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We study the equilibrium liquid structure and dynamics of dilute
and concentrated bovine eye lens α-crystallin solutions, using
small-angle X-ray scattering, static and dynamic light scattering,
viscometry, molecular dynamics simulations, and mode-coupling
theory. We find that a polydisperse Percus–Yevick hard-sphere
liquid-structure model accurately reproduces both static light scat-
tering data and small-angle X-ray scattering liquid structure data
from α-crystallin solutions over an extended range of protein con-
centrations up to 290 mg/mL or 49% vol fraction and up to ca. 330
mg/mL for static light scattering. The measured dynamic light scat-
tering and viscosity properties are also consistent with those of
hard-sphere colloids and show power laws characteristic of an
approach toward a glass transition at α-crystallin volume frac-
tions near 58%. Dynamic light scattering at a volume fraction
beyond the glass transition indicates formation of an arrested
state. We further perform event-driven molecular dynamics sim-
ulations of polydisperse hard-sphere systems and use mode-cou-
pling theory to compare the measured dynamic power laws with
those of hard-sphere models. The static and dynamic data, sim-
ulations, and analysis show that aqueous eye lens α-crystallin
solutions exhibit a glass transition at high concentrations that
is similar to those found in hard-sphere colloidal systems. The
α-crystallin glass transition could have implications for the mo-
lecular basis of presbyopia and the kinetics of molecular change
during cataractogenesis.
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The cytoplasm of the tightly packed fiber cells of the eye
lens contains concentrated aqueous protein mixtures that

have high refractive indexes, while normally remaining clear
enough for vision. Lens clarity depends on short-range order
between lens proteins (1, 2) and can be disrupted by both
protein aggregation and liquid–liquid phase separation in
cataract, a leading cause of blindness. At the high protein
concentrations of lens cytoplasm, 25–60% by weight in
mammals, small changes in interprotein interactions can dis-
rupt transparency. For human lens proteins with cataracto-
genic point mutations, and for high-concentration lens protein
mixtures, protein interaction changes as small as a fraction of
thermal energy, kBT, can induce phase separation and thus
lead to opacification (3–7).
In addition to equilibrium phase transitions, dynamical

transitions including glass formation and gelation can also
occur at high protein concentrations like those of the eye lens
(8, 9). Relatively abrupt viscoelastic changes associated with
glass formation or gelation could harden the lens and con-
tribute to presbyopia and could alter cataract formation rates
by affecting aggregation and phase separation kinetics.
Here we study the equilibrium liquid structure and dy-

namics of concentrated solutions of eye-lens α-crystallin
protein solutions, using small-angle X-ray scattering (SAXS),
static light scattering (SLS) and dynamic light scattering

(DLS), viscometry, liquid-state theory, event-driven molecu-
lar dynamics (MD) simulations, and mode-coupling theory
(MCT). α-Crystallin is a polydisperse protein with about 40
subunits of two types, αA and αB, and accounts for up to 50%
of lens protein mass. The forward scattering intensity from
SAXS and light scattering experiments with concentrated
α-crystallin solutions can be well represented by monodisperse
hard-sphere liquid-structure models that have been key for
understanding short-range order needed for lens transparency
(1, 2). However, in physiological conditions α-crystallin ranges
in molecular weight from 3 × 105 to 2 × 106, with an average
near 8 × 105 (10). There have indeed been reports that
structure factors obtained from SAXS and small-angle neu-
tron scattering data deviate from predictions for monodis-
perse hard spheres (11, 12).
Accordingly, we first show that a polydisperse hard-sphere

liquid-structure model (PHSM) based on the Percus–Yevick
(PY) approximation (13) can accurately model SAXS data
obtained from the present bovine α-crystallin preparations for
volume fractions up to 49%, using a polydispersity of 20%. In
contrast, polydispersity did not strongly influence model pre-
dictions for the observed SLS, which unlike SAXS probes length
scales much larger than molecular sizes.
We then test for glassy dynamics of α-crystallin solutions, using

DLS and viscometry, and find glass transition features like those
previously found for hard spheres. In particular, with increasing
α-crystallin concentration, DLS intermediate scattering func-
tions show expected progressively slower relaxations along with
fast decays, and the viscosity diverges, both when approaching
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volume fractions in the vicinity of 58%. Using MCT (14), we
obtain semiquantitative models of DLS data and corresponding
data from MD simulations of high-concentration polydisperse
sphere systems, in which MD polydispersity values were obtained
from fits of the PHSM to the SAXS data. We note that for MCT
we have used the theory for monodisperse systems, because the
majority of the MCT work to date has focused on such systems.
Recent results for polydisperse systems (15) support a similar
overall picture.
In brief, the data show that the present α-crystallin solutions

have liquid structure and glassy dynamics similar to those of
polydisperse hard-sphere solutions. Thus, eye lens protein sol-
utions show analogs to ordinary glass in linking short-range or-
der, transparency, and arrested dynamics.

Experimental Results
We first investigate structural properties of α-crystallin sol-
utions with SAXS. Fig. 1 (Top) shows the measured structure
factors SMðqÞ= ðIðqÞ=cÞ=ðI0ðqÞ=c0Þ vs. scattering vector mag-
nitude, q, for concentrations c> c0, in which IðqÞ denotes
scattered intensity, c is the weight per volume protein con-
centration, and I0 is the intensity from the form factor sample
at concentration c0 = 5 mg/mL. As c increases, there is a dra-
matic reduction of SMð0Þ and a growing first peak of SMðqÞ,
both characteristics of monodisperse and somewhat poly-
disperse hard-sphere solutions. Scattering intensities IðqÞ vs. q
are shown in Fig. S1. The term measured is used because
α-crystallin is polydisperse.
Hard-sphere models have been used to interpret scattering data

from α-crystallin solutions (4, 11, 16). Fig. 1 (Bottom) compares
the measured reduction of SLS and SAXS SMð0Þ with c to that of
the Carnahan–Starling (CS) equation of state for monodisperse
hard spheres (HS) (17), SCSð0Þ (red dashed curve),

SCSð0Þ= ð1−ϕÞ4
ð1+ 2ϕÞ2 +ϕ3ðϕ− 4Þ; [1]

where ϕ is the α-crystallin packing fraction. To relate ϕ to c we
used α-crystallin packing volume per unit weight (voluminosity)
v=ϕ=c= 1:7 mL=g (4, 11, 16). This packing volume, larger than
that of a typical globular protein, v= 0:7 mL=g, reflects α’s open,
multisubunit structure (11). We find that Eq. 1 reproduces SMð0Þ
over the entire concentration range.
We next measure the zero shear viscosity η0 and collective

diffusion coefficientD of α-crystallin solutions and compare them to
those of hard-sphere solutions, again using v= 1:7 mL=g. Fig. 2
(Top) shows that the relative zero-shear viscosity ηr = η0=ηs, mea-
sured using cone and plate viscometry, increases by six orders of
magnitude as ϕ approaches 0:55−0:6; here ηs is the solvent vis-
cosity, 7:93× 10−4 Pa·s. The dramatic increase of α-crystallin ηr is
similar to that found for hard-sphere colloid glass formation (18)
and glass formation of the proteins BSA (19) and β-lactoglobulin
(20). Fig. 2 (Top) shows that the α-crystallin ηrðϕÞ data are well
fitted by the Krieger–Dougherty (KD) form, often used to model
hard-sphere ηrðϕÞ,

ηr =
�
1−

ϕ

ϕm

�−½η�ϕm

; [2]

where ½η� is the intrinsic viscosity and ϕm is the volume fraction at
which ηr diverges, as discussed below.
Fig. 2 (Middle) shows D=D0 vs. ϕ; D0 = 2:2× 10−11 m2/s is the

free-particle diffusion coefficient from extrapolation to ϕ= 0.
The solid line is the theoretical prediction for hard spheres,
D=D0 = 1+ 1:45ϕ (21, 22). Thus, the low-concentration D=D0 is
consistent with the hard-sphere picture.
Fig. 2 (Bottom) shows the intermediate scattering function

(ISF) or normalized field autocorrelation function f ðq; tÞ mea-
sured by DLS as a function of ϕ. For ϕ≥ 0:435 (256 mg/mL),

f ðq; tÞ shows bimodal decay, and the slower component grows
in amplitude and relaxation time with increasing ϕ. At
ϕ= 0:58, a characteristic slow decay time τ, gauged here as
that to reach f ðq; tÞ= 0:25, as illustrated, is six orders of
magnitude slower than the corresponding low-concentration
relaxations of 10−4 s. At the highest-volume fraction, ϕ= 0:74,
the ISF shows characteristics of an arrested or nonergodic
sample. Therefore, f ðq; tÞ was also measured using a slowly
rotating sample, as described in SI Text, and shows a very
slowly decaying plateau indicative of dynamical arrest.
The ηr , D=D0, and ISF data suggest that the HS model used

for static scattering can also represent dynamic properties. We
now analyze the statics and dynamics in more detail.

Analysis and Discussion
Structural Properties and Polydispersity. The structural analysis
above did not consider polydispersity, an α-crystallin feature that
we wish to incorporate quantitatively into MD. We found that
SMð0Þ vs. c does not usefully distinguish polydisperse from
monodisperse α-crystallin equation of state models. Fig. 1
(Bottom) shows close agreement between SCSð0Þ (red), the
monodisperse PY model (green), and the PY SMð0Þ (black)
for a Schulz HS diameter distribution (13) with variance
σ2 = p2 and p= 0:20, using

SMð0Þ= ð1−ϕÞ4
ð1+ 2ϕÞ2

"
1+

6ϕð1+ 2ϕÞ
ð1−ϕÞ2 ·

�
1+ 3σ2

�
ð1+ 5σ2Þ

−
9ϕ2

ð1−ϕÞ2 ·
�
1+ 3σ2

�2
ð1+ 5σ2Þð1+ 4σ2Þ

#
:

[3]

Instead, to estimate σ for input to MD, we compared SAXS
SMðqÞ with the polydisperse Schulz PY model (13), as shown
in Fig. 3 (Top) for c= 290 mg/mL (ϕ= 0:49), using p= 0 (mono-
disperse, gray line), p= 0:1 (dotted-dashed red line), and p= 0:20
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Fig. 1. (Top) Structure factors SMðqÞ deduced from the SAXS IðqÞ data, using
the 5-mg/mL data for the measured form factor PMðqÞ. (Bottom) SMðq→0Þ
vs. ϕ from both SLS and SAXS agree with hard-sphere models, but do not
distinguish the polydisperse PY, Schulz-distributed mixture model with
p= 0:20 (black) from either the monodisperse PY (green) or the Carnahan–
Starling (red) models.
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(black line). p= 0:20 closely reproduces the measured SMðqÞ,
whereas the monodisperse model that fits SMð0Þ fails for inter-
mediate and large q. Fig. 3 (Bottom) shows that p= 0:20 fits the
entire range (48 mg/mL ≤ c≤ 290 mg/mL) of SMðqÞ. Fig. S2
shows 1−R2 goodness-of-fit values vs. p and d, the number-
average diameter; p= 0:20 and d= 15 nm are close to 1−R2

minima over the entire concentration range. d= 15 nm is con-
sistent with previous analyses of small-angle neutron scattering
(SANS) data (4). This analysis illustrates that the first peak of
SMðqÞ can help quantify polydispersity.
Having fixed v=ϕ=c= 1:7 mL=g, p= 0:20, and d= 15 nm, the

calculated weight-average molecular mass of the α-crystallin is
Mα

W = 700± 125 kDa, in the range typically obtained by SLS (11).
With p= 0:20 the intensity-weighted dilute solution hydrodynamic
radius Rh = hR6i=hR5i = 9 nm agrees well with Rh = 9:6 nm
obtained from the DLS-measured free-particle diffusion co-
efficient, D0 = 2:2× 10−11 m2/s (Fig. 2), via the Stokes–Einstein
relation. We note that whereas the predominant α-crystallin
fractions used here are well modeled by spheres, higher molecular
weight fractions show rod-like growth (23); thus a more general
model for α scattering will call for shape and size polydispersity.

The present SAXS model differs from that in ref. 11; there,
polydispersity was not included and SAXS data were modeled
with vðϕÞ ranging from 1:951 mL=g at low concentration to
1:4 mL=g at 0:35  g=mL. The present SAXS data alone do not
rule out nonconstant vðϕÞ. However, with v= 1:7 mL=g, the ex-
perimental weight per volume glass concentration cg estimated
from dynamics gives ϕm = 0:58, consistent with hard spheres. If v
were 1:4 mL=g at high concentrations, cg would give ϕm = 0:4,
incompatible with hard spheres without attractions, whereas the
Sðq= 0Þ data (Fig. 1, Bottom) are well fitted by hard-sphere
models and do not show evidence of attractions.

Dynamic Properties. We now compare dynamic and glassy prop-
erties of α-crystallin solutions with HS models. The KD model fit
(Fig. 2) to ηr vs. ϕ gives intrinsic viscosity ½η�= 5:5± 0:5 and
transition packing fraction ϕm = 0:579± 0:004. The same ½η�
results from a low-ϕ fit to ηr = 1+ ½η�ϕ (Fig. S3, Top). Whereas
½η�= 5:5 exceeds the theoretical value of 2.5 for monodisperse
hard spheres, it is in the range of experimental and theoretical
values for the globular proteins lysozyme, chymotrypsinogen-A,
human serum albumin, and β-lactoglobulin (24–26), for which
data in ref. 26 were available to convert weight per volume
concentrations in refs. 24 and 25 to ϕ; for these proteins
3:4≤ ½η�≤ 6:4. At the high concentrations, Fig. S3 (Bottom)
suggests that ηr is compatible with a power law of the form

ηr ∼ jϕ−ϕcj−γ ; [4]

with uncertainty in the value of γ. The high-concentration part of
the KD model fit [Fig. S3, Bottom (black line)] would yield
γ = 3:2. However, the KD fit misses the three very high-concen-
tration points we were able to obtain for jϕc −ϕj< 10−1 [Fig. S3,

Fig. 2. (Top) α-Crystallin solution low shear rate relative viscosity
ηr = η0=ηs vs. α-crystallin volume fraction ϕ, using v = 1:7 mL=g consistent
with SAXS and SLS (see text). (Middle) Normalized diffusivities ðD=D0ÞðϕÞ,
from second-order cumulant fits to the DLS-measured ISF fðq,tÞ. D0 = 2:2× 10−11

m2/s is the free-particle diffusion coefficient as ϕ approaches 0. Dashed line: the
HS theoryD=D0 = 1+ 1:45ϕ. (Bottom) DLS fðq,tÞ vs. delay time t; q = 0.023 nm−1.
Progressively slower fðq,tÞ decays with increasing ϕ are qualitatively similar to
those from MD simulations (Fig. S4, Top). Slow relaxation times τq for which
fðq,τÞ=0:25 (dashed line) are shown in Fig. 5 (Left).
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Fig. 3. Comparison of experimental structure factors SMðqÞ for α-crystallin
solutions with polydisperse hard-sphere Percus–Yevick liquid-structure
models, showing the basis for the parameter values p= 0:20 and d = 15 nm
used in the present work. (Top) SAXS SMðqÞ for c= 290 mg/mL, corre-
sponding to a deduced ϕ= 0:49. Percus–Yevick predictions are shown for
three polydispersity parameters: p= 0 (monodisperse, thin gray line),
p= 0:1 (dotted-dashed red line), and p= 0:20 (thick black line). p= 0:20
closely reproduces the measured SMðqÞ, whereas the less polydisperse
and monodisperse models do not match the data. (Bottom) Over the
entire range of lower α-crystallin concentrations measured, the same
polydisperse Percus–Yevick SMðqÞ with p= 0:20 (solid lines) closely
reproduces the experimental SMðqÞ.
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Bottom (blue line)], close to ϕc where MCT predictions are
expected to be most applicable; the latter give γ = 2:8 and would
yield ϕc = 0:58± 0:02. In comparison, experiments on hard-sphere
glass transitions in colloids report γ ≈ 2:5 and ϕc = 0:58± 0:02 (27–
29). Experiments including polydispersity indicate a 5% increase
in ϕc for p= 0:3, compatible with ϕc = 0:58± 0:02 for p= 0:2 as
found here, and ηrðϕÞ is still well described by the KD model
when polydispersity is included (30). Thus, both the dramatic
increase of α-crystallin ηrðϕÞ and its near power-law dependence
are consistent with previous work on hard-sphere glass transi-
tions. The maximum ηr ≈ 106 is larger than previously measured
values for colloidal hard spheres by about two orders of magni-
tude (29). We hypothesize that because the shear rate _γ needed
to reach the zero shear limit vanishes near the glass transition as
_γ ≈ kT=6πR3η0ðϕÞ→ 0, the relatively small diameter of α-crystal-
lin, d= 15 nm, allows measurements of the zero shear viscosity
closer to the glass transition. In comparison, for synthetic colloids
true hard-sphere behavior is difficult to retain for 2R< 200 nm.
To introduce the DLS analysis we briefly review relevant features

of concentrated hard-sphere dynamics. Pusey and van Megen (31)
found that colloidal hard spheres show dynamical slowing down that
results in arrested, amorphous states at high packing fractions. The
arrested states have very high macroscopic viscosities with relaxation
times comparable to or larger than typical experimental times.
Microscopically, relaxation of spontaneous number density fluctu-
ations of spatial wavelength 2π=q, ρq, can be measured by the ISF,
f ðq; tÞ, which for monodisperse systems is

f ðq; tÞ= 1
N

D
ρqð0Þρ−qðtÞ

E
SðqÞ ; [5]

where f ðq; t= 0Þ= 1 for the chosen normalization. In a normal
fluid, the ISF relaxes exponentially, as shown schematically in
Fig. 4 (Top, Inset). Approaching a glassy state, dynamical slowing

down, which can eventually lead to dynamical arrest, creates
additional slow ISF components that become more prominent
at high concentration, as observed for α-crystallin (Fig. 2, Bot-
tom). Fig. 4 (Top) schematically illustrates the origins of the
principal relaxation processes, termed β- and α-relaxations.
The increasing separation of ISF characteristic decay times with
increasing concentration results from a so-called cage effect. At
short times, particles diffuse within their surrounding cages, and
the ISF shows a short time drop called the β-relaxation. Collec-
tive, coordinated rearrangement of caging particles is needed for
escape of a central particle, and particles can be trapped for long
times. This results in a very slow ISF drop called the α-relaxation.
As liquids approach glassy states, the separation between β- and
α-relaxation times grows, and a plateau region can occur in be-
tween, as in Fig. 4 (Top, Inset).
Although the α-crystallin DLS data (Fig. 2) show more than

two relaxations, they do show fast and slow relaxations with rates
that separate as concentration increases. At q= 0:023 nm−1, the
β-relaxation decay times are close to 10−4 s. Fig. 4 (Top) shows
the DLS f ðq; tÞ at the highest fluid concentration assayed, 340
mg/mL, for analysis below.
As indicated in Fig. 4 (Top, Inset), MCT predicts a glassy-state

ISF that remains finite, at a value fq called the nonergodicity
parameter; at concentrations above an ideal glass transition
point ϕc, limt→∞f ðq; tÞ= fq. For fluids near a glass transition,
MCT predicts leading-order scaling laws for approach and de-
parture of the ISF to and from such a plateau, respectively,��� f ðq; tÞ− fq

���∝ t−a [6]

��� f ðq; tÞ− fq
���∝ tb; [7]

where a and b are related by Γ functions,

½Γð1+ bÞ�2
Γð1+ 2bÞ =

½Γð1− aÞ�2
Γð1− 2aÞ : [8]

MCT also predicts a power-law divergence of the slow relaxation
time τq near ϕ=ϕc and a decrease in the slow diffusivity D. All
involve the a- and b-dependent exponent γ:

γ =
�
1
2a

�
+
�
1
2b

�
[9]

τq ∼ jϕ−ϕcj−γ [10]

D∼ jϕ−ϕcjγ : [11]

Polydispersity may also affect dynamics near the glass transition,
as smaller spheres may require less cage rearrangement to
escape, whereas larger spheres contribute more to the measured
ISF. Therefore, we performed MD of polydisperse HS systems,
using p= 0:20 obtained above. MD mean-square displacements
(MSD) and intermediate scattering functions (ISF) are shown in
Fig. S4. The MD MSD and ISF show caging features as de-
scribed, and MD ISF are qualitatively similar to DLS ISF, in-
cluding the sloping “plateau” region.

Dynamic Light Scattering: Two-Step Relaxation. We analyze the
DLS-measured ISF at the highest fluid concentration, 340 mg/mL
or ϕ= 0:58 (Fig. 4, Top), in terms of MCT predictions, as done
for colloidal glassy dynamics by Bartsch et al. (32). Because the
measured ISF has substantial slope between the fast and slow
decays, consistent also with MD results, a tightly constrained
range of values of fq is not at first clear, but results from the fits.
Using Eqs. 6 and 7, we can fit a and b directly, or fit a (or b),
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Fig. 4. (Top, Inset) Schematic of idealized hard-sphere relaxation modes
near dynamical arrest: fast motion within cages of caged neighbors (β-relaxation)
and slow exchange between cages (α-relaxation). The plateau value, fq, and
approach and departure power-law exponents a and b (Eqs. 6 and 7) are shown.
τq is the slow relaxation time, defined as in Fig. 2. (Top plot) Comparison of the
experimentally determined ISF fðq,tÞ at c = 340 mg/mL ðϕ= 0:58Þ with the
theoretical predictions for the approach to and from the plateau value fq.
(Bottom) Rectification plot (32) of power-law fits to find a and b from ISF plateau
approach and departure (text). fc =0:863.
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cross-check the MCT prediction by using Eq. 8 to determine
b (or a), and finally compare with the b (or a) from a direct fit.
Upon fitting b first, we obtain b= 0:495± 0:010 (mean ± SD)
and fq = 0:863± 0:002, from which a= 0:285± 0:010. First fitting
a, we find a= 0:27± 0:05 and fq = 0:854± 0:007, from which
b= 0:45± 0:14. Thus, the two routes give similar results; we use
those from first fitting b, which have smaller error because the
ISF decay from the plateau is well described with b for three
decades of delay time, whereas the power-law portion of the
approach applies only over one decade. To test the fitted value
of fq, in Fig. 4 (Bottom) we plot

��f ðq; tÞ− fq
��, as for colloidal

systems (32). Power laws for approach and departure from the
plateau are evident. The fitted values of a and b, when used in
Eq. 9, now give γ = 2:8± 0:2, consistent with the ηr results. The
values of a, b, and γ agree well with the ranges of hard-sphere
colloid values from full MCT theory (33, 34), simulations (35),
and experiments (32, 36): 0:226< a< 0:301, 0:339< b< 0:545,
and 2:57< γ < 3:6. Fig. S5 shows MD results that correspond to
the experimental plots from Fig. 4. It shows fq and the power-law
plot, using γ = 2:8 from MD simulations at ϕ= 0:5925 and
q= 0:110 nm−1; a comparable plot is noisy for the MD simu-
lations at q= 0:037 nm−1. Suitably reducing the MD simulation
noise at the DLS q-vector magnitude 0.023 nm−1 would at
present be prohibitive in computation time.
The MCT theory used is not restricted to monodisperse sys-

tems; MCT glass transition tests have used polydisperse colloids
to prevent crystallization at ϕX = 0:494 (31). Although poly-
dispersity slightly affects a, b, and γ, the overall picture is es-
sentially unchanged (15). MCT validity has been debated for
hard spheres above the MCT glass transition, in particular the
form of Eqs. 6–11 (37–41), but this debate applies to higher
concentrations than those studied here.
Finally, we use MD and DLS to test predicted MCT power laws

in Eqs. 10 and 11, using γ = 2:8± 0:2. MD number-average self-
diffusion coefficients Ds;na show power-law dependence and yield
ϕc = 0:6074± 0:0003, as described in SI Text and shown in Fig. S6.
We tested Eq. 10, using the DLS and MD τq values that satisfy
f ðq; τqÞ= 0:25. For DLS data, q= 0:023 nm−1, whereas for MD,
q= 0:0366 nm−1 is the smallest number achievable with the present
simulation box. MD q values 0.1093, 0.4516, and 0.6559 nm−1 are
before, at, and after the first SMðqÞ peak, respectively. Fig. 5 (Left)
shows the resulting DLS and MD τq values. Fits of Eq. 10, with
γ = 2:8± 0:2, agree well with MD and DLS for ϕ near ϕc.
Specifically, DLS yields ϕexp

c = 0:585± 0:01, and MD yields
ϕsim
c = 0:603± 0:002 for q= 0:0366 nm−1, ϕsim

c = 0:5990± 0:0003
for q= 0:1093 nm−1, ϕsim

c = 0:5977± 0:0004 for q= 0:4516 nm−1,
and ϕsim

c = 0:5978± 0:00005 for q= 0:6559 nm−1. Fig. 5 (Right)
exhibits the q-dependent power laws describing τq vs. ϕc −ϕ
with γ = 2:8. These DLS and MD ϕc estimates are consistent
with ϕc = 0:58± 0:02 obtained from the relative viscosity.

Conclusions
We have used a polydisperse hard-sphere liquid-structure model to
accurately reproduce small-angle X-ray scattering data on α-crys-
tallin solutions over a range of protein concentrations from 48mg/mL
to 290 mg/mL and static light scattering data from dilute con-
centrations up to 330 mg/mL. Dynamic light scattering, viscom-
etry, polydisperse hard-sphere molecular dynamics simulations,
and mode-coupling theory scaling relations indicate that high-
concentration aqueous α-crystallin solutions behave like glassy
materials and approach a glass transition volume fraction ϕc near
58%. Measured and simulated dynamic properties of concen-
trated α-crystallin solutions show power-law dependences on the
volume fraction difference ϕc −ϕ that are compatible with previous
work on glass-forming hard-sphere colloids and with predictions of
mode-coupling theory. At high concentrations, the measured and
simulated intermediate scattering functions show a prominent two-
step decay that is also characteristic of a glass transition.
Whereas α-crystallin is a major lens protein and shows re-

pulsive, hard-core interactions as modeled here, it accounts for

about 40% of the lens crystallins in the human lens (42). Thus,
although the high concentrations of α-crystallin studied here are
comparable to the overall crystallin concentrations in the human
lens (42), studies of the dynamics of realistic high-concentration
lens protein mixtures will also need to include the phase-sepa-
rating γ-crystallin, which shows attractive interactions with itself
and with α-crystallin (4–7), as well as mixtures that include
β-crystallins (43), oligomeric proteins that show repulsive inter-
actions with each other (44).
We note that in our work on the equilibrium light scattering,

phase separation, and liquid structure of high-concentration
mixtures of γ- and α-crystallins (3–7), contrasted with the
present studies of α-crystallin statics and dynamics by itself, we
have not yet incorporated α-crystallin polydispersity, a topic
that bears further study.
The present, polydisperse hard-sphere model for high-con-

centration α-crystallin solutions is a useful starting point for
studying dynamics of lens protein mixtures at high concentra-
tion, together with related equilibrium properties (3). High-
concentration lens protein dynamics may have implications for
the development of presbyopia and cataract. First, it is tempt-
ing to speculate that age-related changes in lens protein
interactions may induce an arrest transition in the lens nucleus,
changing the protein mixture from a fluid-like to an arrested
glassy state, with a dramatic increase in stiffness (45, 46). Be-
cause presbyopia is believed to involve age-related stiffness
increase in the lens core, our finding that the major lens protein
component α-crystallin undergoes a hard sphere-like glass tran-
sition calls for additional investigation of lens protein mixture
dynamics, at the high concentrations present in vivo. Second,
proximity to an arrest transition could also affect the kinetics of
lens protein aggregation and could thereby influence the rate of
cataract formation.

Methods
Sample Preparation. Stock solutions of α-crystallin were prepared following
Tardieu et al. (47), with use of size-exclusion chromatography of cortical
homogenates from 4-mo-old calf lenses. Ultrafiltration was used for con-
centration. Further details are given in SI Text.

Small-Angle X-Ray Scattering. SAXSmeasurements were carried out in a 1-mm
quartz capillary at T = 20 °C, using a pinhole camera (NanoSTAR; Bruker
AXS), equipped with a sealed Cu-Kα tube, a thermostatically regulated
sample chamber, and a 2D gas detector. The scattering vector range was
0:1 nm−1 ≤q≤ 2 nm−1.

Light Scattering. Light scattering experiments were performed with a com-
mercial ALV/DLS/SLS-5000F monomode fiber compact goniometer system
equipped with an ALV5000/E fast correlator and a solid-state laser (COMPASS
315M-150; Coherent, Inc.; λ= 532 nm, 150 mW). The temperature was regu-
lated by a circulating water bath at 20 °C. Ten-millimeter diameter quartz
cuvettes were used for samples with concentrations 5 mg/mL < c < 100 mg/mL.
High-quality NMR tubes with a diameter of 5 mm (Armar AG) were used at
higher concentrations, to suppress possible multiple-scattering effects. Mea-
surements of the arrested sample at c = 435 mg/mL were performed with
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values reported in the text.
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a modulated 3D cross-correlation light-scattering instrument (LS Instru-
ments) at a scattering angle of 140° and a wavelength of 632 nm. Further
details are given in SI Text.

Rheology. Rheological measurements were carried out on a Paar Physica 300
stress-controlled rheometer, using a cone-and-plate geometry (25 mm cone
diameter, 2° cone angle). The experiments were done at 20 °C, using
a temperature control unit TEK 150P. A standard solvent trap was used to
protect the samples against drying. Viscosity measurements at a constant
shear rate were performed at shear rates between 0.1 s−1 and 1,000 s−1, and
the viscosity was monitored over extended periods of time to verify steady-
state conditions. The zero-shear viscosity was then obtained from the low
shear rate limit of these flow curves.

Simulations. We performed event-driven molecular dynamics simulations
(48) of 5,000 polydisperse hard spheres, having diameters typically in 20
binned categories, to represent a Schulz distribution for which a PY liquid-

structure model has been detailed (13). The average diameter was Ædæ= 1.
Because the simulation system is athermal, temperature was fixed to T = 1.
Further details are given in SI Text.
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