
RESEARCH ARTICLE

Statistical Modeling of the Abundance of
Vectors of West African Rift Valley Fever in
Barkédji, Senegal
Cheikh Talla1,2, Diawo Diallo1, Ibrahima Dia1, Yamar Ba1, Jacques-André Ndione3,
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Abstract

Rift Valley fever is an emerging mosquito-borne disease that represents a threat to

human and animal health. The exophilic and exophagic behavior of the two main

vector in West Africa (Aedes vexans and Culex poicilipes), adverse events post-

vaccination, and lack of treatment, render ineffective the disease control. Therefore

it is essential to develop an information system that facilitates decision-making and

the implementation of adaptation strategies. In East Africa, RVF outbreaks are

linked with abnormally high rainfall, and can be predicted up to 5 months in advance

by modeling approaches using climatic and environmental parameters. However,

the application of these models in West Africa remains unsatisfactory due to a lack

of data for animal and human cases and differences in the dynamics of the disease

emergence and the vector species involved in transmission. Models have been

proposed for West Africa but they were restricted to rainfall impact analysis without

a spatial dimension. In this study, we developed a mixed Bayesian statistical model

to evaluate the effects of climatic and ecological determinants on the

spatiotemporal dynamics of the two main vectors. Adult mosquito abundance data

were generated from July to December every fortnight in 2005–2006 at 79 sites,

including temporary ponds, bare soils, shrubby savannah, wooded savannah,

steppes, and villages in the Barkédji area. The results demonstrate the importance

of environmental factors and weather conditions for predicting mosquito

abundance. The rainfall and minimum temperature were positively correlated with

the abundance of Cx. poicilipes, whereas the maximum temperature had negative

effects. The rainfall was negatively correlated with the abundance of Ae. vexans.

After combining land cover classes, weather conditions, and vector abundance, our
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model was used to predict the areas and periods with the highest risks of vector

pressure. This information could support decision-making to improve RVF

surveillance activities and to implement better intervention strategies.

Introduction

Rift Valley Fever (RVF) is an emerging arboviral disease that affects humans and

domestic and wild ruminants. Rift Valley Fever mainly affects sheep, goats, and

cattle by causing abortions in pregnant females and high mortality in neonates

[1, 2] thereby resulting in substantial socio-economic losses in affected areas.

Humans can be infected via contact with blood, organs, tissues, fetuses, and the

excretions of infected animals, or by infected mosquito bites. Human infections

can lead to severe diseases, which are associated with a high mortality rate [3, 4].

Rift Valley Fever virus (RVFV) is transmitted by a number of species of mosquito,

primarily from the genera Aedes and Culex [5, 6, 7], and in the Barkédji area of

Senegal, has been isolated from several mosquito species but most commonly

from the abundant Cx. poicilipes and Ae. vexans.

These vectors breed in temporary ponds that are flooded after the first rains

[7, 8]. Aedes vexans spend the unfavorable season as resistant desiccated eggs that

hatch synchronously as soon as the ponds are flooded. Larval development is

complete in less than 10 days [9] and adult survival is estimated to be up to 3

months [10]. Therefore, its population reach their peak of abundance at the

beginning of the rainy season. Culex poicilipes spend the dry season as nulliparous

mated females that lay eggs at the beginning of the rainy season. The population

grow gradually to reach its peak of abundance later. Both vectors have their

highest parity rates between September and October in Barkédji [11].

The maximum flight distances estimated for Ae. vexans and Cx. poicilipes from

their larval sites were 620 and 550 m respectively [12]. These vectors were

collected in all land cover classes investigated in the Barkédji area but they

preferred barren and temporary ponds and were rare within villages indicating

their exophilic and exophagic pattern [11]. The two vectors are considered to be

opportunistic feeders with a zoophilic tendency. Their vertebrates host include

wild animal species, livestock and equine living or divagating around the ponds.

Reports suggest less than 1% of blood meals from Ae. vexans may be taken on

human [13].

The transmission cycle includes an enzootic cycle that occurs around temporary

ponds, where the virus maintained in Aedes eggs resistant to desiccation over

several years. An amplification cycle occurs when the weather conditions are

suitable for infected eggs hatching and proliferation of infected adult mosquitoes

able to transmit the virus to livestock. In East Africa the virus emergence and the

amplification cycle are known to be associated to unusual heavy rains [14]. In

West Africa, the virus emergence is hypothesized as the consequence of infected
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eggs hatching from temporary ponds or virus introduction trough livestock

mobility. The switch of the enzootic cycle to an epizootic/epidemic results from

the combination of several factors including mosquito proliferation and dispersal

[12], herd concentration and their contact with human population [5].

In humans, the only effective vaccine available is currently limited in terms of

production, and it is restricted to at-risk personnel since it requires multiple

inoculation to achieve protective immunity [15]. Several veterinary vaccine

candidates have been proposed or are under investigation (MP12, Clone 13,

Smithburn neurotropic strain, R566) [16, 17, 18, 19]. Some of these vaccines are

not favored because of their abortive/teratogenic properties [20, 21, 22]. Their

adverse events concern re-assortment potential as well as environmental safety,

including the potential to be transmitted by vectors. Furthermore, the practical

implementation of vaccination is challenging because of poor outbreak

forecasting.

Similarly, larval control is difficult to envisage because of the nature of the

breeding sites, including temporary ponds, which represent the main water

sources for people, livestock, and other wildlife in the Barkédji area. The methods

used by people for protection against adult mosquitoes (Long-Lasting Insecticide-

treated Nets, aerosols, and insecticide coils) are also ineffective because of the

exophagic and zoophilic behaviors of these RVF vectors [13]. Mosquito control

can be achieved by several methods including thermal fogging, ultra-low volume

ULV [23]. However, due to the extent of surface to be treated, potential

environmental impact and the equipment required (aircraft, helicopter…), these

methods are still inaccessible to low income countries. The treatment of animals

with insecticide has shown promising results in different geographical areas,

including Barkedji [24]. The acceptance by pastoralists of this control method,

nevertheless, remains an obstacle for implementation and dissemination.

These considerations have motivated the use of modeling approaches to predict

and prevent the risk of RVF emergence, as well as for developing information

systems to support decision-making processes and the implementation of

adaptation strategies. The knowledge of areas of high and low vector abundance,

and the potential risk of infection, would allow the implementation and

adaptation of targeted vector control strategies and also identify appropriate

places for pastoralists to settle so that contact between vectors and hosts is

minimized. It would also provide information to the authorities about which

areas to treat, based upon small-scale insecticide use (thermal fogging or ultra-low

volume (ULV) spraying, cattle treatment…).

The identification of these areas at risk could help to better plan and minimize

risks associated with vaccination. Only herds located in at risk areas are

vaccinated.

Variability in the weather and climate often influence the transmission of many

infectious diseases, particularly those spread by arthropod vectors such as malaria

and dengue [25]. Some vector-borne diseases exhibit seasonal patterns with inter-

annual and intra-annual variability, which are explained partly by climate and

environmental factors [26]. Therefore, the use of climate information in early
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warning systems for diseases could provide public health decision-makers with

advance notice of the possible occurrence of a disease, thereby allowing the

implementation of timely preventative measures such as education of persons at

risk (herders, butcher, veterinary, and health workers), animal movement

restrictions, targeted vaccination and/or ULV sprays. This type of early warning

system requires statistical and/or biological models that incorporate the effects of

climate variables on disease transmission.

This modeling approach was developed in East Africa based on the

identification of climatic and environmental variables (Pacific and Indian Ocean

sea surface temperature anomalies (SSTs), satellite normalized difference

vegetation index anomaly) that control the occurrence of RVF. In Africa, an early

warning system has been developed that can predict RVF outbreaks up to 5

months in advance using parameters such as the normalized difference vegetation

index (NDVI) and sea surface temperature anomalies [27]. A retrospective study

using time series analysis showed that this system was capable of accurately

predicting three RVF outbreaks in Kenya between 1982 and 1998. However, it

failed to predict the RVF outbreaks in Senegal during 1993, Burkina Faso in 1983,

and Central Africa in 1985 [23, 28, 29, 30]. It may be due to a possible lack of

sensitivity of the system like the threshold of the NDVI or a lack of data from

animal cases for model validation. These findings suggested that this model was

not suitable for use in West Africa, possibly due to the different dynamics and

mechanisms of emergence in East and West Africa [31], lack of documented data

for animal/human cases and vector species involved in the transmission (Aedes

mcintoshi and Culex pipiens in East Africa versus Aedes vexans and Culex poicilipes

in West Africa). While, Aedes vexans and Aedes mcintoshi are both floodwater

zoophilic mosquitoes, Culex pipiens is more associated to human environment

than Culex poicilipes. Rainfall is always an important climatic parameter that

affects RVFV emergence in East Africa [27], but it does not always have the same

effect in West Africa, i.e., years with rain deficits as well as excess are associated

with RVFV emergence in West Africa. Instead, the parameter that appeared to

have an important role was rather rains marked by long dry spells [12, 32].

Therefore, several models have been developed for the West African context at a

local-scale [31, 33, 34, 35, 36] and a country level [37], but the analysis is restricted

to the impact of rainfall in most of these models, which lack the spatial dimension.

Furthermore, most of these models have been developed specifically for Ae.

vexans, which is one of the main vectors. The only model developed for Cx.

poicilipes that considers rainfall as a climatic parameter used entomological data

from Barkedji but some biological parameters not available (sex ratio, number of

eggs laid/female/day, daily larval survival rate, date of diapause, etc.) were

estimated based on data relative to Culex pipiens pipiens in America exhibiting

different dynamics [31]. In addition, this model did not integrate ecological and

climate data such as the temperature and relative humidity, which affect the

survival and development of mosquitoes. Therefore, the development of a model

that integrates several ecological and climatic parameters may facilitate the

establishment of an effective monitoring system for the Barkédji area. A system for
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monitoring and predicting the seasons and areas with high and low levels of

vector abundance could support decision-makers in the implementation of

effective control strategies.

In this study, therefore, we developed a mixed Bayesian statistical model to

evaluate the effects of climatic and ecological determinants on the spatiotemporal

dynamics of Ae. vexans and Cx. poicilipes at a local-scale. Based on the observed

abundances and spatial distributions, this model was used to predict their

geographic distributions using climatic and environmental data to identify

potential risk areas.

Materials and Methods

Entomological data

The data used were obtained during a study conducted over a 2-year period

(2005–2006) within 13 km around the village of Barkédji (14 4̊79–14 5̊3˚W,

15 1̊39–15 2̊09N) during the rainy season (Figure 1). This area belongs to the

Sahelian zone and is characterized by a hot dry season (November to May) and a

short rainy season (June to October), with an average annual rainfall of 300–

500 mm. During the rainy season, a large number of small, temporary ponds

develop to form a network. Different types of ponds are present in the Barkédji

area, which have different levels of aquatic vegetation cover. For example, the

ponds named Kangaledji and Niakha are heavily vegetated in (79% and 60%

vegetation coverage, respectively) [38]. The large pools such as Niakha,

Kangaledji, and Ngao are flooded for up to 3 months after the rainy season, and

these temporary ponds are major water sources for people and livestock. They are

also natural habitats for many species of birds, reptiles, and rodents, as well as

providing favorable locations for the development (oviposition and resting) of

mosquitoes that are potential vectors of RVFV. Barkédji is a stopover area for

transhumant herds so the number and the spatial distribution of livestock in the

area depend on the arrival or the departure of nomadic herds.

Mosquitoes were sampled from 79 sites that included the six major land cover

classes identified in the area. High-resolution remote-sensing satellite data (SPOT

5, 10 m) were used to identify the different ecological land cover classes. The

descriptions of the vegetation classes were based on a combination of the FAO

(1997) [39] and Anon (1956) [40] systems, where the following environmental

classes were selected: ponds, wooded savannahs, shrubby savannahs, bare soils,

steppes, and villages. The land cover class was defined according to these six

ecological classes and it was treated as a categorical variable or factor during

modeling.

Mosquitoes were collected using Centers for Diseases Control light traps with

CO2 dry ice one night from each site every 2 weeks between July and December

2005 and 2006, yielding a total of 22 sampling dates. Traps were set in each site at

about 50 cm above ground level at the edge of temporary pond, near a house in

villages and at the center for the other landscape classes. They were killed and
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identified morphologically using identification keys [41, 42]. Each sampling site

was geo-referenced using a hand-held GPS receiver and the Euclidean distance

(m) to the nearest pond was estimated using the SPOT 5 satellite image of the

study area.

Climate and environmental data

The climatic and environmental parameters considered in the present study were:

rainfall, relative humidity, maximum temperature, minimum temperature, and

NDVI. The minimum and maximum temperature have been selected because

there is evidence that in nature, mosquitoes do not simply experience mean

temperature, but are subjected to huge temperature fluctuations throughout the

day. Recent studies showed that maximum and minimum temperature could

impact differently the abundance of several mosquito species like Aedes vexans,

Culex pipens and Culex restuans in America [43, 44].

During the study period, the rainfall, relative humidity, and maximum and

minimum daily temperatures were collected by eleven automatic weather stations

(1 BWS 200 Campbell Scientific and 10 HOBO weather stations) installed inside

Figure 1. Study area.

doi:10.1371/journal.pone.0114047.g001
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villages (for security reasons) and distributed evenly in the Barkédji area. For

analysis data, each sampling site was associated to the nearest weather station. The

spatial NDVI data were derived from the MODerate-resolution Imaging

Spectroradiometer (MODIS|MOD13) on NASA’s Terra satellite (National

Aeronautics and Space Administration, NASA), where the NDVI was based on 16-

day averages at a spatial resolution of 250 m. For each sampling site and each of

22 sampling periods, the corresponding NDVI values were downloaded from

NASA website [45].

The correlation between the climatic and environmental explanatory variables

was checked using Kendall’s rank correlation [46, 47]. We also estimated the

variance inflation factor (VIF) using a generalized linear model under a Gaussian

distribution to detect the level of correlation among variables (Table S1).

Collinearity generally should be considered in analyses when VIF is .10 [48].

Statistical analysis

The associations between the abundance of each mosquito species and the

climatic and environmental factors were analyzed using generalized linear mixed

models (GLMMs).

The GLMM is an extension of the classical generalized linear model but it

considers correlated data structures, including spatially unstructured and

spatiotemporal structured random effects, in the linear predictor. We considered

all of the explanatory variables in the generalized linear Poisson model. The model

parameters were estimated within a Bayesian framework using the Markov Chain

Monte Carlo (MCMC) method, where they were considered to be statistically

significant if their 95% credible interval did not contain zero. The Bayesian

approach accounts for parameter uncertainty by assigning prior distributions to

the parameters [49]. An advantage of this approach is that the associated MCMC

sampling yields samples from full posterior predictive distributions, which

automatically incorporate all the components of variance at the different levels of

the model. Therefore, a full assessment of the prediction uncertainty can be

obtained more easily with the Bayesian MCMC estimation than the more

traditional maximum likelihood approach. Given the known seasonal pattern in

mosquito abundance, we introduced seasonality as a sinusoidal curve, which had

the same peak of abundance as the mosquito species. The inclusion of random

effects in the model framework allowed us to account for unknown or unobserved

confounding factors in the disease system by introducing an extra source of

variability into the model [50]. Unstructured random effects could help to

account for overdispersion in the distribution of the mosquito counts obtained.

However, this did not explain the spatial dependence of the numbers collected at

different points. This dependence was considered in the model by adding spatially

structured random effects. The typical choice for spatially structured random

effects is an intrinsic Gaussian conditional autoregressive (CAR) model [51]:
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where Wij are adjacency weights for sites that take binary values, i.e., 1 if site i and

site j are considered neighbors but 0 otherwise. We used point data and the

nearest neighbors was determined using Euclidian distance. Variables su and st

control the intensity of the local spatial and temporal dependence respectively. An

autoregressive temporal qt effect is included in the model, where t represents the

fortnightly catch for each month and q1 is set equal to 0 (second fortnight in July)

to avoid identifiability problems in the model. The spatiotemporal GLMM

formulated to assess the importance of climatic and non-climatic variables is

described as follows:

- Ae. vexans model

Yst~Poisson lstð Þ , s~ 1,:::, 79 , t~ 1,:::, 22
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X
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- Cx. poicilipes model
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X
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For both models, Yst represents the abundance of each species assumed to

follow a Poisson distribution at site s (s~1 . . . 79); and fortnights t (t~1 . . . 22),

lst is the corresponding mean number of individuals collected for each species.

The parameter qt defined in equation (5) is a first order auto regressive temporal

effect. The parameter Us specified in equation (4) represents an intrinsic Gaussian

CAR distribution defined above in equation (1). The parameter c is the regression

coefficient for Zs (distance between a collection point and the nearest pond). The

variable Xqst represent the climatic and environmental variables considered, i.e.,

rainfall (q~1), which represents the cumulative rainfall (total precipitation) 15–
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20 days prior to trapping, where this lagged variable was selected to take into

account the cumulative effect of rain on mosquito productivity and abundance;

maximum temperature (q~2), minimum temperature (q~3), relative humidity

(q~4), and NDVI (q~5). The rainfall lag time was suggested by the field data

recorded every fortnight. Analyzing the population dynamics of vectors (Figure

S1) we observed a lag time of at least 15 days between the peaks of rainfall and the

peak of vectors abundance [11]. In addition a previous study revealed the

correlation between rainfall and Ae. vexans abundance 10 days after rains at the

beginning of the rainy season and 20 days at the end [52].

To standardize the approach, the same periodicity was used to analyze the

climate and environmental variables. In addition, this lag time and suitable

weather forecasting may provide public health decision-makers with sufficient

time to prepare for and respond to an outbreak.

The variable Bs’(s) represents the six land cover classes described above, Zs is the

distance between the sampling point and the nearest pond, and st is the interaction

between the site and the collection period. All of the computations were based on

posterior samples derived using MCMC methods. Two chains were run with

35,000 iterations each and the first 30,000 iterations of each chain were discarded

to eliminate the possible dependence on the initial values, where the sampling

interval (thinning value) was 10, thereby yielding a random sample of length

51,000 for each parameter in the model. We used the ‘‘Coda’’ library from the R

statistical package [53] to perform the convergence test with the Gelman and

Rubin statistic [54], where the statistic was checked if it was ,1.1 with an effective

sample size .150 for all parameters. The complete model specification is

described in detail in the supporting file (Model S1).

Model selection

The goodness of fit was assessed for all the models tested using the deviance

information criterion (DIC) [55, 56], which is a widely used Bayesian selection

criterion for selecting models based on the requirement to reach a compromise

between the goodness of fit and model complexity. The DIC is based on the sum

of the posterior mean deviance and the number of effective parameters used in the

model [55]. Smaller values of DIC indicate a model with a better fit, thereby

indicating good performance in predicting unobserved quantities [57]. The

models with the lowest DIC values were considered as the best models. They

provide the best explanation of the data and were selected to predict the

abundance of each mosquito species.

In addition, we computed Pearson’s correlation coefficient to evaluate the

agreement between the observed and expected mosquito abundance values, as well

as the root mean squared error (RMSE) to measure the precision, where the

predicted numbers were calculated based on estimates of the posterior means lst.

The models were generated using R software [58] and the R2WinBUGS package

[59] in conjunction with the free statistics software WinBUGS 1.4.3 [60] to
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perform computations based on posterior samples derived via MCMC methods

for parameter estimation in the GLMM model.

We generated raster maps of the predictions, which showed the mosquito

abundance for each pixel in the study area, by applying the inverse distance-

weighted interpolation function [61] using ‘‘gstat’’ library [62] in R statistic

software. This function measured the mosquito abundance for each point in the

study area and represented it as a raster file.

Results

Mosquito collections

In total, 29,183 female mosquitoes from 39 species were collected during 1,738

trap-nights. Culex poicilipes was the most abundant species (28%) followed by Ae.

vexans (21%). Rift Valley Fever vectors (Ae. vexans, Ae. dalzieli, Ae. fowleri, Ae.

ochraceus, Cx. poicilipes, Mansonia africana, Mansonia uniformis) represented

about 68% of the total mosquitoes collected. Aedes vexans and Culex poicilipes, the

two main vectors, represented 73% of the population of RVF vectors. Both species

exhibited seasonal variability in abundance (Figure S1). Aedes vexans had two

abundance peaks in the second half of July at the beginning of the rainy season (in

2005 and 2006) and during the first fortnight of October in 2005, and the second

fortnight of September in 2006. For Cx. poicilipes, the peaks occurred during the

first fortnight of September and the second fortnight of October in 2005, and

during the first fortnight of October in 2006. Culex poicilipes was most abundant

around ponds and wooded savannahs, whereas the distribution of Ae. vexans

appeared to be more uniform among different land cover classes (Figure S2A–B).

The annual rainfall were 458.9 mm in 2005 and 410.5 mm in 2006, where July

was the wettest month with a total of 189 mm in 2005, but August was the wettest

month with 157.4 mm in 2006. Rainfall stopped during the first half of October in

both years. The daily temperature was highest in the second half of October at

45.4 C̊ during 2005 and lowest during the first half of December at 12.6 C̊ in 2006.

The relative humidity was highest in the second and the first half of September

respectively in 2005 and 2006 (81.4% in both years). The NDVI was highest

during the first half of September in both years (0.45 in 2005 and 0.39 in 2006)

(Figure S3).

Model results

The results of VIFs and Kendall’s rank correlation coefficient for all climatic and

environmental variables indicated no significant collinearity (Table S1). After

convergence diagnosis, the final models were constructed and the parameter

estimates for the GLMM models for each species are summarized in Table 1.

Spatially structured random effects were not present in the parsimonious model

for Ae. vexans. The posterior distributions for each climatic and environmental

parameter that differed from zero, and the signs of the associations with vector
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abundance in the models are shown in Figure S4A–E and Figure S5A–B. Thus, the

abundance of Cx. poicilipes was significantly and positively associated with the

average minimum temperature and the cumulative rainfall recorded 15–20 days

prior to sampling. However, the average maximum temperature and NDVI index

were significantly and negatively associated with the abundance of this vector. The

distance from the nearest pond as well as land cover classes in equation (3) and

the CAR distribution in equation (2) were not statistically significant and they had

no influence on the best model for each species. The average relative humidity had

an effect on the best model but it was not statistically significant.

The abundance of Ae. vexans was significantly and negatively associated with

cumulative rainfall during 15–20 days before the collection period. The difference

between the average maximum and minimum temperatures was negatively

correlated with the abundance of this vector, whereas the effects of the NDVI

index and the average relative humidity were not statistically significant.

The GLMM models for the two species had high predictive power (RMSE 54.1

and RMSE 520 for Ae. vexans and Cx. poicilipes, respectively) in capturing the

seasonality and spatial distribution of each species. The observed and expected

mosquito numbers had similar patterns with a high correlation (Pearson’s

correlation coefficient: r50.99, P,0.0001; r50.58, P,0.0001; for Ae. vexans and

Cx. poicilipes, respectively).

Figure S6A–B shows the relationship between the observed data and

abundances predicted by the GLMM models, which suggests that most of the

variability in mosquito abundance was simulated well by the models, although the

numbers of individuals collected tended to be underestimated during the period

of peak abundance.

Table 1. Posterior mean, convergence diagnostic R̂ for covariates and hyperparameters associated with temporal and spatial random effects.

mean sd 2.5% 97.5% R̂

Cx. poicilipes b2 Min temperature 0.7746 0.0502 0.6773 0.8737 1.00

b1 Max temperature 20.2885 0.0193 20.3282 20.2527 1.00

b4 Rainfall 0.2246 0.0288 0.1710 0.2820 1.00

b5 NDVI 20.1999 0.0296 20.2582 20.1438 1.01

b3 Relative humidity 20.0651 0.0523 20.1685 0.0381 1.00

s2
u Spatial structured

parameter
18.13 3.358 12.79 25.99 1.00

s2
t Temporal structure

parameter
1.243 0.3445 0.76 2.08 1.00

Ae. vexans b2 Delta 20.0327 0.0073 20.0471 20.0182 1.00

b1 Rainfall 20.0045 0.0005 20.0054 20.0035 1.00

s2
t Temporal structure

parameter
1.15 0.355 0.682 1.977 1.00

NB: DIC value for Culex poicilipes 515324.4; DIC value for Aedes vexans 55901.82. Mean: posterior mean, sd: posterior standard deviation, 2.5% and
97.5%: quantiles of the distribution provide the credible interval, Delta 5 Max temperature-Min temperature.

doi:10.1371/journal.pone.0114047.t001
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To assess the predictive capacity of the model, the posterior predictive

distributions (posterior predictive mean and 95% prediction intervals) of the

abundances of the two vectors were simulated based on the parameters estimated

using the two best models (considering unknown random effects) in terms of the

number of individuals collected, all land cover classes combined (Figure 2A–B),

and each land cover class for Ae. vexans. The models captured correctly the intra-

seasonal variability in the abundance of two important vectors, which has

implications for disease risk in areas where the virus is circulating, even if in some

cases the model underestimated or overestimated the number of individuals

compared with the field data. The predictions of the best model for Ae. vexans

captured the variability in the observed data correctly during the period of peak

abundance in the different land cover classes (Figure 3A–F).

Vector risk map

The GLMM model for each vector was used to generate a prediction map for the

period of peak abundance. The highest abundance of Cx. poicilipes was predicted

to occur in close proximity to Kangaledji and Niakha ponds during the abundance

peaks, i.e., in the first fortnight of September (Figure 4A) and second fortnight of

October (Figure 4B) in 2005, and the first half of October in 2006 (Figure 4C). In

2005, the predicted distribution of Ae. vexans showed that this species was

abundant near Beli Boda pond during the second fortnight of July (Figure 5A)

and in the Northern and Eastern part of Niakha pond during the second

abundance peak in October (Figure 5B). In 2006, the highest abundance of Ae.

vexans was predicted near Niakha and Beli Boda ponds during the second

fortnight of July (Figure 5C) and in close proximity to Niakha pond, in the second

half of September (Figure 5D).

Discussion

The impacts of spatially heterogeneous environmental and climatic factors on

mosquito population dynamics are complex and poorly understood. In particular,

for vector-borne diseases such as RVF, understanding the interactions between the

vectors, hosts, and their environment may provide useful insights into the

conditions that are suitable for pathogen transmission and amplification. Previous

studies in the Barkédji area have shown that Ae. vexans and Cx. poicilipes are the

two main vectors involved in the transmission of RVFV in terms of virus isolation,

bio-ecology, and abundance [11, 63]. Switches in dominance between Cx.

poicilipes and Ae. vexans in the Barkédji area were observed on a regular basis

between 1990 and 1995 [8], but the factors involved in these changes and their

impacts on the epidemiology of RVF remain unknown [11]. The analysis of a

longitudinal dataset based on the abundance of these two main vectors, as well as

the environmental and ecological conditions that are favorable for their

development, may facilitate the prediction of their spatial occurrence and the
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Figure 2. Temporal pattern of observed and predicted abundance. Observed and predicted for Cx. poicilipes (A) and for Ae. vexans (B).

doi:10.1371/journal.pone.0114047.g002

Figure 3. Temporal pattern of observed and predicted abundance by land cover class. Observed and predicted for Ae. vexans, A: pond, B: Wooded
savannah, C: shrubby savannah, D: Bare soil, E: Steppe, F: Village.

doi:10.1371/journal.pone.0114047.g003
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identification of areas that could be suitable for the emergence and amplification

of RVF. In this study, we determined the impacts of climatic and environmental

variables on the abundance of these vectors. In contrast to a previous study where

a significant impact was determined [11], the association between the abundance

of RVF vectors and the distance to the nearest pond was not significant in the

present study. This may have been due to the singular use of this parameter in

previous study while in our models it was associated with several other ecological

and climatic parameters. Rainfall was significantly associated with the abundance

of Ae. vexans, as demonstrated by the significant negative correlation. This result

contrasts with a previous study [11] using the same data that revealed a positive

correlation between rainfall and the abundance of Ae. vexans. These studies used

different approaches. In the study of Diallo et al. [11], the cumulative rainfall

during the fortnight was considered and analyzed alone for each year. In our

study, the cumulative rainfall 15–20 days before the collection period was used

and associated with other parameters in the models. Such contradiction have been

also exhibited by other studies using different approaches to analyze Ae. vexans

abundance in Michigan [44].

These findings highlight the complexity of the relation between rainfall and Ae.

vexans population dynamic. Several studies suggested that it is rather the first rain

and those associated with breaks that positively impact the vector abundance

[12, 52]. In addition a thorough observation of rainfall pattern in Diallo et al. [11]

suggests that heavy rainfall recorded between August and September 2005 impact

negatively the population of Ae. vexans after the peak recorded on July, while in

2006, Ae. vexans abundance peak was observed one month after the rainfall peak.

This last observation is in contradiction with the species biology whose larvae

survive and become pupae less than 10 days [9] suggesting the influence of other

parameters.

Previous studies showed that between 1961 and 2003, RVF outbreaks did not

coincide with years of heavy rainfall [31] in West Africa and the abundances of Ae.

vexans and Cx. poicilipes were not correlated with the total rainfall [31]. Rainfall

Figure 4. Prediction maps. Prediction for Cx. poicilipes during peak abundance in September 2005 (A), in October 2005 (B) and October 2006 (C). The
observed collection data are represent in green circle.

doi:10.1371/journal.pone.0114047.g004
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variability has been proposed as a key factor that affects mosquito populations

and the abundance of Ae. vexans is considered to be dependent on the alternation

of rainy and dry periods [12]. The difference between maximum and minimum

temperature was negatively associated with the abundance of Ae. vexans, which

suggested a temperature range favorable to the development of this vector.

All of the climatic and environmental variables included in the model were

significantly associated with the abundance of Cx. poicilipes. The cumulative

rainfall 15–20 days prior to trapping was positively associated with the number of

Cx. poicilipes individuals collected. Indeed, although the level of precipitation

Figure 5. Prediction maps. Prediction for Ae. vexans during peak abundance in July (A) and October (B) in 2005 and in July (C) and September (D) in
2006. The observed collection data are represent in green circle.

doi:10.1371/journal.pone.0114047.g005
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decreased throughout the rainy season after a peak in July, the population of Cx.

poicilipes increased gradually to reach its peak later at the end of the rainy season

in strong association with floating vegetation [12, 64]. This was probably

attributable to the biology of this species because few females of Cx. poicilipes

spend the dry season (period when typically, all the ground pools are completely

dry) as nulliparous mated females. These females become active at the beginning

of the rainy season and rebuild the following Culex poicilipes population [11]. A

previous study noted that there was a lag time of at least 1 month before observing

the significant positive impact of rainfall on the abundance of Cx. poicilipes [11].

These observations indicate that rainfall has indirect effects and other factors may

be associated with the abundance of this species given that the larval development

cycle is ,15 days [7]. Recently, it was suggested that the filling dynamics of

temporary ponds (conditioned by the rhythm of rain) explain a large amount of

the observed temporal variability in mosquito abundance [31], where the

distribution of rainfall events is connected with the water level of the ponds [65].

Even if these elements are positively correlated with the abundance of Cx.

poicilipes, however, they are not sufficient to explain the distribution dynamics

because it is known that several ponds with the same rainfall pattern can have

different production levels for this species. Therefore, other parameters with

dynamics that may be linked to rainfall should be considered, such as the pond

vegetation cover and the water quality, which are probable factors that affect the

production of this species [12, 65].

We detected a negative association between the NDVI and the abundance of

this vector. The NDVI was associated with a RVF outbreak in East Africa where

anomalous high values were significantly correlated with RVF activity, and they

predicted outbreaks 1–2 months before the detection of viral activity [27]. This is

also supported by other studies, which show that the vegetation biomass

surrounding ponds is a risk factor for RVF transmission regardless of the buffer

size used in the calculation [66]. This result supports the assumption that the

dense vegetation coverage on ponds is a favored mosquito resting site, which

promotes their dispersion [67].

The maximum temperature was negatively associated with the number of Cx.

poicilipes individuals collected. In contrast to the average minimum temperature,

this was the most important parameter based on its strong positive correlation

with the abundance of Cx. poicilipes. The correlation coefficient that reflected the

association between the minimum temperature and numbers of mosquitoes

collected was larger than that for the maximum temperature, which suggests that

variations in the minimum temperature may have more effect than those in the

maximum temperature. The antagonistic effect of the minimum and maximum

temperatures has been reported in previous studies on malaria transmission, the

parasite development, and the essential elements of mosquito bionomic. Indeed,

in Ethiopia, Alemu et al. [68] showed that monthly total malaria cases were

positively correlated with monthly minimum temperature and negatively with

monthly maximum temperature. Culex pipiens abundance was positively

associated with the preceding minimum temperature in the early season but
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negatively associated with maximum temperature in July and August, in a study

conducted between 1989–2005 in Michigan [44]. Furthermore, cooler tempera-

ture acted to speed mosquito development, increased relative survival, and

parasite growth rate, whereas warmer temperature caused an opposite effect

[69, 70].

Thus, the abundance of Cx. poicilipes may be associated with low temperatures.

This phenomenon appeared to be constrained by time, however, because our

results also showed that although the decreases in the minimum temperature and

maximum temperature were almost constant from the end of October, the

population of Cx. poicilipes declined dramatically. The relative humidity may

explain this decline in Cx. poicilipes populations during this period because it

decreased significantly at the end of the rainy season. Indeed, the effects of all

these parameters were delayed. The maximum and minimum temperature

affected the vector abundance during the rainy season, but the relative humidity

had the main effect at the end of the rainy season, irrespective of the temperature

variations. Other studies in the Sahel area support this finding because they

showed that high and moderate relative humidity levels did not affect the survival

rates of Anopheles gambiae during the rainy season [71]. In the present study,

however, the decline in the mosquito population at the end of the rainy season

was explained by the relative humidity and not by the temperature, where the

change in relative humidity was associated with a dramatic reduction in the

number of mosquitoes during early November. When the relative humidity was

42%, the survival decreased to a critical value of 5%, where no individual could

survive for longer than 24 h [71], thereby indicating that the relative humidity

may determine the abundance of mosquitoes at the end of the rainy season.

Indeed, low humidity reduces the survival of vectors because of dehydration and it

may lead to an increase in the number of blood meals in an attempt to

compensate for water loss [72].

Moreover, the abundance of Cx. poicilipes reached its peak during the rainy

season when the relative humidity and vegetation index were high, and the gap

between the maximum and minimum temperatures was great. The positive effect

of the thermal range on the development of this vector during this period has also

been reported for other insects, such as Symmetrischema tangolias in South

America [73]. This observation is particularly important because recent studies

have detected biases in many of the entomological and biological parameters that

are estimated to characterize transmission, where the usual approach is based

strictly on the mean monthly temperatures [74]. For malaria, it has been shown

that the mean monthly temperatures overestimate or underestimate the extrinsic

development of Plasmodium in warmer or cool conditions, respectively [74].

Furthermore, recent studies have demonstrated the influence of daily temperature

variations on the biology of the vector and parasite. In particular, it has been

shown that the important parameters governing malaria transmission (vector

survival, duration of the gonotrophic cycle, development and survival of the

aquatic stages, parasite development in the vector, and the extrinsic incubation

period of the parasite) are sensitive to daily temperature fluctuations [69, 70]. The
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impact of daily temperature fluctuations on the vector’s susceptibility to virus

infection as well as vector survival have also been established for dengue [75].

Aedes vexans and Culex poicilipes were collected from all of the land cover

classes considered in this study, but a previous study suggests that they are rare in

domestic environments [12]. Both species preferred bare soils and temporary

ponds to other land cover classes [11] because of their feeding preferences and the

availability of vertebrate hosts around temporary ponds.

To assess this hypothesis, we used the best models for the two species to

generate prediction maps for their peak abundance periods. The highest

abundance of Cx. poicilipes was predicted to occur in close proximity to Niakha

and Kangaledji ponds during the peak abundance periods of this vector. These

two ponds are located in the Ferlo fossil valley where there is a high level of

aquatic vegetation cover at the end of the rainy season. Previous studies in the

Barkédji area have identified a total of 468 ponds on July in 2003 (the size of 80%

of the individual ponds were less than 0.5 ha, whilst 2.3% were larger than 5 ha)

[76] and 1354 ponds on August during the rainy season [38]. Ponds that are

densely covered or shaded by vegetation are considered to be favorable larval

habitats for Cx. poicilipes [67]. For Ae. vexans, high numbers of adult mosquitoes

were predicted around Beli Boda pond during the second half of July at the

beginning of the rainy season, as well as in the northern part of the study area and

in the northern and eastern parts around Niakha pond. These finding indicate

that the areas of interest for mosquito activity during peak abundance periods are

the ponds in Niakha, Kangaledji, and Beli Boda, thereby highlighting the

importance of implementing control programs in these areas. The map also

showed that the northern part of the study area is one of the most important

locations, which was predicted to have a high abundance of mosquito vectors.

In this study, we developed a model to integrate climatic and ecological

parameters with effects on mosquito abundance, which have previously been

considered separately. The model determined different spatially heterogeneous

distributions for the two main vectors of RVF in the Barkédji area. Our predicted

vector distribution maps highlight areas with high potential risks of RVF

emergence, which can support surveillance and control programs. By combining

land cover classes, weather conditions, and the activity levels of the vectors, our

model predicted the areas and periods with the highest risk of vector pressure.

This information could support decision-making by stakeholders, as well as

helping end users to improve surveillance methods and to implement better

intervention strategies. This is especially important for African countries where

resources are scarce and appropriate guidance is essential for preventing mosquito

bites or reducing vector abundance. This study may contribute to the

development of an early monitoring system and it could be improved by

considering human and animals populations exposed to RVFV.
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Supporting Information

Figure S1. Number of mosquitoes collected every fortnight and cumulative

rainfall. Total mosquitoes collection every fortnight and cumulative rainfall 15–20

days prior trapping (Precipitations).

doi:10.1371/journal.pone.0114047.s001 (TIFF)

Figure S2. Spatial distribution of vectors abundance. Spatial distribution (sum

of mosquitoes collected): (A) Cx. poicilipes in 2005, (B) Ae. vexans in 2005, (C) Cx.

poicilipes in 2006, (D) Ae. vexans in 2006.

doi:10.1371/journal.pone.0114047.s002 (TIFF)

Figure S3. Climate and environmental parameters used in the models. Mean

values for NDVI, Maximum/Minimum temperature and relative humidity.

Cumulative rainfall 15–20 days prior to trapping.

doi:10.1371/journal.pone.0114047.s003 (TIFF)

Figure S4. Kernel density estimates for marginal posteriors distributions of

parameters b associated with variables. Posteriors distributions (posterior mean

in parentheses): (A) Maximum temperature, (B) Minimum temperature, (C)

Relative humidity, (D) Cumulative rainfall, (E) NDVI for Cx. Poicilipes.

doi:10.1371/journal.pone.0114047.s004 (TIFF)

Figure S5. Kernel density estimates for marginal posteriors distributions of

parameters b associated with variables. Posteriors distributions (posterior mean

in parentheses): (A) thermal range (difference between maximum and minimum

temperature), (B) Cumulative rainfall for Ae. vexans.

doi:10.1371/journal.pone.0114047.s005 (TIFF)

Figure S6. Scatter plot and loess curve. Show observed and predicted data (loess

curve in solid line) using GLMM: (A) Cx. poicilipes, (B): Ae. vexans.

doi:10.1371/journal.pone.0114047.s006 (TIF)

Table S1. Kendall’s rank correlation coefficients and the variance inflation

factors (VIFs). Variables correlated at less than 0.8 were maintained in the model.

All the VIFs of climatic and environmental variables are well below 10 suggesting

that collinearity is no longer a major issue.

doi:10.1371/journal.pone.0114047.s007 (DOC)

Model S1. WinBUGS codes for the Bayesian hierarchical models.

doi:10.1371/journal.pone.0114047.s008 (DOC)

Author Contributions

Conceived and designed the experiments: CT MD AD. Performed the

experiments: CT YB ID DD. Analyzed the data: CT MD DD. Contributed

reagents/materials/analysis tools: CT AM AAS JAN DD AD. Wrote the paper: CT

ID MD.

Modelling Rift Valley Fever Vectors Abundance

PLOS ONE | DOI:10.1371/journal.pone.0114047 December 1, 2014 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114047.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114047.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114047.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114047.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114047.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114047.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114047.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114047.s008


References

1. Easterday BC (1965) Rift valley fever. Adv Vet Sci 10: 65–127.

2. Meegan J, Bailey CL (1988) Rift valley fever. The arboviruses: epidemiology and ecology. Boca Raton,
FL: CRC Press.

3. Laughlin LW, Meegan JM, Strausbaugh LJ, Morens DM, Watten RH (1979) Epidemic Rift Valley fever
in Egypt: observations of the spectrum of human illness. Trans R Soc Trop Med Hyg 73: 630–633.

4. Jouan A, Le Guenno B, Digoutte JP, Philippe B, Riou O, et al. (1988) An RVF epidemic in southern
Mauritania. Annales de l’Institut Pasteur Virology 139: 307–308.

5. Ba Y, Sall AA, Diallo D, Mondo M, Girault L, et al. (2012) Re-emergence of Rift Valley fever virus in
Barkedji (Senegal, West Africa) in 2002–2003: identification of new vectors and epidemiological
implications. J Am Mosq Control Assoc 28: 170–178.

6. Diallo M, Lochouarn L, Ba K, Sall AA, Mondo M, et al. (2000) First isolation of the Rift Valley fever
virus from Culex poicilipes (Diptera: Culicidae) in nature. Am J Trop Med Hyg 62: 702–704.

7. Fontenille D, Traore-Lamizana M, Diallo M, Thonnon J, Digoutte JP, et al. (1998) New vectors of Rift
Valley fever in West Africa. Emerg Infect Dis 4: 289–293.

8. Traore-Lamizana M, Fontenille D, Diallo M, Ba Y, Zeller HG, et al. (2001) Arbovirus surveillance from
1990 to 1995 in the Barkedji area (Ferlo) of Senegal, a possible natural focus of Rift Valley fever virus.
J Med Entomol 38: 480–492.
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