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The in vitro antimalarial activities of artemisone and artemisone entrapped in Pheroid vesicles were compared, as was their abil-
ity to induce dormancy in Plasmodium falciparum. There was no increase in the activity of artemisone entrapped in Pheroid
vesicles against multidrug-resistant P. falciparum lines. Artemisone induced the formation of dormant ring stages similar to
dihydroartemisinin. Thus, the Pheroid delivery system neither improved the activity of artemisone nor prevented the induction

of dormant rings.

ince 2006, artemisinin-based combination treatment (ACT)

has been the cornerstone of malaria chemotherapy (1). How-
ever, high treatment failure rates with artesunate-mefloquine
(AS-MQ) (2) and dihydroartemisinin (DHA)-piperaquine (3) in
western Cambodia highlight the urgent need for effective ACT's
until more potent replacement drugs can be developed.

Although artemisinin and its derivatives are the most potent
and rapidly acting drugs for the treatment of Plasmodium falcipa-
rum malaria (4), this drug class is associated with high recrudes-
cence. Artemisone (AMS), a new derivative, has potent antiplas-
modial activity, good oral bioavailability, and metabolic stability
(5) and is well tolerated in humans (6), with an effective curative
dose approximately one-third that of artesunate (7). However, use
of artemisone alone, as with the other artemisinins, also leads to
recrudescence in nonhuman primates (8). A plausible explanation
for recrudescence is drug-induced quiescence or dormancy that
protects ring-stage parasites against artemisinin exposure (9, 10).
The artemisinin-treated ring stages of P. falciparum thereby enter
a temporary growth arrest (11, 12), wherein they survive drug
treatment, resuming normal growth once drug pressure is re-
moved (13-15).

Formulations involving liposomes and self-emulsifying drug
delivery systems enhance the efficacy of anti-infective agents, in-
cluding antimalarial drugs, such as artemisinins (16-19). A
Pheroid delivery system has been shown to increase the in vitro
antimalarial activities of azithromycin, mefloquine, and quinine
significantly (20, 21). Entrapment of artemisone in Pheroid vesi-
cles also has been shown to enhance blood artemisone concentra-
tions in mice (22) and primates (23). We investigated the effect of
a Pheroid formulation on the antimalarial activity of artemisone
and on dormancy in vitro. If this formulation prevents the induc-
tion of dormancy in vitro, it may circumvent recrudescences oc-
curring following artemisinin treatment.

Chloroquine diphosphate (CQ) and MQ (Sigma-Aldrich, St.
Louis, MO), atovaquone (ATQ) (GlaxoSmithKline, Middlesex,
United Kingdom), DHA, and AS (DK Pharma, Hanoi, Vietnam)
were used. Artemisone and its metabolite M1 were obtained from
the Hong Kong University of Science and Technology. The active
M1 metabolite is formed via dehydrogenation in the thiomorpho-
line-dioxide moiety of artemisone (5, 6). The artemisone-en-
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trapped Pheroid vesicles (AMS-Phe) were prepared by adding 30
mM artemisone to a pro-Pheroid formulation (i.e., oil phase only)
containing 4.9% polyethylene glycol 400 (PEG-400) instead of
20%, vitamin F ethyl ester, PEGylated ricinoleic acid (Kolliphor),
and a-tocopherol as previously described (23). This oil phase was
saturated with nitrous oxide. The Pheroid vesicles (microparticles
and nanoparticles) are spontaneously formed, entrapping the ar-
temisone when the aqueous RPMI 1640 (low para-aminobenzoic
acid/low folic acid [LPLF]) culture medium is added to the oil
phase. The AMS-Phe dilutions were prepared in hypoxanthine-
free RPMI 1640 (LPLF) complete medium containing 10% hu-
man plasma, followed by culture medium containing drug-free
pro-Pheroid concentration of 0.004% in each well. There was no
difference in in vitro antimalarial activity when artemisone was
prepared in the pro-Pheroid formulation and entrapped in
Pheroid vesicles (data not shown).

The activities of the drugs against a sensitive P. falciparum D6
line (from Sierra Leone) and five multidrug-resistant lines, W2
(from Indochina), 7G8 (from Brazil), and TM93-1088, TM91-
C235,and TM90-C2B (all from Thailand), were assessed using the
[*H]hypoxanthine growth inhibition assay (24). Briefly, the assays
(in 96-well plates) were initiated when the majority of parasites
(>90%) were at the early trophozoite (ring) stage. Parasite cul-
tures (100 pl/well) at 1% initial parasitemia and 2% hematocrit in
hypoxanthine-free RPMI 1640 (LPLF) medium were exposed
to 10 2-fold serial dilutions of the compounds for 48 h, with
[*H]hypoxanthine (0.2 wCi/well) added 24 h after the beginning
of the experiment. Three independent experiments were carried
out for each compound, with each assay performed in triplicate.
The mean 50% (IC5,) and 90% (IC,,) inhibitory concentrations
are presented in Table 1.
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TABLE 1 In vitro antimalarial activities of artemisone and standard drugs against six Plasmodium falciparum lines”

1Cs, (nM) for:

Drug D6 W2 7G8 TM93-C1088 TM91-C235 TM-C2B

AMS 1.0 £ 0.4 1.3 £0.5 0.8 = 0.1 0.7 £0.2 1.1 £0.5 1.1 £04
AMS-Phe 0.9 *£0.7 1.3*£1.0 1.0 = 0.4 0.8 £ 0.1 14 0.7 1.1 £ 0.6

M1 4.7 0.2 6.6 £ 04 2.6 £0.8 25*04 5.0+ 0.6 8.6 £8.2
DHA 1.7 204 22*0.8 1.3 0.2 1404 23*0.7 2.0 £0.7

CcQ 16 £2 195 = 70 84 + 18 360 * 38 70 = 12 95 + 23

MQ ND ND 54 * 1.7 16 £ 5.0 107 * 41 130 * 51

ATQ ND ND 3.1 09 18,830 £ 5,102 22+0.7 31,850 * 6,833
AS ND 3.0 1.6 1.5*+0.2 1.4 £ 0.1 29* 14 25*05

“ ND, not determined. W2 is chloroquine resistant, D6 is chloroquine sensitive, 7G8 is chloroquine resistant, TM90-C2B and TM93-C1088 are atovaquone and chloroquine
resistant, and TM91-C235 is chloroquine and mefloquine resistant. CQ, chloroquine; MQ, mefloquine; ATQ, atovaquone; AS, artesunate; DHA, dihydroartemisinin; M1,
metabolite of artemisone; AMS, artemisone; AMS-Phe, artemisone entrapped in Pheroid vesicles. Values represent the means = SD from three independent experiments carried
out in triplicate. There were no significant differences between AMS and AMS-Phe (P > 0.05) using Student’s unpaired ¢ test.

Artemisone had the lowest IC5s and was equally potent against
both the drug-sensitive and -resistant P. falciparum lines (Table
1). The range of ICss for artemisone was approximately 2-fold
lower than those of artesunate and dihydroartemisinin. This com-
pares with the 2.4-fold-greater antimalarial activity of artemisone
reported by Marfurt (25), but the difference was markedly less
than that established by Vivas and colleagues (26). The IC5,s for
chloroquine, mefloquine, and atovaquone were in good agree-
ment with previous results (12, 27-29). The artemisone metabo-
lite M1 was 3- to 8-fold less active than artemisone but still highly
potent, with ICs,s ranging from 2.5 to 8.6 nM, which compares
well with the value of 4.2 = 1.3 nM reported against the K1 strain
of P. falciparum (6). Artemisone entrapped in Pheroid vesicles was
no more active than artemisone in the six P. falciparum lines (P >
0.05) (Table 1).

In order to assess the effect of artemisone on dormancy, syn-
chronous cultures of the Plasmodium strain W2 (ring stages >
95%) with an initial parasitemia of 1% and hematocrit of 4% were
exposed to dihydroartemisinin (700 nM; ~200X IC,,) as de-
scribed by Teuscher et al. (9) and to mefloquine (4,230 nM;
~100X IC,,). Concentrations of artemisone, artemisone en-
trapped in the Pheroid vesicles, and metabolite M1 of 200, 400,
and 800 nM were evaluated. These concentrations cover the max-
imum plasma concentrations of artemisone and its metabolite
measured in healthy subjects (6). The exposure period for all
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drugs was 6 h. Control drug-free cultures were evaluated in par-
allel. After exposure for 6 h, the drugs were removed, medium was
changed, and each culture (10 ml) was divided into two equal
aliquots. When the parasites in the control culture had reached the
late trophozoite-schizont stage (~33 to 36 h), one set of cultures
was exposed to 5% D-sorbitol for 5 min to ensure removal of those
parasites that had not become dormant but continued to grow.
Thin and thick blood films were prepared daily from each culture,
stained with Giemsa stain, and examined by light microscopy to
determine the parasitemia. Two independent experiments were
performed. Culture medium was replaced, and fresh human
erythrocytes were added to cultures every 7 days.

The control parasites progressed from rings to trophozoites by
24 h, to schizonts by ~33 to 36 h, and after schizogony to rings
again by 40 h after commencing the experiment. Parasite growth
was arrested at the ring stage following a single 6-h exposure to
dihydroartemisinin, artemisone, artemisone entrapped in the
Pheroid vesicles, and metabolite M1. Morphologically abnormal
rings (rings that possessed smaller nuclei and condensed, rounded
cytoplasm compared to untreated parasites) and no trophozoites
were observed 48 h after commencement of the experiment (Fig.
1). Dormant rings were also seen and had blue-stained cyto-
plasm with red nuclei, as previously described (9, 12). Unlike
the artemisinin derivatives, exposure of rings to mefloquine
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FIG 1 Images of Plasmodium falciparum W2 control parasites and W2 parasites exposed to dihydroartemisinin (DHA), artemisone (AMS), artemisone
entrapped in Pheroid vesicles (AMS-Phe), artemisone metabolite M1, and mefloquine (MQ). T, time (h); No S, cultures not treated with sorbitol; S, cultures

treated with sorbitol on day 2.
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FIG 2 The effect of dihydroartemisinin (DHA), artemisone (AMS), artemisone entrapped in Pheroid vesicles (AMS-Phe), metabolite M1, and mefloquine (MQ)
against the Plasmodium falciparum W2 line without (a) or with (b) sorbitol treatment on day 2. Values represent the mean parasitemia * SD (%) from two

independent experiments.

arrested parasite development at the late ring to early tropho-
zoites stage (Fig. 1).

In dihydroartemisinin, artemisone, artemisone entrapped in
the Pheroid vesicles, and metabolite cultures that were not ex-
posed to sorbitol, growing parasites (trophozoites) were first de-
tected on day 3 after drug treatment and with a parasitemia of
approximately 1% by day 6 (Fig. 2). With sorbitol treatment that
selectively kills all late parasite stages, growing parasites were first
detected on day 5.0 = 1.4 (mean * standard deviation [SD]), and
the time to reach 1% parasitemia was 9.0 = 1.4 days. This delay in
recovery indicated that there was a small number of parasites that
were unaffected by the artemisinin derivatives. Artemisone and
M1 induced dormancy but not in a concentration-dependent
manner, since cultures treated with different concentrations of
these drugs reached 1% parasitemia within the same time period.
As with artemisone, M1, dihydroartemisinin, and artemisone en-
trapped in the Pheroid vesicles induced dormant parasites, result-
ing in parasite recovery. No growing parasites were observed in
the mefloquine-treated cultures during the 30-day follow-up pe-
riod. Although artemisone entrapped in Pheroid vesicles in-
creased in vivo drug concentrations in blood (22, 23), it is unlikely
that this Pheroid delivery system will prevent recrudescence.

In conclusion, although artemisone is the most active artemis-
inin derivative against P. falciparum in vitro, it induces dormant
ring-stage parasites, and if it is used alone, recrudescence can be
expected to occur. Artemisone either entrapped in Pheroid vesi-
cles or alone showed similar in vitro activities, and neither formu-
lation prevented the induction of dormancy in ring-stage para-
sites. The future of artemisone lies in the selection of a suitable
partner drug that can prevent the induction and/or recovery of
dormant parasites.
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