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Resistance to the antibacterial antifolate trimethoprim (TMP) is increasing in members of the family Enterobacteriaceae, driving
the design of next-generation antifolates effective against these Gram-negative pathogens. The propargyl-linked antifolates are
potent inhibitors of dihydrofolate reductases (DHFR) from several TMP-sensitive and -resistant species, including Klebsiella
pneumoniae. Recently, we have determined that these antifolates inhibit the growth of strains of K. pneumoniae, some with MIC
values of 1 �g/ml. In order to further the design of potent and selective antifolates against members of the Enterobacteriaceae,
we determined the first crystal structures of K. pneumoniae DHFR bound to two of the propargyl-linked antifolates. These struc-
tures highlight that interactions with Leu 28, Ile 50, Ile 94, and Leu 54 are necessary for potency; comparison with structures of
human DHFR bound to the same inhibitors reveal differences in residues (N64E, P61G, F31L, and V115I) and loop conforma-
tions (residues 49 to 53) that may be exploited for selectivity.

Infections caused by Gram-negative bacteria are a significant
health care burden yet are effectively treated with only a limited

number of antibacterial agents. The innate outer membrane of
Gram-negative bacteria that presents a natural barrier to the pen-
etration of many known antibiotics and acquired resistance in-
cluding efflux pumps, drug-modifying enzymes, and plasmid-ac-
quired gene duplication restricts the number of effective agents
and exacerbates the ability to treat these infections (1, 2). The
increasing prevalence and resistance create a pressing need for
new effective antibacterials that target Gram-negative bacteria.

Klebsiella pneumoniae and Escherichia coli, Gram-negative bac-
teria belonging to the Enterobacteriaceae family, are the most com-
mon causes of Gram-negative bacteremia (3, 4). Members of the
family Enterobacteriaceae typically cause infections of the urinary
tract as well as pneumonia, especially in immune-suppressed pa-
tients (3, 4), and are additionally a significant cause of blood-
stream infections (5). Resistance in Enterobacteriaceae infections
is a serious and expanding problem. Enterobacteriaceae can har-
bor plasmids encoding resistance to multiple antibiotics, in-
cluding fluoroquinolones, cephalosporins, and carbapenems
(6, 7). Often, K. pneumoniae exhibits an increased prevalence of
resistant strains (8–10) over E. coli. The therapeutic options for
highly resistant K. pneumoniae are extremely limited; colistin,
an older drug with significant toxicity, remains the therapy of
choice (2, 11).

Dihydrofolate reductase (DHFR), an essential enzyme for all
cells, has been a validated target since the development of metho-
trexate and trimethoprim in the 1950s (12–14). Despite the fact
that DHFR is a highly evolutionarily conserved enzyme across
both prokaryotic and eukaryotic organisms, there exist exploit-
able structural differences that allow for the creation of potent and
selective inhibitors of the bacterial enzymes. Trimethoprim-
sulfamethoxazole (TMP-SMX) (Bactrim) that selectively tar-
gets DHFR and dihydropteroate synthase, respectively, in both
Gram-positive and Gram-negative bacteria is the therapy of
choice for uncomplicated urinary tract infections (UTIs) (15).
However, resistance to TMP-SMX is increasing worldwide in

strains of Enterobacteriaceae and now reaches 14 to 30% (4, 16,
17). Resistance generally occurs through the acquisition of a
TMP-insensitive DHFR (18–20). A more broadly acting DHFR
inhibitor should be achievable by potently inhibiting both wild-
type and resistant forms of the enzyme.

We have been developing a series of propargyl-linked antifo-
lates (PLAs) that are potent inhibitors of DHFR from multiple
species. One of the strengths of this series is the flexibility and
versatility to target TMP-resistant species, regardless of whether
that resistance occurs natively (21–23) or via acquired mutations
(24, 25). We have achieved success in targeting both wild-type and
resistant forms of DHFR from the Gram-positive bacteria, Staph-
ylococcus aureus (25) and aim to apply those design principles to
the Gram-negative bacteria, Klebsiella pneumoniae. Excitingly,
several of the latest PLAs exhibit MIC values for K. pneumoniae
that are �1 �g/ml. With these compounds in hand, we deter-
mined the structure of the wild-type K. pneumoniae DHFR in
order to enable a structure-based approach to the design, synthe-
sis, and evaluation of a broadly effective PLA against K. pneu-
moniae. Comparisons with previously determined structures of
human DHFR bound to the same compounds (26) specifically
guide compound design for enhanced selectivity.

MATERIALS AND METHODS
Purification of Klebsiella pneumoniae DHFR. Gene synthesis and clon-
ing of K. pneumoniae DHFR (KpDHFR) into the pET41a(�) vector were
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carried out by GenScript resulting in a KpDHFR-HisTag pET41a(�) plas-
mid. As all experiments in this work use the histidine-tagged (HisTag)
protein, it will be referred to as KpDHFR. Escherichia coli BL21(DE3) cells
(Novagen) were transformed with the KpDHFR pET41a(�) plasmid. Ex-
pression was induced with 1 mM isopropyl-�-D-thiogalactopyranoside
(IPTG) at an optical density at 600 nm (OD600) of 0.8 to 1.0, followed by
growth for 6 h at 30°C. Cells were harvested and lysed using B-PER reagent
(Thermo Scientific) with 1 mM phenylmethylsulfonyl fluoride (PMSF)
and 100 U DNase. Soluble lysate was filtered with a 0.45-�m filter and
added to a nickel column (Ni-nitrilotriacetic acid [Ni-NTA] agarose; Qia-
gen) equilibrated with buffer (20 mM Tris [pH 8.0], 0.01 M dithiothreitol
[DTT], 10% [vol/vol] glycerol). KpDHFR was eluted by adding increasing
amounts of a buffer containing 20 mM Tris (pH 8.0), 200 mM KCl, 0.25 M
imidazole, 0.01 M DTT, and 10% (vol/vol) glycerol to the column. Frac-
tions containing KpDHFR were identified by SDS-PAGE, pooled, and
concentrated using a Centricon centrifugal filter unit (Millipore). The
protein sample was then added to an S200 column equilibrated with buf-
fer (20 mM Tris [pH 7.5], 1 mM DTT, 10% [vol/vol]) glycerol, 1 mM
PMSF). Aliquots of purified protein were flash frozen at a concentration
of 15 mg/ml with liquid nitrogen and stored at �80°C.

Propargyl-linked antifolates (PLAs) compound 1 (22), compound 2
(21), and compounds 3 to 5 (25) were synthesized and characterized as
previously reported.

Enzyme inhibition assay. Enzyme inhibition assays were performed
as previously described (26). Briefly, the assay measures the rate of
NADPH oxidation over time at 340 nm with limiting concentrations of
enzyme and excess concentrations of NADPH (100 �M) and dihydrofo-
late (DHF) (100 �M). The assay was carried out in buffer containing 20
mM N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES)
(pH 7.0), 50 mM KCl, 0.5 mM EDTA, 10 mM �-mercaptoethanol, and 1
mg/ml bovine serum albumin and performed at room temperature. In-
hibitors were incubated with the enzyme and NADPH for 5 min prior to
the addition of DHF before the reaction is monitored. Measurements
were repeated at least three times, with averaged 50% inhibitory concen-
trations (IC50s) reported along with standard deviations.

MICs. MICs were determined using the microdilution broth assay
based on Clinical and Laboratory Standards Institute (CLSI) conditions
and K. pneumoniae strain 10031 (ATCC). Specifically, an inoculum of 1 �
105 CFU/ml was incubated with compound in Isosensitest broth (Oxoid)
for 16 h at 37°C. Growth was monitored at A600 using the alamarBlue
assay; the MIC is defined as the lowest concentration of inhibitor to com-
pletely inhibit growth.

Crystallization. Pure KpDHFR (15 mg/ml), 1 mM NADPH, and 1
mM inhibitor (compound 3 or 4) were mixed and incubated on ice for 3 h
before being concentrated to 24 mg/ml. The KpDHFR/NADPH/
compound 4 crystals were grown by adding protein and reservoir solution
(100 mM cacodylate [pH 7.4], 150 mM sodium acetate, 25% [wt/vol]
polyethylene glycol 8000 [PEG 8000]) in a 1:2 ratio in a 10-�l sitting drop
over a 1,000-�l reservoir with an additional 1 mM (final concentration)
L-glutathione (Hampton Research) nonvolatile additive that was included
after mixing protein and reservoir. KpDHFR/NADPH/compound 3 crys-
tals were grown by adding protein and reservoir solution (100 mM caco-
dylate [pH 7.4], 125 mM sodium acetate, 25% [wt/vol] PEG 8000, 11 mM
calcium chloride) in a 1:2 ratio in a 10-�l sitting drop with an additional
11 mM (final concentration) betaine hydrochloride (Hampton Research)
nonvolatile additive. In both cases, crystals grew between 1 and 5 days at
4°C. The crystals were harvested at 4°C and transferred into increasing
amounts of ethylene glycol from 4 to 12% (vol/vol) with 2% (wt/vol)
sucrose. The crystals were then flash frozen in liquid nitrogen. The final
freezing solution for the KpDHFR/NADPH/compound 3 crystal con-
tained 8% (vol/vol) ethylene glycol and 2% (wt/vol) sucrose. Diffraction
data were collected at Brookhaven National Laboratory using the X4C
beamline. Processing of the KpDHFR/NADPH/compound 4 and
KpDHFR/NADPH/compound 3 data sets was performed with HKL2000

and Rigaku Structure Studio Process, respectively. Diffraction statistics
are listed in Table 2.

Structure determination. Both data sets were initially evaluated with
Xtriage in the Phenix-1.8.2-1309 (27) package. The Xiage software re-
vealed that the KpDHFR/NADPH/compound 3 crystal possesses a pseu-
domerohedral twin occupying approximately 44% of the data set and
following operations h, h-k, and h-l, the data were also observed to be
anisotropic. These two factors were taken into account during refinement
using Phenix. The default setting for determination of the Rfree data set
(10%) within Phenix was used; however, Phenix does not account for
twinning in Rfree calculations. Structures were determined using molecu-
lar replacement using Phaser within the Phenix package. The probe model
used for molecular replacement for the KpDHFR/NADPH/compound 4
structure was Escherichia coli dihydrofolate reductase (PDB identifier [ID]
or accession no. 1DDR [28]). The refined structure of KpDHFR/NADPH/
compound 4 was then used as the probe model in molecular replacement
attempts for the KpDHFR/NADPH/compound 3 structure. Prodrg (29)
was used to produce cif and pdb files for the inhibitors. The model was
refined using NCS and secondary structure restraints with the program,
Phenix. Coot (30) was used in the course of model building and density
interpretation. There is one molecule of KpDHFR bound to NADPH and
compound 4 per asymmetric unit in the KpDHFR/NADPH/compound 4
crystal and four molecules of KpDHFR bound to NADPH and compound
3 in the KpDHFR/NADPH/compound 3 crystal.

RESULTS
Propargyl-linked antifolates inhibit K. pneumoniae. For several
years, we have been optimizing the propargyl-linked antifolates to
inhibit the growth of Gram-positive bacteria by inhibiting the
DHFR enzymes from these bacteria (24, 25, 31, 32). Relatively
hydrophobic biphenyl PLAs (compounds 1 and 2) potently in-
hibit methicillin-resistant Staphylococcus aureus and Streptococcus
pyogenes, but they do not inhibit the growth of Gram-negative
species such as Klebsiella pneumoniae, despite apparent inhibition
of the K. pneumoniae DHFR enzyme (Table 1). For example, com-
pounds 1 and 2 have IC50s of 15 and 58 nM, respectively, but they
have MIC values of �50 �g/ml and 5 �g/ml, respectively (Table
1). However, as the compounds incorporated basic nitrogen at-
oms in the C-ring and increased polarity, several inhibited the
KpDHFR enzyme as well as the growth of K. pneumoniae with
MIC values of �1 �g/ml. For example, compounds 3 and 5 with a
pyridyl C-ring exhibit MIC values of 1.25 or 1.56 �g/ml, respec-
tively (Table 1). The cellular selectivity of compounds 3 to 5 re-
mains high, as they do not inhibit the growth of human cells at
concentrations less than 80 �M.

Novel structure of Klebsiella pneumoniae DHFR. In order to
further develop the potency and selectivity of the PLA series
against wild-type and resistant enzymes using a structure-based
approach, we determined the first structure of K. pneumoniae
DHFR bound to its cofactor NADPH and the PLA, compound 4.
The protein was cocrystallized with compound 4 and NADPH
using sitting drops incubated at 4°C; the crystals were then har-
vested and flash frozen for data collection. The crystal diffracted
to a maximum resolution of 1.76 Å (Table 2). The KpDHFR/
NADPH/compound 4 crystal belongs to space group P3121 and
possesses one molecule of the ternary complex within the asym-
metric unit. Similar to DHFR enzymes from other species, the
enzyme has an eight-stranded �-sheet flanked by four 	-helices
(Fig. 1a). As KpDHFR and DHFR from E. coli share 92% sequence
identity, the overall structures of the two enzymes are very similar.
The acidic active site residue Asp 27 of KpDHFR forms hydrogen
bonds with the nitrogen (N1) and 2-amino group in the pyrimi-
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dine ring (Fig. 1b; see Fig. S1a in the supplemental material). In
addition, the 4-amino group in the same ring forms a hydrogen
bond with the backbone carbonyl of Ile 94, and the 2-amino group
forms a water-mediated hydrogen bond with Thr 113. The 6-ethyl
substituent on the ring forms hydrophobic interactions with Leu
28, contributing to the anchoring capacity of this ring. Other in-
teractions important to the binding of compound 4 in the active
site include hydrophobic interactions between Ile 50 and the phe-
nyl B-ring and a weak hydrogen bonding interaction (3.5 Å) be-
tween Arg 52 and the nitrogen in the pyrimidine C-ring. Addi-
tional hydrophobic interactions between the propargyl linker and
Ile 50 as well as those between the pyrimidine ring and Leu 54 and
Phe 31 also increase inhibitor affinity.

Upon reviewing the symmetry mates of the crystal, however, it
is apparent that Asp 127 from a symmetry mate forms a hydrogen
bond with Arg 52, which likely perturbs the placement of this
residue. In fact, it may be possible that Arg 52 is closer to the

pyrimidyl nitrogen and thus capable of forming a stronger hydro-
gen bond than that observed in the current structure. In order to
gain a clearer view of the KpDHFR active site, a second crystal
structure with KpDHFR/NADPH/compound 3, belonging to a
different space group, P1, was determined (Table 2).

Structure of KpDHFR/NADPH/compound 3. The crystal
with KpDHFR/NADPH/compound 3 contains four molecules of
the ternary complex in the asymmetric unit. While the maximum
resolution of diffraction for this crystal was lower (2.7 Å as op-
posed to 1.76 Å) and the average B-factors for the overall protein
are higher, two of the four molecules (chains A and D) possess
active sites free of noncrystallography symmetry and symmetry
mate perturbations, permitting an unbiased view of the active site
residues. Also, it should be noted that the majority of the active site
residues have B-factors lower than the average for the protein.
Density for the diaminopyrimidine, propargyl linker, and C-ring
of the ligand was observed in the first electron density maps after

TABLE 1 Biological evaluation of propargyl-linked antifolates

Compound structure and no.a
IC50 KpDHFR
(nM)

IC50 HuDHFR
(nM)

MIC for K. pneumoniae
(�g/ml)

IC50 for human cells
(MCF-10) (�M)

15 750 �50 47

58 1,700 5 90

16 1,300 1.25 85

23 160 5 �500

108 330 1.56 217

a The compound numbers are shown in boldface type under the structures. The A, B, and C rings and positions are labeled in the structure for compound 1. Me, methyl.
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molecular replacement with the protein probe molecule and after
a simulated annealing omit map calculation, lending support for
the final placement of these groups (see Fig. S1b and S1d in the
supplemental material). As the density for the B-ring was lower,
interpretations of the ligand interactions are modulated with this
consideration.

The KpDHFR/NADPH/compound 3 structure shows that com-
pound 3 is anchored within the active site via the diaminopyrimidine
ring as previously described for KpDHFR/NADPH/compound 4
(Fig. 1c). As in the structure with compound 4, the 6-ethyl group in
the compound 3 molecule bound in chain D forms a hydrophobic
interaction with Leu 28. In chain A, this interaction is absent, but
the 2-amino group forms an additional hydrogen bond with Thr
113 (3.0 Å). While the anchoring hydrogen bonds in the pyrimi-
dine rings remain intact for the inhibitor in chains A and D, the
position of the pyrimidine ring in chain D is angled approximately
30° toward Ile 94 relative to that in chain A (see Fig. 1d for a
superposition of the two conformations). The dihedral angle, be-
ginning at the propargyl carbons at positions 2 and 3 and continu-
ing through the carbons at positions 1 and 2 on the phenyl group
(see notation in Table 1) differs in the two copies, resulting in the
B and C rings being shifted relative to each other (Fig. 1d). The
angular shift results in several stronger interactions between com-
pound 3 and the residues in chain A relative to those in chain D:
hydrophobic interactions between the propargyl methyl and Ile 94
(3.5 Å versus 4.1 Å) and Thr 46 (3.4 Å as opposed to 3.9 Å) as well
as apparent hydrophobic interactions between the methoxy group
on the B-ring with Met 42. Both conformations of compound 3
have notable hydrophobic interactions with Phe 31 and Leu 28.

The approximate binding energies of the two conforma-
tions of compound 3 were calculated using Flexidock (Flexi-
dock within Sybyl-X 1.2; Tripos International, St. Louis, MO,

USA). Overall, there appears to be an increase of �24% in
binding affinity for the inhibitor orientation in chain A com-
pared with that in chain D. The binding energy of compound 4
and that of compound 3 calculated from the orientation in
chain A are essentially the same.

A comparison of the structures of KpDHFR/NADPH/
compound 4 and chains A and D from KpDHFR/NADPH/com-
pound 3 reveals some of the dynamics within the active site. In
particular, the loop comprised of residues 49 to 53 appears to be
flexible with distances of up to 1.1 Å between respective Ile 50 C	
atoms (Fig. 2c with human DHFR [HuDHFR]; see Fig. S2 in the
supplemental material).

Comparison of HuDHFR and KpDHFR structures. We pre-
viously reported structures of human DHFR bound to NADPH
and compounds 3 and 4 (26), promoting a direct comparison of
residues in the active sites that may be exploited for selectivity
designs. There are clearly a number of amino acid residue varia-
tions between the two species: Asn 64 (HuDHFR) to Arg 52
(KpDHFR), Pro 61 (HuDHFR) to Gly 51 (KpDHFR), Phe 31
(HuDHFR) to Leu 28 (KpDHFR), and Val 115 (HuDHFR) to Ile
94 (KpDHFR) (Fig. 2a and b). Additionally, the flexible loop
noted above (residues 49 to 53 in KpDHFR and residues 58 to 64
in HuDHFR), roughly corresponding to helix C (33), shows even
greater conformational change when these structures are com-
pared. For example, the distance between KpDHFR Gly 51 (chain
A of the KpDHFR/NADPH/compound 3 structure) and the cor-
responding residue in HuDHFR, Pro 61, is 4.8 Å (Fig. 2c). A
comparison of the solvent-accessible surface areas of HuDHFR
and KpDHFR, generated from both DoGSiteScorer (http:
//dogsite.zbh.uni-hamburg.de/index.html) and the Sybyl
docking suite (Flexidock) suggest that the KpDHFR and hu-
man DHFR active sites occupy the same general region of the

TABLE 2 Diffraction data and refinement statistics

Parametera

Value(s) for the following:

KpDHFR/NADPH/compound 4 KpDHFR/NADPH/compound 3

PDB ID or accession no. 4OR7 4OSG
Space group P3221 P1
No. of monomers in asymmetric unit 1 4

Unit cell
a, b, c (Å) 61.161, 61.161, 105.426 36.12, 74.21, 82.53
	, �, 
 (°) 90, 90, 120 67.94, 77.70, 75.92

Resolution (range) (Å) 37.4–1.76 (1.81–1.76) 39.3–2.7 (2.77–2.70)
Completeness (%) (last shell) 99.99 (100) 94.18 (94.96)
No. of unique reflections 25,725 (2,538) 19,765 (2,017)
Redundancy 8.2 (8.3) 1.67 (1.66)
Rsym (last shell) 0.072 (0.430) 0.049 (0.331)
�I/�� (last shell) 13.3 (1.6) 13.4 (2.1)
R-factor/Rfree 0.2103/0.2504 0.2390/0.2483
No. of atoms (protein, ligands, solvent) 1,407, 73, 233 5,056, 330, 13
RMS deviation bond lengths (Å), angles (°) 0.013, 2.13 0.013, 2.22
Avg B-factor for protein (Å2) 17.6 86.9
Avg B-factor for ligand (Å2) 18.8 93.1
Avg B-factor for solvent molecules (Å2) 29.8 62.6
Residues in most favored regions (%) 91.7 90.8
Residues in additional allowed regions (%) 8.3 9.2
Residues in generously allowed regions (%) 0 0
Residues in disallowed regions (%) 0 0
a RMS, root mean square.
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protein but utilize two slightly different “pockets” of the site
(Fig. 2d).

The inhibitor compound 4 binds KpDHFR selectively by 14.3-
fold compared with HuDHFR. While the pyrimidine ring is
shifted by 1 Å in the two structures, the largest difference is that the
inhibitor binds in an opposite orientation within the HuDHFR
binding site relative to that in the KpDHFR site with differences
in dihedral angles as previously defined (see Fig. S3 in the sup-
plemental material for detail): 81° (HuDHFR) and �125°
(KpDHFR). The B-ring and C-ring are oriented in different direc-
tions within the active sites with the B-ring of compound 4 within
KpDHFR pointed toward Ser 49 and Ile 50, while that in HuDHFR
is oriented toward Leu 67 and Ile 60. The C-ring of compound
4 within KpDHFR is oriented toward Leu 28, while that in
HuDHFR is oriented toward Ile 60/Pro 61 and Asn 64 (Fig. 2a).
The resulting effect is that one of the nitrogen atoms in the pyrim-
idine ring of compound 4 approaches Arg 52 to form a very weak
hydrogen bond (3.5 Å) while it is too far from the corresponding
residue, Asn 64 in HuDHFR (4.6 Å). The 6-ethyl group forms
hydrophobic interactions with Leu 28 (3.7 Å) in KpDHFR, but the

same group is 4.4 Å away from Phe 31 in HuDHFR. Additionally,
there are weaker interactions between the B-ring and Ile 60/Leu 67
in human DHFR relative to those in KpDHFR with Ile 50/Leu 54.

Comparing the interactions of compound 3 between HuDHFR
and KpDHFR explains the greater potency (7-fold) of the ligand
for KpDHFR. The orientation of compound 3 in chain A of Kp-
DHFR enables the propargylic methyl group to form van der
Waals interactions with Ile 94, which is not possible with the anal-
ogous residue (Val 115) in HuDHFR. Additionally, there are
greater van der Waals interactions with Phe 31, Ile 50, and Leu 54
in KpDHFR relative to the analogous residues in HuDHFR
(Fig. 2a).

DISCUSSION

The increase in resistance to currently available therapies for K.
pneumoniae infections makes the development of new antibiotics
critical. Over the past several years, strains of K. pneumoniae resis-
tant to the clinically used antifolate trimethoprim have arisen;
these strains predominantly carry a plasmid-encoded copy of re-
sistant DHFR. We have been developing the propargyl-linked an-

FIG 1 K. pneumoniae DHFR bound to NADPH and propargyl-linked antifolates. (a) View of the overall structure of the sole protein chain in the KpDHFR/
NADPH/compound 4 structure (NADPH in gray, compound 4 in magenta). (b) Active site of KpDHFR bound to NADPH (gray) and compound 4 (magenta).
(c) Active site from chain A of the KpDHFR/NADPH/compound 3 structure (compound 3 in cyan). (d) Overlay of the active sites of chains A (cyan) and D (dark
blue) in the KpDHFR/NADPH/compound 3 structure.
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tifolates (PLAs) to be potent and selective inhibitors of wild-type
and trimethoprim-resistant species of DHFR (23, 24, 34). Here,
we show that the PLAs inhibit DHFR from K. pneumoniae and
inhibit the growth of K. pneumoniae. In an effort to elucidate the
basis of potency and selectivity evident in these initial compounds
and to enrich future design, we determined two crystal structures
bound to two PLAs in the KpDHFR active site. These structures
may be used to understand the interactions of the ligands with the
protein and to form the foundation for the design of inhibitors
active against both wild-type and TMP-resistant forms of the en-
zyme.

The two structures of KpDHFR bound to NADPH and two
PLAs; compounds 4 and 3 reveal several features critical for po-
tency. In addition to the anchoring hydrogen bonds of the di-
aminopyrimidine ring, there are key hydrophobic interactions be-
tween the 6-ethyl position on the pyrimidine and Leu 28. The
propargyl linker forms hydrophobic interactions with Ile 50, and
the propargylic methyl substituent interacts with Ile 94 and Thr

46. The B-ring interacts with Ile 50 and Met 42, and the C-ring
interacts with Leu 54 and Phe 31. The structures also reveal that
loop residues 49 to 53 are quite flexible; this observation has been
noted previously in molecular dynamics studies of other species of
DHFR (35).

Selectivity over the human form of the enzyme is important
for achieving low toxicity. A comparison of the structures of
KpDHFR and human DHFR bound to the same ligands shows
that there are a number of residue substitutions (N64E, P61G,
F31L, and V115I) that provide excellent potential sites for garner-
ing selectivity. For example, a hydrogen bond donor could be
placed on the C-ring to form a selective interaction with KpDHFR
Arg 52 (Asn 64 in HuDHFR), or a hydrophilic group could be
added to the B-ring to interfere with the human Pro 61 residue
without disrupting KpDHFR interactions. Additionally, flexibility
in loop residues 49 to 53 may allow an alternate conformation of
compound 4 in the active site of KpDHFR relative to human
DHFR. The selection of such an alternate binding conformation

FIG 2 Comparison of KpDHFR and human DHFR reveals residue changes and flexibility. (a) Comparison of the sole protein chain in the KpDHFR/NADPH/
compound 4 structure (protein shown in purple and compound 4 in magenta) with chain A from the human DHFR/NADPH/compound 4 structure (both
protein and ligand in salmon) with residue changes noted. (b) Comparison of chain A in the KpDHFR/NADPH/compound 3 structure (both shown in green)
and chain A of the human DHFR/NADPH/compound 3 structure (shown in pink). (c) Residues in loop 49 to 53 (KpDHFR numbering) show flexibility in several
KpDHFR structures (cyan, blue, and purple) as well as human DHFR structure (pink). Compound 4 is shown for reference. (d) The solvent-accessible surface
areas of the KpDHFR (bright pink) active site taken from chain A from KpDHFR/NADPH/compound 3 and human DHFR (chain A from HuDHFR/NADPH/
compound 3) active site (darker purple) show two lobes.
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of a ligand yields new opportunities for selective interactions. In
summary, the critical points for selectivity appear to involve in-
teractions between the 6-ethyl pyrimidyl group and Leu 28, the
B-ring with Ile 50 and Leu 54, and the propargylic methyl group
with Ile 94.

The expansion of antibacterial activity of the propargyl-linked
antifolates into the Gram-negative pathogen K. pneumoniae pres-
ents an exciting opportunity to develop new compounds against
wild-type and resistant bacterial strains. The high-resolution crys-
tal structures presented here will guide the design of this class and
potentially other antifolates toward the development of effica-
cious antibiotics.
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