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Introduction

The literature on power and sample size calculations for interaction has focused on the 

multiplicative scale (Lubin and Gail, 1990; Hwang et al., 1994; Foppa and Spiegelman, 

1997; Yang et al., 1999; Garcia-Closas and Lubin, 1999; Qiu et al., 2000; Luan et al. 2001; 

Gauderman, 2002a b; Sturmer, 2002; Wang et al., 2003; Wang and Zhao, 2003; Demidenko, 

2008; VanderWeele, 2011). However, interaction on the additive scale is more relevant for 

public health purposes (Rothman et al.,1980; Rothman et al., 2008) and is also more closely 

related to notions of mechanistic synergism within the sufficient cause framework 

(Rothman, 1976; VanderWeele and Robins, 2007, 2008; Rothman et al., 2008). Arguably, 

the reason interaction is most frequently assessed on the multiplicative scale is that this is 

what is most easily computed from the output of standard logistic regression software. In 

addition, in the context of case-control studies, odds ratios can be estimated but risk 

differences cannot, unless additional information concerning e.g. the prevalence of the 

outcome or exposures in the underlying population is available (Rothman et al., 2008). This 

again leads to the multiplicative scale as being the default for assessing interaction. That 

power and sample size calculations are better developed for multiplicative interaction than 

for additive interaction perhaps further encourages the use of the multiplicative scale for 

interaction assessment. However, measures of additive interaction based on risk ratios or 

odds ratios using the relative excess risk due to interaction (“RERI”; Rothman, 1986) can 

easily be calculated from logistic regression with either cohort or case-control data (Hosmer 

and Lemeshow, 1992) and in this paper we will derive power and sample size formulae for 

interaction on the additive scale. Power and sample size calculations for additive interaction 

were discussed in Greenland (1983, 1985) but no closed form expressions were provided.

In this paper, we will consider measures of additive interaction based on absolute risks and 

also on the relative excess risk due to interaction for both cohort and case-control data and 

we will provide closed form analytic expressions for power and sample size in each of these 

cases. Analytically, we will for the most part follow the development of Demidenko (2008) 

who considered multiplicative interaction but we will be taking a similar approach for the 

additive scale. We will see that when main effects of both exposures are positive, power to 

detect positive interaction on the additive scale will be greater than that on the multiplicative 

scale, providing yet another reason, beyond public health relevance and relation to 

mechanistic synergism, for using the additive scale to assess interaction. The reader who is 
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interested in only the application of the power and sample size formulae derived in this 

paper is referred to Appendix 2 at the end of the paper on epidemiologic practice. This 

appendix gives instructions on using Excel spreadsheets (included as an online supplement 

to this paper) to automatically carry out power and sample size calculations for additive and 

multiplicative interaction for cohort, case-control and case-only data.

Notation and Definitions

We will suppose we have a binary outcome Y and two binary exposures G and E. Although 

G and E might represent genetic and environmental exposures, respectively, nothing in the 

development will require this. They might be two environmental exposures, or two genetic 

exposures, or behavior exposures, etc. Let pge = P(Y = 1|G = g, E = e) and let πge = P(G = g, 

E = e). The measure of interaction on the additive scale using risks is then

This can be re-expressed as (p11 − p00) − {(p10 − p00) + (p01 − p00)} and measures the extent 

to which the effect of both exposures combined exceeds (or is less than) the sum of the 

effects of each exposure considered separately. If p11 − p10 − p01 + p00 > 0, the interaction is 

said to be positive or “superadditive”. If p11 − p10 − p01 + p00 < 0, the interaction is said to 

be negative or “subadditive”. If p11 − p10 − p01 + p00 = 0, there is said to be no interaction 

on the additive scale. This measure of additive interaction corresponds to the coefficient of 

the product term for the two exposure in a linear risk model for the outcome.

In many studies, analyses are presented using risk ratios or odds ratios rather than absolute 

risks. Define the risk ratio as  and the odds ratio as 

. The measure of 

multiplicative interaction used on the risk ratio or odds ratio scale is then generally taken as 

 or  respectively. These measures of multiplicative 

interaction correspond to the exponentiated coefficients of the product term for the two 

exposures in log-linear and logistic regression models for the outcome respectively.

Suppose now we were to divide our measure of additive interaction based on risks, p11 − p10 

− p01 + p00, by the baseline risk p00. We would then obtain what is sometimes referred to as 

the relative excess risk due to interaction or RERI (Rothman, 1986):

This measure RERI will be greater than 0 (or respectively less than 0) if and only if the 

measure of additive interaction using absolute risks, p11 − p10 − p01 + p00, is greater than 0 

(or less than 0 respectively). The relative excess risk due to interaction can thus be used to 

assess additive interaction using data on relative risks. When the probability of the outcome 
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is rare in all exposure strata then odds ratios will approximate risk ratios i.e. 

 and thus we can approximate RERI by

This final measure, RERIOR = OR11 − OR10 − OR01 + 1, is advantageous because it is an 

approximate measure of additive interaction and yet can also be obtained directly from 

logistic regression analyses and from case-control data. We will, however, first begin with 

additive interaction on the absolute risk scale using cohort data.

Additive Interaction in Cohort Studies Using A Linear Risk Model

Suppose data were available from a cohort study and we were to use a linear risk model to 

measure additive interaction:

(1)

In this model θ3 = p11 − p10 − p01 + p00 is our measure of additive interaction. Suppose we 

plan to fit this model to the cohort data using maximum likelihood and use a Wald test for 

the null hypothesis θ3 = 0. Once we have fit the model and obtained an estimate θ̂
3 of θ3 

from the data, the Wald test statistic for the null hypothesis θ3 = 0 is given by θ̂3/V̂ where V̂ 

is the estimated variance of θ̂3. We would reject the null at significance level α if |θ̂3/V̂| > 

Z1 − α/2 where Z1 − α/2 is the (1 − α/2)th quantile of the standard normal distribution. 

Suppose we wish to calculate the sample size required to reject the null hypothesis with 

significance level α and power β if the magnitude of the interaction were θ3 = η.

By standard sample size arguments, the sample size required to detect an additive interaction 

of magnitude θ3 = η with significance level α and power β is

where Z1 − α/2 and Zβ are the (1 − α/2)th and βth quantiles respectively of the standard 

normal distribution and where V is the variance of θ̂
3 under the alternative that θ3 = η. The 

difficulty lies in calculating the variance V. In Appendix 1, we show that the variance V is 

given by

where
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Thus to calculate the sample size we would need to specify (i) the significance level α, the 

power β, and the magnitude of additive interaction θ3 = η; (ii) the proportion of subjects in 

each exposure stratum, π00, π10, π01, π11; and (iii) the main effect of the two exposures on 

the additive scale θ1 and θ2 and the baseline risk of the doubly unexposed group θ0 = P(Y = 

1|G = 0, E = 0).

Instead of specifying the proportion of subjects in each joint exposure stratum π00, π10, π01, 

π11, we could instead specify the marginal probability of each exposure πg = P(G = 1) and 

πe = P(E = 1) along with the odds ratio relating G and E, Δ = {P(G = 1|E = 1)/P(G = 0|E = 

1}/{P(G = 1|E = 0)/P(G = 0|E = 0}. The probabilities π00, π10, π01, π11 are then given by 

(Demidenko, 2008):

(2)

where

If G and E are independent then Δ = 1 and C simplifies to C = πe/(1 − πe).

If instead of calculating the required sample size for a fixed power β, we wanted to calculate 

the power for a given sample size using the Wald test for the null hypothesis θ3 = 0 based on 

model (1) we could proceed as follows. For a fixed sample size n the power to reject the null 

θ3 = 0 at significance level α under the alternative that θ3 = η is given by

where Φ−1 is the inverse cumulative distribution function for a standard normal random 

variable and where V can be calculated as above. In Appendix 2 we describe how to use a 

simple Excel spreadsheet (included with this paper as an online supplement) to carry out 

such sample size and power calculations automatically. The online supplement also provides 

Excel spreadsheets for the sample size and power calculations for additive interaction using 
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relative excess risk due to interaction from logistic regression with cohort or case-control 

data described in the following sections. The use of these Excel spreadsheets is described in 

detail in Appendix 2. Finally, it should be noted that if the null hypothesis were rejected for 

extreme values of θ3 on either side of zero (two-sided test) then the relevant power formula 

would be:

Before moving on, we give a brief example of the use of these formulae for additive 

interaction.

Example 1

Suppose we wish to calculate the power of a test at significance level α = 0.05, with n = 

4000, with the prevalence of the genetic and environmental factors being πg = 0.5 and πe = 

0.3 respectively and assuming these are independent so that Δ = 1, with the probability of 

the outcome in the reference category of θ0 = P(Y = 1|G = 0, E = 0) = 0.02, with main effects 

on the risk difference scale of θ1 = 0.01 and θ2 = 0.01 and with additive interaction θ3 = 

0.02. We can use the equations in (2) to calculate π00 = 0.35, π10 = 0.35, π01 = 0.15, π11 = 

0.15 and from this we can calculate L′, F′, J′, R′ and the variance V and the power 

 to obtain 0.32.

Additive Interaction in Cohort Studies Using Logistic Regression and RERI

In this section we consider power and sample size calculations for measures of interaction 

based on RERIOR obtained from logistic regression using cohort data. We will first review 

the power and sample size calculations for multiplicative interaction from logistic regression 

using cohort data given by Demidenko (2008) since the variance calculation of Demidenko 

will underlie those given here for additive interaction using the relative excess risk due to 

interaction.

Suppose we fit a logistic regression model to cohort data:

(3)

The coefficient γ3 is generally referred to as a measure of interaction of the multiplicative 

scale. The exponentiated coefficient is equal to the odds ratio multiplicative interaction ratio 

. Suppose we wish to use a Wald test for the null hypothesis γ3 = 0. 

The sample size required to detect a multiplicative interaction of magnitude γ3 = η with 

significance level α and power β is
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where Z1 − α/2 and Zβ are the (1 − α/2)th and βth quantiles respectively of the standard 

normal distribution and where Vmult(OR) is the variance of γ̂
3 under the alternative that θ3 = 

η. Demidenko (2008) derives the variance matrix for the maximum likelihood estimator of 

(γ0, γ1, γ2, γ3), given in Appendix 1, and specifically shows that

where

(4)

Once again, to calculate the sample size we would need to specify (i) the significance level 

α, the power β, and the magnitude of additive interaction γ3 = η; (ii) the proportion of 

subjects in each exposure stratum, π00, π10, π01, π11; and (iii) the main effect odds ratios of 

the two exposures on the logistic scale, γ1 and γ2, and the log odds of the baseline risk of the 

doubly unexposed group γ0 = log{P(Y = 1|G = 0, E = 0)/P(Y = 0|G = 0, E = 0)}. Once again, 

if instead of specifying the joint probabilities π00, π10, π01, π11, we specified the marginal 

probabilities of each exposure πg = P(G = 1) and πe = P(E = 1) and the odds ratio relating G 

and E, Δ = {P(G = 1|E = 1)/P(G = 0|E = 1}/{P(G = 1|E = 0)/P(G = 0|E = 0} then we could 

obtain the π00, π10, π01, π11 using the formulae in (2). And once again, if instead of 

calculating the required sample size for a given power, we wanted to calculate the power for 

a given sample size we could use .1

1Demidenko (2008) also noted that a number of previous authors (Hwang et al., 1994; Foppa and Spiegelman, 1997) who had 
considered sample size and power calculations for interaction in logistic regression had relied on a different formula for their sample 
size calculations. These other authors had assumed that for the test statistic, the variance of γ̂3 had been calculated under the null 
hypothesis of no interaction. When the variance for the test statistic is calculated under the null of no interaction then the required 

sample size is given by  rather than by  where V0 is the 
variance of γ̂3 calculated under the null that γ3 = 0. Demidenko (2008) points out that although the sample size calculations of Hwang 
et al. (1994) and Foppa and Spiegelman (1997) would be fine if, for γ̂3, the variance were indeed calculated under the null, in practice, 
the variance of γ̂3 is almost always calculated under the alternative; it is the variance under the alternative that is generally given as 
the default in standard logistic regression output. Thus, the sample size calculations of Hwang et al. (1994) and Foppa and Spiegelman 
(1997), although not technically incorrect, do not correspond to the test statistics that are generally used in practice. A similar point 
and criticism was made by Garcia-Closas and Lubin (1999) some years earlier. Both Garcia-Closas and Lubin (1999) and Demidenko 
(2008) note that when interactions are large, the sample size calculations using the “null-variance” can underestimate the required 
sample size if the test statistic with the variance under the alternative is in fact used. Likewise a similar point pertains to the sample 
size and power calculations of Yang et al. (1997) for multiplicative interaction in case-only studies (cf. VanderWeele, 2011).
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Example 2

Suppose we wish to calculate the power of a test at significance level α = 0.05, with n = 

5000, with the joint prevalence of the genetic and environmental factors being π00 = 0.35, 

π10 = 0.20, π01 = 0.20, π11 = 0.25 respectively, with the probability of the outcome in the 

reference category of P(Y = 1|G = 0, E = 0) = 0.015, with main effects on the odds ratio 

scale of eγ1 = 1.3 and eγ2 = 1.4 and with odds ratio multiplicative interaction eγ3 = 1.6. We 

can calculate L, F, J, R from these values and the variance Vmult(OR) to obtain 

.

We will now use the variance matrix calculations of Demidenko (2008) to derive sample 

size and power formulae for the relative excess risk due to interaction (RERI). The RERI 

from logistic regression model (3) is given by:

Suppose we wish to use a Wald test for the null hypothesis RERIOR = 0. The sample size 

required to detect a RERIOR of magnitude η = eγ1+γ2+γ3 − eγ1 − eγ2+ 1 with significance 

level α and power β is

where Z1 − α/2 and Zβ are the (1 − α/2)th and βth quantiles respectively of the standard 

normal distribution and where VRERI(OR) is the variance of RERIOR = eγ̂1+γ̂2+γ̂3 − eγ̂1 − eγ̂2 + 

1 under the alternative. Using the delta method, we show in Appendix 1 that this variance is 

given by:

where L, F, J, R are given as in equation (4) above.

To calculate the sample size to reject the null of no additive interaction using RERIOR, we 

would need to specify (i) the significance level α, the power β; (ii) the proportion of subjects 

in each exposure stratum, π00, π10, π01, π11; and (iii) the main effect odds ratios of the two 

exposures on the logistic scale, γ1 and γ2, the log odds of the baseline risk of the doubly 

unexposed group γ0 = log{P(Y = 1|G = 0, E = 0)/P(Y = 0|G = 0, E = 0)}, and the magnitude 

of the interaction on the multiplicative scale γ3. Instead of specifying the magnitude of the 

interaction on the multiplicative scale, γ3, one could specify the magnitude of RERIOR under 

the alternative RERIOR = η and then back-calculate the magnitude of γ3 = log(η + eγ1 − eγ2 − 

1) − γ1 − γ2.
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And once again, if instead of specifying the joint probabilities π00, π10, π01, π11, we 

specified the marginal probabilities of each exposure πg = P(G = 1) and πe = P(E = 1) and 

the odds ratio relating G and E, Δ = {P(G = 1|E = 1)/P(G = 0|E = 1}/{P(G = 1|E = 0)/P(G = 

0|E = 0} then we could obtain π00, π10, π01, π11 using the formulae in (2). And once again, 

if instead of calculating the required sample size for a given power, we wanted to calculate 

the power for a given sample size we could use .

Example 3

Suppose again we wish to calculate the power of a test at significance level α = 0.05, with n 

= 5000, with the joint prevalence of the genetic and environmental factors being π00 = 0.35, 

π10 = 0.20, π01 = 0.20, π11 = 0.25 respectively, with the probability of the outcome in the 

reference category of P(Y = 1|G = 0, E = 0) = 0.015, with main effects on the odds ratio 

scale of eγ1 = 1.3 and eγ2 = 1.4 and with odds ratio multiplicative interaction eγ3 = 1.6 as in 

Example 2, but that we now wish to calculate the power for testing RERIOR > 0. Here the 

true RERIOR is η = eγ1+γ2+γ3 − eγ1 − eγ2 + 1 = (1.3)(1.4)(1.6) − (1.3) − (1.4) + 1 = 1.212 > 0. 

From L, F, J, R we can calculate the variance VRERI(OR) to obtain 

. In this example, the power to detect 

additive interaction, 0.482, is greater than that to detect multiplicative interaction, 0.216.

The reader is reminded that the tests for additive interaction using RERIOR hold only 

approximately to the extent that the outcome is rare so that RERIOR approximates RERI on 

the risk ratio scale. In Appendix 1 we also derive sample size and power formulae for the 

multiplicative interaction from a log-linear model and for additive interaction using RERI 

estimated from a log-linear model. However, if the measure of additive interaction is fit with 

cohort data, it may be preferable to fit model (1) directly for additive interaction using 

absolute risks rather than employing RERI.

Additive Interaction in Case-Control Studies Using Logistic Regression and 

RERI

Suppose instead we fit a logistic regression model to case-control data:

The sample size required to detect a RERIOR of magnitude η = eγ1+γ2+γ3 − eγ1 − eγ2 + 1 with 

significance level α and power β is

where
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with

and where  are now the proportions of subjects in each joint exposure 

stratum in the case-control sample.

If we know the overall outcome prevalence in the underlying population, P(Y = 1), we could 

also obtain the proportions  from the proportions of subjects in each joint 

exposure stratum in the underlying population, π00, π10, π01, π11, though doing so requires 

solving a non-linear equation numerically (Demidenko, 2008). Alternatively, if the outcome 

is rare we can obtain  from π00, π10, π01, π11 approximately using the 

following formulas (see Appendix 1 for proof):

where P*(Y = 0) is the proportion of controls in the case-control sample and P*(Y = 1) is the 

proportion of cases in the case-control sample. If we instead specify the marginal 

probabilities of each exposure πg = P(G = 1) and πe = P(E = 1) and the odds ratio, Δ, 

relating G and E, in the underlying population then we can calculate π00, π10, π01, π11 using 

the formulae in (2).

Thus, to calculate the sample size to reject the null of no additive interaction using RERIOR 

from case-control data we would need to specify (i) the significance level α, the power β; (ii) 

the proportion of subjects in each exposure stratum,  in the case-control 

sample, or alternatively these proportions π00, π10, π01, π11 or the marginal probabilities and 

marginal odds ratio, πg, πe, Δ, n the underlying population along with a rare outcome 

assumption and the proportions of cases P*(Y = 1) in the case-control sample, and finally 

(iii) the main effect odds ratios of the two exposures on the logistic scale, γ1 and γ2, the log 

odds of the baseline probability of the outcome in the doubly unexposed group γ0 = 

log{P*(Y = 1|G = 0, E = 0)/P*(Y = 1|G = 0, E = 0)} in the case-control sample, and the 

magnitude of the interaction on the multiplicative scale γ3 (or instead the magnitude of 

RERIOR = η and then back-calculate the magnitude of γ3 = log(η + eγ1 − eγ2 − 1) − γ1 − γ2. 
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Note that if the joint or marginal exposure probabilities are specified separately for the cases 

and controls then under an assumption of a rare outcome, the distribution of the exposures 

amongst the controls could be used as an approximation to π00, π10, π01, π11 or πg, πe, Δ.

Note also that with case control data, γ0 = log{P*(Y = 1|G = 0, E = 0)/P*(Y = 0|G = 0, E = 

0)} is the log odds of baseline probability of the outcome in doubly unexposed group in the 

case-control sample i.e. the log the number of cases to controls in the study for the doubly 

unexposed group. It is shown in the Appendix that under a rare outcome assumption γ0 can 

be approximated as γ0 ≈ log it[1/{1+(π00+π10eγ1 + π01eγ2 + π11eγ1+γ2+γ3)P*(Y = 0)/P*(Y = 

1)}].

Example 4

Suppose we wish to calculate the same size required for a test at significance level α = 0.05, 

with power β = 0.80, with the joint prevalence of the genetic and environmental factors 

being πg = 0.5, πe = 0.3 respectively in the underlying population with the factors being 

independent in the underlying population so that Δ = 1. Suppose that the number of cases 

and controls in the study were going to be equal P*(Y = 1) = P*(Y = 0) = 0.5, with main 

effects on the odds ratio scale of eγ1 = 1.1 and eγ2 = 1.1 and with multiplicative interaction 

eγ3 = 1.5. We can calculate that the sample size then required to detect positive 

multiplicative interaction would be n = 3447. We can also calculate that sample size 

required to detect positive interaction using RERIOR would be n = 2212.

It should also be noted that when multiplicative interaction is of interest and the genetic and 

environmental factors are independent of one another in the underlying population, a “case-

only” estimator of multiplicative interaction will have greater power to detect multiplicative 

interaction as it exploits the independence assumption (Piegorsch et al., 1994; Yang et al., 

1999). Power and sample size calculations for case-only estimators have been considered 

elsewhere (Yang et al., 1999; VanderWeele, 2011). Although these case-only estimators can 

be quite powerful, they are also fairly sensitive to the assumption that the two exposures are 

independent in the population and can result in considerable bias if this assumption does not 

hold (Albert et al., 2001).

A Power Comparison of Additive and Multiplicative Interaction

VanderWeele (2009a) noted that in a log-linear model with non-negative main effects, 

whenever positive multiplicative interaction is present on the risk ratio scale, positive 

additive interaction on the risk difference scale will be present as well; the reverse 

implication does not hold. Here we will explore power to detect such additive or 

multiplicative interaction and we will consider the odds ratio scale rather than the risk ratio 

scale. In this power comparison we will assume a case-control study with a rare outcome so 

that RERIOR approximates a measure of additive interaction. Table 1 below reports power 

for a number of scenarios with varying sample sizes, main effect odds ratios and 

multiplicative interaction parameters on the odds ratio scale .
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In these examples it is assumed that the proportion of case and controls in the case-control 

sample are equal and that the prevalence of the genetic and environmental factors are each 

πg = πe = 0.5 with the odds ratio relating these factors being Δ = 1.1. Note that in all 

scenarios considered there is positive interaction on both additive and multiplicative scales. 

Power for one-sided test (rejecting only for positive interaction) is reported.

We see that for the scenarios considered here with non-negative main effects and positive 

interaction, power is greater to detect additive interaction than multiplicative interaction. 

However, as noted in Greenland (1983), when outcome probabilities are additive or sub-

additive, power to detect a (negative) multiplicative interaction will often be greater.

Power and Sample Size Calculations for Sufficient Cause Interactions and 

Epistatic Interactions

VanderWeele and Robins (2007, 2008) discuss “causal” or “sufficient cause” interactions 

within the sufficient cause and counterfactual frameworks (Rothman, 1976; Rubin, 1990; 

Hernán, 2004) which provide a somewhat stronger notion of positive additive interaction. A 

sufficient cause interaction is present if there are individuals for whom the outcome would 

occur if both exposures are present but would not occur if just one or the other exposure is 

present. In counterfactual notation, if we let Yge denote the counterfactual outcome (or 

potential outcome) for each subject if, possibly contrary to fact, G had been set to g and E 

had been set to e, then a sufficient cause interaction is present if for some individual Y11 = 1 

but Y10 = Y01 = 0. VanderWeele and Robins (2007, 2008) showed that if the effect of the 

two exposures were un-confounded (in that the counterfactual outcomes Yge were 

independent of the actual exposures {G, E}) then

would imply the presence of a sufficient cause interaction. This is a stronger condition than 

regular positive additive interaction which only requires p11 − p10 − p01 + p00 > 0 because 

with the condition p11 − p10 − p01 > 0 we are no longer adding back in the outcome 

probability p00 for the doubly unexposed group. The condition p11 − p10 − p01 > 0 expressed 

in terms of RERI is equivalent to RERI > 1.

VanderWeele (2010a b) discussed empirical tests for an even stronger notion of interaction. 

We might say that there is a “singular” or “epistatic” interaction if there are individuals in 

the population who will have the outcome if and only if both exposures are present; in 

counterfactual notation, that is, there are individuals for whom Y11 = 1 but Y10 = Y01 = Y00 = 

0. In the genetics literature, when gene-gene interactions are considered, such response 

patterns are sometimes called instances of “compositional epistasis” (Phillips, 2008; Cordell, 

2009) and constitute settings in which the effect of one genetic factor is masked unless the 

other is present. VanderWeele (2010a b) noted that if the effects of the two exposures on the 

outcome were unconfounded then
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would imply the presence of such an “epistatic interaction”. Again this is an even stronger 

notion of interaction in that we are now subtracting p00. The condition p11 − p10 − p01 − p00 

> 0 expressed in terms of RERI is equivalent to RERI > 2.

It is relatively straightforward to derive sample size and power formulae for tests for such 

sufficient cause or epistatic interactions. The sample size for RERI given above could be 

used but for sufficient cause interaction, to test RERI > 1, one would replace the η in the 

denominator of the sample size formula by (η − 1); and for epistatic interaction, to test RERI 

> 2, one would replace the η in the denominator of the formula by (η − 2).

Thus, for cohort data, to detect a sufficient cause interaction (RERI > 1) at significance level 

α with power β when the true RERI is η = eγ1+γ2+γ3 − eγ1 − eγ2 + 1, the required sample size 

would be

where VRERI is the variance of RERI (see Appendix 1). And likewise, the power to detect a 

sufficient cause interaction for a given sample size is 

. Similar formulae hold for odds ratios and 

using case-control data under a rare outcome: once again, one simply replaces η with (η − 1) 

in all relevant formulae.

Similarly, for cohort data, to detect an epistatic interaction (RERI > 2) at significance level α 

with power β when the true RERI is η = eγ1+γ2+γ3 − eγ1 − eγ2 + 1, the required sample size 

would be

The power to detect an epistatic interaction for a given sample size is 

. Similar formulae hold for odds ratios and 

using case-control data under a rare outcome: one simply replaces η with (η − 2) in all 

relevant formulae.

Finally, it should be noted that if it can be assumed that the effects of both exposures are 

positive “monotonic” in the sense that the counterfactuals Yge are non-decreasing in g and e 

for all individuals (i.e. the exposures never have protective effects on the outcome for any 

individual), then the tests p11 − p10 − p01 + p00 > 0 and RERI > 0 can be used to test for 
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sufficient cause interaction (VanderWeele and Robins, 2007, 2008). For epistatic 

interactions, if the effect of at least one of the exposures is positive monotonic (Yge is 

nondecreasing in at least of of g and e), then p11 − p10 − p01 > 0 suffices for an epistatic 

interaction the tests for RERI > 1 could be used; if the effect of both exposures are positive 

monotonic then p11 − p10 − p01 + p00 > 0 suffices and and tests for RERI > 0 could be used 

to test for an epistatic interaction (VanderWeele, 2010a b). To interpret interaction estimates 

causally, or to draw conclusions about sufficient cause or epistatic interaction, control must 

be made for confounding for both exposures. If control for confounding is only made for 

one of the two exposures the interaction estimates can still often be interpreted as measures 

of effect heterogeneity (VanderWeele, 2009b; Vander-Weele and Knol, 2011), i.e. of how 

the effect of one exposure varies across strata of the other (without commenting on the effect 

of the second exposure itself). Sensitivity analysis techniques for interaction and effect 

modification (VanderWeele and Arah, 2011; VanderWeele et al., 2012) can also be useful in 

assessing the impact of unmeasured confounding for interaction estimates. To interpret 

estimates causally, measurement error in interaction analyses should also be taken into 

account or corrected for (Garcia Closas et al., 1998; Zhang et al., 2008; VanderWeele, 

2012); such measurement error can often lead to bias and effect estimate attenuation, and 

will often decrease power.

Discussion

In this paper we have derived sample size and power formulae for additive interaction in a 

variety of scenarios. We have considered additive interaction for absolute risks in cohort 

data and also the use of the relative excess risk due to interaction from logistic regression 

using cohort or case-control data. We saw that when the main effects were both positive 

then the power to detect positive interaction on the additive scale was in general greater than 

on the multiplicative scale. We have also discussed how the sample size and power 

calculations for the relative excess risk due to interaction can be easily modified to provide 

sample size and power calculations for causal interactions corresponding to notions of 

synergism in the sufficient cause framework and to notions of compositional epistasis in 

genetics.

As is often the case with analytic formulae for sample size and power calculations, we have 

not considered the consequences of control for additional covariates. In settings in which 

these covariates are independent of the exposures (e.g. if the exposures were both 

randomized) then adjustment for additional covariates should increase the power of tests 

(Robinson and Jewell, 1991) and in such cases the sample size and power calculations in 

this paper could be considered conservative estimates.

The sample size and power formulae in this paper provide additional tools for researchers to 

utilize additive interaction in their analyses. It is hoped that these additional tools will 

further encourage the use of the additive scale for interaction analysis. Not only is additive 

interaction more relevant for public health purposes and more closely related to mechanistic 

interaction in the sufficient cause framework, but as we have seen, power will often be 

greater to detect additive interaction.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1. Derivations

A.1. Derivations for additive interaction with absolute risk and cohort data

For model (1),
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(1)

the likelihood is given by

and the log-likelihood by 

.

The second derivative is given by

where Qi = θ0 + θ1gi + θ2ei + θ3giei. Let Q = θ0 + θ1G + θ2E + θ3GE. The expected 

information matrix is then given by

which we may write as

where
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If we let , 

and  we then have

The inverse of this matrix is

from which it follows .

A.2. Derivations for relative excess risk due to interaction from logistic 

regression using cohort data

Demidenko (2008) showed that for the logistic regression model (3):

(3)

the variance-covariance matrix for the maximum likelihood estimate of (γ0, γ1, γ2, γ3) was 

given by
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where

From the delta method, it follows that the variance of  is 

given by

A.3. Derivations for multiplicative and additive interaction for the log-linear 

model

For the log-linear model,

(5)

suppose we wish to use a Wald test for the null hypothesis κ3 = 0. The sample size required 

to detect an multiplicative interaction of magnitude κ3 = η with significance level α and 

power β is

where Z1−α/2 and Zβ are the (1−α/2)th and βth quantiles respectively of the standard normal 

distribution and where Vmult(RR) is the variance of κ̂
3 under the alternative that κ3 = η. 

Likewise, we can calculate the power for a given sample size using 
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. The variance Vmult(RR) can be derived as 

follows. The likelihood is given by

and the log-likelihood by

The second derivative is given by

where Qi = eκ0+κ1gi+κ2ei+κ3giei. Let Q = eκ0+κ1G+κ2E+κ3GE. The expected information matrix 

is then given by

which we may write as

where
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If we Let , and 

 we then have

The inverse of this matrix is

from which it follows .

The RERI from log-linear model (5) is given by:

Suppose we wish to use a Wald test for the null hypothesis RERI = 0. The sample size 

required to detect a RERI of magnitude η = eκ1+κ2+κ3−eκ1−eκ2+1 with significance level α 

and power β is
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where Z1−α/2 and Zβ are the (1−α/2)th and βth quantiles respectively of the standard normal 

distribution and where VRERI(RR) is the variance of RERI = eκ̂1+κ̂2+κ̂3−eκ̂1−eκ̂2+1 under the 

alternative. Likewise, to calculate the power for a given sample size we could use

Using an argument analogous to that in Appendix A.2 we have that

A.4 Derivations for Case-Control Exposure Probabilities from the 

Probabilities in the Underlying Population

Here we derive the proportions in each joint exposure group in the case-control sample, 

, from the proportion in each joint exposure group in the underlying 

population, π00, π10, π01, π11, under an assumption that the outcome is rare. We will use 

P*(·) to denote probabilities in the case-control sample and P(·) to denote probabilities in the 

underlying population. We have that

where the final equality follows because the outcome is rare and thus the exposure 

distribution among the controls will approximate that in the underlying population. We then 

also have that

where the final equality follows from the rare outcome assumption which implies that risk 

ratios approximate odds ratio. The odds ratios can then be obtained from the specification of 

the parameters of the logistic regression model and we thus obtain:
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Under this rare outcome assumption we can also obtain γ0 = log{P*(Y = 1|G = 0, E = 

0)/P*(Y = 0|G = 0, E = 0)}, the log odds of baseline probability of the outcome in doubly 

unexposed group in the case-control sample, from P*(Y = 0) and P*(Y = 1) because

If instead the proportions in each joint exposure group in the case-control sample are 

specified, , then we could obtain γ0 by numerically solving

for γ0. If the joint or marginal exposure probabilities are specified separately for the cases 

and controls then under an assumption of a rare outcome, the distribution of the exposures 

amongst the controls could be used as an approximation to π00, π10, π01, π11 or πg, πe, Δ.

Appendix 2. Epidemiologic Practice: Excel Spreadsheets for Sample Size 

and Power Calculations for Additive and Multiplicative Interaction

As part of the online supplement for this paper there are two Excel spread-sheets that will 

automatically perform power and sample size calculations for additive and multiplicative 

interaction for (i) cohort and (ii) case-control, and case-only data. All of these spreadsheets 

return sample size and power calculations for the Wald test statistic for additive or 

multiplicative interaction with variance calculated under the alternative (cf. Demidenko, 

2008; VanderWeele, 2011).

The first spreadsheet performs power and sample size calculations for additive and 

multiplicative interaction for cohort data. For the power calculations, the user has the option 

of entering marginal exposure probabilities and the odds ratio relating the prevalence of both 

exposures (Sheet 1) or the joint exposure probabilities (Sheet 2). On Sheet 1, the user inputs 

the significance level of the test (alpha), the sample size (n), the probability of the outcome 

in the doubly unexposed reference group (p00), the main effect odds ratio for the first 
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exposure (OR10), the main effect odds ratio for the second exposure (OR01), the odds ratio 

multiplicative interaction (IOR=OR11/(OR10*OR01)), the marginal prevalence of the first 

exposure (P(G=1)), the marginal prevalence of the second exposure (P(E=1)) and the odds 

ratio relating the dependence between the two exposures (OR_GE). The Excel spreadsheet 

returns both one-sided power (to detect positive interaction) and two-sided power (to detect 

positive or negative interaction) for (i) additive interaction on the risk difference scale, (ii) 

multiplicative interaction on the risk ratio scale, (iii) multiplicative interaction on the odds 

ratio scale, (iv) additive interaction using the relative excess risk due to interaction (RERI; 

cf. Hosmer and Lemeshow, 1992) for risk ratios, and (v) additive interaction using the 

relative excess risk due to interaction for odds ratios, assuming a rare outcome. On Sheet 2, 

the user specifies the same inputs except that instead of the marginal probabilities and odds 

ratio relating the exposures (P(G=1), P(E=1), OR_GE), the user specifies the joint exposure 

probabilities for each of the four possible exposure combinations (in the Excel spreadsheet 

these are pi00, pi10, pi01, pi11). The Excel spreadsheet then again returns items (i)–(v) 

above.

For sample size calculations from cohort data, the user has the option of entering marginal 

exposure probabilities and the odds ratio relating the prevalence of both exposures (Sheet 3) 

or the joint exposure probabilities (Sheet 4). The user specifies exactly the same parameters 

as the spreadsheet for power calculations for cohort data except that instead of specifying 

the sample size, the power is specified (Power), and the Excel spreadsheet returns the 

required sample size for a test of the specified significance level and power to detect (i) 

additive interaction on the risk difference scale, (ii) multiplicative interaction on the risk 

ratio scale, (iii) multiplicative interaction on the odds ratio scale, (iv) additive interaction 

using the relative excess risk due to interaction (RERI) for risk ratios, (v) additive 

interaction using the relative excess risk due to interaction for odds ratios, assuming a rare 

outcome.

The second spreadsheet performs power and sample size calculations for additive and 

multiplicative interaction for case-control and case-only data. For power calculations (Sheet 

1), the user inputs the significance level of the test (alpha), the number of cases (n Cases) 

and number of controls (n Controls), the main effect odds ratio for the first exposure 

(OR10), the main effect odds ratio for the second exposure (OR01), the odds ratio 

multiplicative interaction (IOR), the marginal prevalence of the first exposure (P(G=1)), the 

marginal prevalence of the second exposure (P(E=1)) and the odds ratio relating the 

dependence between the two exposures (OR_GE). The Excel spreadsheet returns both one-

sided power (to detect positive interaction) and two-sided power (to detect positive or 

negative interaction) for (i) additive interaction using the relative excess risk due to 

interaction (RERI) for odds ratios and (ii) multiplicative interaction on the odds ratio scale. 

If the two exposures are specified as independent (i.e. if OR_GE is specified as 1) then the 

spreadsheet will also return the power for the case-only estimator of multiplicative 

interaction (cf. Piegorsch et al, 1994; Yang et al., 1999) based on the number of cases. If the 

two exposures are not specified as independent (i.e. if OR_GE is specified as any number 

other than 1), the spreadsheet will return “#DIV/0!” for the power for the case-only 

estimator indicating that the case-only test is inapplicable in this setting because the two 
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exposures are not independent. All power calculations for the case-control and case-only 

power spreadsheet make a rare outcome assumption. The power calculations are based on 

the variance calculated under the alternative (as in Demidenko (2008) for logistic regression 

multiplicative interactions and VanderWeele (2011) for case-only multiplicative 

interactions) rather the variance calculated under the null, as the variance under the 

alternative corresponds to the test statistics that are commonly used in practice.

For sample size calculations for additive and multiplicative interaction for case-control and 

case-only data (Sheet 2), the user inputs the significance level of the test (alpha), the 

proportion of cases in the case-control sample (Cs/(Cs+Cont)), the desired power of the test 

(Power), the main effect odds ratio for the first exposure (OR10), the main effect odds ratio 

for the second exposure (OR01), the odds ratio multiplicative interaction (IOR), the 

marginal prevalence of the first exposure (P(G=1)), the marginal prevalence of the second 

exposure (P(E=1)) and the odds ratio relating the dependence between the two exposures 

(OR_GE). The Excel spreadsheet returns the required sample size for a test of the specified 

significance level and power for (i) additive interaction using the relative excess risk due to 

interaction (RERI) for odds ratios and (ii) multiplicative interaction on the odds ratio scale. 

If the two exposures are specified as independent (i.e. if OR_GE is specified as 1) then the 

spreadsheet will also return the required sample size, i.e. number of cases, to detect 

multiplicative interaction for the case-only estimator of multiplicative interaction. If the two 

exposures are not specified as independent (i.e. if OR_GE is specified as any number other 

than 1), the spreadsheet will return “#DIV/0!” for the required sample size for the case-only 

estimator indicating that the case-only test is inapplicable in this setting because the two 

exposures are not independent. All power calculations for the case-control and case-only 

sample size spreadsheet make a rare outcome assumption. The sample size calculations are 

based on the variance calculated under the alternative as this corresponds to the test statistics 

that are commonly used in practice (cf. Garcia-Closas and Lubin, 1999; Demidenko, 2008; 

VanderWeele, 2011).
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