the neocortex. Although

many investigators report clear descriptions of emotional experiences

during EBS of neuroanatomically confined areas (i.e. fear with amyg-

dala), induction of same emotional experiences have been reported

during EBS of many other areas (e.g. insula, parahippocampal gyrus)

with significant variability between studies. Evidence from HIE for

broad distribution of emotional representation is largely consistent

with neuroimaging and animal studies, especially for subcortical and

limbic system involvement. However, it is important to note clear and

strong evidence from HIE for neocortical involvement in emotion

representation in light of the controversy in this area (Barrett et al.,

2007; Panksepp, 2007).

Second, HIE methods offers modest evidence in support of hemi-

spheric specialization for positive or negative emotional valence, with

left hemisphere being dominant for positive and right hemisphere

dominant for negative emotion valence. The neuroimaging literature

has mixed results when it comes to laterality differences. Some work

finds left prefrontal as primarily involved with approach mechanisms

while right prefrontal as involved with avoidance mechanisms

(Spielberg et al., 2013). Other neuroimaging reviews do not find lat-

erality differences (Kringelbach and Rolls, 2004) or found laterality

with opposite valences assigned (Wager et al., 2008).

Third, HIE methods offer strong evidence that neural representation

of emotion observation, emotion experience, and emotion expression

are partially dissociated and partially overlapping, findings which are

largely consistent with neuroimaging and animal research. Evidence

from HIE offers further support to the theory of embodied cognition

which holds that the nature of the human mind is largely determined

by the form of the human body (Niedenthal et al., 2005; Barrett, 2006).

Further research needs to be done in terms of better outlining the

overlap of emotional processes in the brain and this is one topic

which is uniquely situated for HIE methods to explore.

Fourth, HIE reveals that processing of emotional information has

complex dynamics which may be largely imperceptible to fMRI. The

temporal sequence of activation gleaned during processing of facial

emotion observation can be extended to other emotional processes.

In addition, HIE evidence that same brain area processes different

information depending on the temporal latency from stimulus onset

(i.e. temporally dependent processing) cannot be adequately investi-

gated using fMRI. Temporal latency dependence for function has been

briefly hypothesized in previous fMRI work (Lindquist et al., 2012) but

it is still currently untested in the imaging modality.

Future directions

HIE methods have been largely underutilized in the study of emotional

phenomena in humans. For instance, the approach successfully utilized

to study temporal dynamic of amygdalar activation during perception

of fearful stimuli has not been utilized in the study of other emotion

categories. In addition, despite being well suited to clarify long-stand-

ing dispute over the existence of basic emotions, core affect or psy-

chological primitives HIE methods have never been used to investigate

these concepts. For instance, SUA methods have the necessary spatial-

temporal resolution to uncover if individual emotion categories can be

further broken down into more basic component parts. Furthermore,

while the HIE results do not show single localization for an emotional

process, there has yet to be reported evidence of functional connect-

ivity between involved brain regions the same way that it’s been show

in fMRI research. It is entirely possible to do this with HIE techniques,

in fact, there is the added benefit of being able to stimulate across

electrodes to causally test connectivity but it simply has not been done.

In future studies, we encourage HIE researchers to obtain exact

stereotactic coordinates for electrode placement to make meta-analyses

a feasible option. In addition, we encourage HIE researchers to utilize

standardized scales of emotional assessment as self-reported measures

are imprecise.

The main indication for HIE is to define the borders between patho-

logical and functionally necessary brain regions. Unfortunately, the

only cognitive domains typically mapped during routine clinical prac-

tice are motor and language while mapping for social and emotional

phenomena has not reached clinical threshold. In our opinion, the

goals of HIE should be elevated to encompass mapping cognitive func-

tions that are specific to the patient’s individual personality, occupa-

tion, hobbies and social life. With as long as HIE methods have been

around, mapping for social and emotional phenomena has not reached

established methods as with sensorimotor and language mapping. To

make this mission a reality will take more basic research (invasive and

non-invasive) that is aimed at these goals. There are many types of

studies that have not been run with HIE and the technology is steadily

improving to allow for more ‘wireless’ studies of brain activity so one

could study how real life situations and contexts may influence emo-

tional processing (which could answer long standing debates on how

emotions are represented in the brain). With the combination of non-

invasive and HIE methods, the only thing to limit finding out about

ORBITOFRONTAL
600-1300 ms

FUSIFORM
Early < 200 ms

Late 400-800 ms

LATERAL
TEMPORAL

> 500 ms

AMYGDALA
Early < 200 ms
Late > 700 ms

CINGULATE
> 500 ms

Fig. 5 HIE provides information on the temporal sequence of activation during perception of
emotional faces.
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emotional phenomena are the questions asked and the experiments

commenced.
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