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ABSTRACT We propose an algorithm providing se-
quences of model proteins with rapid folding into a given
target (native) conformation. This algorithm is applied to a
chain of 27 residues on a cubic lattice. It generates sequences
with folding 2 orders of magnitude faster than that of the
practically random starting sequence. Thermodynamic anal-
ysis shows that the increase in speed is matched by an increase
in stability: the evolved sequences are much more stable in
their native conformation than the initial random sequence.
The unfolding temperature for evolved sequences is slightly
higher than the simulation temperature, bearing direct cor-
respondence to the relatively low stability of real proteins.

Biological activity of globular proteins is closely related to the
existence of their unique three-dimensional structures. Pro-
teins having unique structure must satisfy two conditions: (i)
the structure must be thermodynamically stable and (ii) it must
be kinetically reachable in a biologically reasonable time. It
was conjectured by Levinthal (1) that only evolutionarily
selected sequences are able to fulfill both of these require-
ments.
The subsequent development of protein folding theory pro-

vided a solid support to this hypothesis. It was shown analytically
(2, 3) and numerically (3-6) for several models of proteins that
condition i ofthermodynamic stability is not too restrictive. Itwas
conjectured (2, 3) that there exists a critical temperature, T_, such
that a significant fraction of random sequences have a stable
unique structure at T < Tc. It was also pointed out (2) that the
probability for a random sequence to have a stable unique
structure at T < TC does not depend on its length N. This result
was confirmed in a more recent numerical study (6). However,
most importantly, the native conformation becomes kinetically
inaccessible at T < T,. This was shown first by Bryngelson and
Wolynes (7), who found that T, (Tg in their notation) is a glass
transition temperature below which kinetics slows dramatically,
so that it takes exponentially long in chain-length N time
("Levinthal" time) to reach the ground state at T < Tc. This
introduces the new paradox: for random sequences, T < TC for
stability and T> T,for kinetic accessibility ofthe native state. The
implication is that random sequences are not able to fold into a
unique structure.
The principal way out is to find special sequences that have

their native structures stable at T > Tc (8), resolving the
contradiction between the thermodynamic and kinetic re-
quirements characteristic for random sequences. The require-
ment that a sequence has a native structure stable at T > TC
imposes the necessary condition that it is a pronounced energy
minimum separated by a large energy gap from the set of
nonnative conformations (8-10). To meet the requirement of
chain stability at T > Tc, independent of chain length, the size
of the energy gap A must scale with the chain length N as A -

NkBTC (8, 9, 11). The probability Pa of finding a random
sequence with energy gap A was estimated (3, 10) to be
-exp(-A/kBTC). This implies that only an exponentially van-
ishing fraction of random sequences [-exp(-aN)] are able to
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fold. In contrast, the energy gap for a typical random sequence
is of the order of a few kBTC for any chain length; that is why
a sufficiently low temperature is needed to make their native
state stable (2).
The probability of finding a folding sequence by simply

pulling it out at random from the "soup" of all possible
sequences is very small for chains of realistic length. This seems
to introduce a "Levinthal paradox" in sequence space. How-
ever, this difficulty may be overcome by a simple sequence
design algorithm suggested in refs. 9 and 12. The algorithm
generates sequences that have sufficiently low energy in a
chosen target conformation. The energy gap in designed
sequences was indeed large enough to enable them to fold fast
to the stable native conformation (13-15), which coincided
with the target conformation used at the design stage. The
design algorithm is based on the idea of Monte Carlo search
in sequence space. It proceeds by making mutations in se-
quences, biasing them by Metropolis criterion (16) with "se-
lective temperature" T,el to sequences with low energy of the
native state. The Metropolis bias in the algorithm made it
possible to find sequences having energies sufficiently low for
folding in spite of the fact that the fraction of such sequences
among all possible ones is exponentially small, although their
number is still exponentially large.
The results of refs. 9, 14, and 15 demonstrate that sequence

design aimed at generating thermodynamically stable se-
quences for a specific conformation makes this conformation
accessible-i.e., that thermodynamic stability is a sufficient
condition for fast folding. We may ask now, Is it also a
necessary condition for fast folding?
To address this question, we invert the approach taken in

refs. 9 and 14 and develop a design algorithm aimed at direct
optimization of the folding rate to provide fast-folding se-
quences. The idea of the algorithm is simple. An attempt at a
random point mutation is made. If the new sequence folds
slower than the current sequence, then the mutation is rejected
with large probability. If the mutation results in faster folding,
then with high probability the mutation is accepted. Therefore,
after a large enough number of mutations we expect to
generate fast-folding sequences.
The idea of our selection algorithm is similar in spirit to the

idea of simulated annealing. However, there is an important
difference. Usually, in simulated annealing the optimized quan-
tity (for example, the energy of a system) can be calculated
exactly. This is not the case for the selection algorithm. In this
case, the optimized quantity is the folding time or, more precisely,
the mean first passage time (MFPT) to the native conformation.
An exact determination of this quantity would require an infinite
number of folding simulations. In reality, we can have only an
estimate of the MFPT. Moreover, each folding takes a long time;
therefore, we cannot afford to get very good statistics.
Taking this into account, we developed the following three-

step algorithm for evaluation of the kinetic consequence of a
point mutation. In step 1, we perform two folding runs and
estimate very roughly the new MFPT. If it is longer than the
original MFPT, then the mutation is rejected; if the new MFPT
is shorter, thenwe estimate the new MFPTmore precisely in step

Abbreviation: MFPT, mean first passage time.
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2. The purpose of step 1 is to reject outright obviously poor
mutations, which constitute the majority of all mutations. In step
2, we perform 10 folding simulations and therefore get a much
more precise estimate for the MFPT. If it is less than the original
MFPT by 20%, then the mutation is accepted; otherwise, it is
rejected. If the mutation is accepted, then an additional 100
folding runs are performed (step 3) to get a reasonably good
estimate for the new MFPT. This estimate is used as a current
MFPT for comparisons with the MFPT of the next mutations.
The consistent implementation of the idea of searching for

fast-folding sequences requires that the algorithm starts from
a random sequence and then scans sequence space for fast-
folding sequences as described above. The important require-
ment here is that the algorithm should be seeded with an initial
random sequence, which folds in a reasonable amount of
computer time. This requirement prohibits the use of long
sequences for this study. Although we can fold long designed
sequences, up to 100 residues (13, 14), folding of long random
sequences requires Levinthal time (13, 14). Therefore, with
long chains we cannot provide a starting sequence for the
selection algorithm. A significant fraction of short random
chains (27 residues) can fold (10). This restricts our study to
chains of 27 monomers on a cubic lattice (2, 4, 9, 10, 17, 18).
The energy of a conformation of the chain is the sum of
energies of pairwise contacts:

E = E (Bo +B(,4j))Aij, [ll
1-i<j-N

where Aij = 1 if monomers i andj are lattice neighbors and Aij
= 0 otherwise. (i defines the type of amino acid residue in
position i. B(4, q) is a magnitude of contact interaction
between amino acids of types 4 and q. We expect that the
choice of the specific set of parameters for our study is not very
essential (for more detailed discussion of this problem, see ref.
15). We used the parameter set published (19). This set of
parameters was derived from statistics of contacts in proteins
in quasi-chemical approximation; it serves our purposes as a
set of uniformly distributed numbers. Bo is an energy param-
eter having the meaning of overall attraction; as in previous
works (10, 17), it was introduced to bias conformations toward
more compact ones, forcing the native state to belong to the
set of maximally compact conformations. The motion of the
chain is modeled by the standard cubic lattice Monte Carlo
algorithm (20, 21). Simulations were performed at tempera-
ture T = 0.32 and with Bo = -T = -0.32.*

First, we generated 10 random sequences. Then, by exhaus-
tive enumeration (4), we found the maximally compact con-
formation with the lowest energy for each of these sequences.
Then, we picked the sequence (Fig. 1A) that folded to its native
conformation (Fig. 1B). The MFPT for the sequence shown in
Fig. 1A at temperature T = 0.32 is close to 5 x 106 Monte Carlo
steps. This sequence was used to start the selection.
The result of the selection is presented in Fig. 2, which shows

the MFPT as a function of the number of accepted mutations.
It can be seen that for =100 accepted mutations the MFPT
decreased almost 2 orders of magnitude. To give an idea of
how the selection algorithm works, we note that 300 accepted
mutations presented in Fig. 2 correspond to -10,000 at-
tempted mutations, 3000 of which were accepted at step 1 and
passed to step 2 of the algorithm. The simulation required
=100 hr of CPU time on the IBM RS6000 computer.

*The reader may notice the difference in temperature scales between
the present work and previous lattice model simulations from our
group (10, 14, 15, 18, 22). This is due to the fact that, in previous
studies, we scaled the parameter set to have (B2) = 1, while in this
study we use parameters directly as published (19). The difference is
only a constant factor in temperature scales.
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FIG. 1. A starting quasi-random sequence (A) and its maximally
compact conformation with lowest energy (B).

One way to make a chain fold rapidly is to make the energy
Enat of its native conformation as low as possible. The absolute
value of the energy itself is not directly related to stability; what
is important is the relative value of energy, or Z score,
introduced by Eisenberg and coauthors (23):

Enat-Eav
_= [21

where Eav is the average energy of compact nonnative con-
formations. To estimate this value, we determined all topo-
logically possible contacts between all monomers. Then, we
calculated the average energy eav of a contact and the corre-
sponding dispersion oc. The average energy of nonnative
conformation can be estimated as Eav = Keav, where K = 28 is
the number of contacts in a maximally compact conformation.
The evolution of the relative energy of the native confor-

mation Z is shown in Fig. 3. It is seen that for the first 50
accepted mutations, when the MFPT decreases, Z decreases
noticeably too, although because of strong fluctuations of Z
the effect is not very pronounced. To get a clear impression of
the properties of the ensemble of selected fast-folding se-
quences, we calculated the distribution ofZ over 250 sequences
starting from the 50th accepted mutation. The corresponding
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FIG. 2. Evolution of the MFPT (in Monte Carlo steps).
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FIG. 3. Evolution of the relative energy of the native conforma-
tion Z.

histogram is shown in Fig. 4. For comparison, we also plotted
a similar histogram for 250 random sequences with the same
amino acid composition. It is seen that the distribution of the
parameter Z for fast-folding sequences generated by the
selection algorithm is shifted to more negative values com-
pared to random sequences; the most probable value ofZ for
fast-folding sequences is about -27.5 and for random se-
quences it is about -20. The distribution of Z for random
sequences can be fit very well by a Gaussian distribution. It is
possible to determine from such a fit the probability to have
a random sequence with Z = -27.5 corresponding to the
median of the Z distribution for selected sequences. The
elementary estimate gives P(Z = -27.5) 10-6. Therefore, 1
of 106 random sequences for the 27-mer will behave like an
average fast-folding sequence from the pool of "evolutionarily
selected" ones. We also emphasize that this estimate strongly
depends on chain length, and for longer sequences this prob-
ability will be much lower.
The parameter Z estimates the energy of the native confor-

mation relative to other conformations. There is a linear
dependence between Z and the energy gap discussed in
previous publications from several groups (2, 8, 9, 10, 14, 24).
A more direct way to analyze the thermodynamic stability of
the native state is to estimate its unfolding temperature Tf (8,
14, 25). Tf is defined as temperature of midtransition between
the native and denatured state. To determine Tf, it is conve-
nient to use the parameter Q, which is the average at a given
temperature of the number of native contacts (14). The native
conformation has Q = 28, while a typical nonnative confor-
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mation has only a few native contacts. The temperature
dependence of Q exhibits a sigmoidal shape (see, e.g., figure
4 of ref. 22). We define transition temperature Tf as a
temperature at which Q = 14.

Similar plots were obtained for some sequences generated
by the selection algorithm. The corresponding unfolding tem-
peratures are presented in Fig. 5. For the first 50 mutations,
when the MFPT decreases, the unfolding temperature in-
creases, which is equivalent to an increase of stability of the
native structure. For fast-folding sequences (after 50 accepted
mutations, when the curves in Figs. 2 and 3 saturate) the
unfolding temperature Tf appears to be only slightly higher
than the temperature T = 0.32 at which the simulations were
done.

It was shown in a number of previous calculations that
thermodynamic stabilization results in rapid folding. In this
paper, we have shown that the opposite is true as well:
optimization of folding rate results in a pronounced thermo-
dynamic stabilization of the native state.
The physical explanation of correlation between speed and

stability is made clear if we compare the density of states of
random and selected, fast-folding sequences, which have a
large Z score. The two important parameters must be taken
into account in the description of configurational space of a
chain. These are the energy of the chain E and the degree of
folding Q, defined as the number of contacts that are the same
as in the native conformation (4, 14, 18). The quantity of
interest here is the logarithm of the density of states v(E, Q)
(18). The evaluation of this quantity is based on the "histogram
method," which assumes that a Boltzmann distribution is
achieved in the process of Monte Carlo simulation. The key
feature that allows us to determine v(E, Q) unambiguously is
the fact that the ground (native) conformation is nondegen-
erate and its energy is known. It gives the base point to evaluate
densities of states for any energy and degree of folding
observed in simulations. We plot in Fig. 6 these quantities for
three cases: for a random sequence, for a "typical" evolved
sequence, 300, having Z -29, and for one of the most stable
and fast-folding evolved sequences, 167, with Z -34. One
can see clearly why optimization of the energy of the native
state is required for fast folding and how it eliminates the
multiple-minima problem. Fig. 6 also clarifies the concept of
the energy gap, which caused some controversy. The gap,
which is relevant for folding, is the energy difference between
the native state and lowest energy misfolded conformations.
One can clearly see the pronounced difference in this param-
eter for the random sequence (Fig. 6A) and evolved fast-
folding sequences (Fig. 6 B and C). We define as misfolded the
lowest energy conformation having only five native contacts
(the degree of similarity expected for two randomly superim-
posed compact conformations).
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FIG. 4. Distribution of the relative energy of the native confor-
mation Z for random sequences (open bars) and for fast-folding
sequences generated by the selection algorithm (solid bars).

FIG. 5. Evolution of the unfolding temperature Tf. Dashed line
denotes simulation temperature T = 0.32.
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For random sequence, the relative value of the gap A' =
(Enative - Emisfolded)/Enative - 0.1, while for sequence 300 (Fig.
6B) A' 0.23 and for sequence 167 (Fig. 6C) A' 0.31. Fig.
6 shows how optimization creates a dnrving force to the native
state; decrease of energy for evolved sequences is contingent
on coming close to the native state, while for random se-
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FIG. 6. Density of states (logarithmic scale) for a random sequence
(A), the last evolved, 300 (B), and the best evolved, 167 (C), plotted as
a function of energy and degree of folding, which is the number of
native contacts. Random sequence folds in #5 X 106 Monte Carlo
steps, sequence 300 folds in -140,000 Monte Carlo steps, and se-
quence 167 folds in -70,000 Monte Carlo steps. Their Z scores are
approximately -20, -29, and -34, respectively. For each sequence, a
long equilibrium Monte Carlo simulation was run, and the statistics of
occurrence of different states were collected. The procedure of how to
obtain the density of states from such statistics is described (18).

quences a multitude of misfolded conformations have almost
the same energy as the native state.

This is in accord with earlier findings that sequences having
lower energy in the native conformation generally fold faster
(9, 10, 22, 26). At the same time, the correlation between
folding rate and stability is pronounced only at relatively high
temperature (22). As temperature decreases, approaching Tc,
the MFPT becomes independent of the energy of the native
conformation. This is explained by the fact that at low tem-
perature a chain often first is trapped in a low energy misfolded
conformation, and the MFPT is determined mainly by the time
necessary to escape from the trap, which should not depend on
the energy of the native conformation (7). To understand what
happens to the selection algorithm at low temperature, we ran
the algorithm at temperature T = 0.2. It appeared that, in this
case, the algorithm also was able to make folding many times
faster, although the selected sequences had the MFPT larger
than those generated at T = 0.32. How did the algorithm
manage to make folding faster?

Since at low temperatures the MFPT is determined by the
time necessary to escape from low energy traps, the simplest
imaginable way to decrease the MFPT would be to destabilize
the traps. This is done by increasing the average energy of a
contact eav or by decreasing the corresponding dispersion o-
(Eq. 2). This is what we observed at the low temperature run
of the selection algorithm.
We already mentioned that the selection algorithm is similar

to standard simulated annealing. There is also a loose simi-
larity with biological evolution: random mutations and selec-
tion pressure. In this sense, the finding that selected sequences
have their middenaturation transition temperature Tf close to
the temperature of folding simulations may be relevant. This
is in accord with the fact that most of the globular proteins are
not very stable; the free energy difference between the native
and the denatured states is relatively small (25). The set of
sequences generated by the selection algorithm also contains
a significant proportion of more stable ones with Z < -30. If
additional selective pressure toward greater stability is applied,
then more stable sequences from the generated pool can be
picked up easily since their proportion is significant (>20%;
see Fig. 4).

In this work, we emphasize that there exists a correlation
between speed and stability. However, our results also indicate
that this correlation may be limited as well, and there are
factors other than overall stability to be taken into account in
analyzing folding rates. Indeed, we can compare the plots in
Fig. 3 and Fig. 2 to see that there are pronounced fluctuations
in the parameter Z in the steady-state part of the plot in Fig.
3 that are not matched by equally pronounced fluctuations in
folding rate in Fig. 2. This suggests that at any Z there is a
distribution of sequences having different folding rates. This
fact was reported in an earlier publication (22). The observed
correlation between Z and the folding rate implies that the
distribution of folding rates for sequences having smaller Z is
shifted toward faster folding compared to that for sequences
having higher Z. Our algorithm, optimizing for higher folding
rates, selected sequences that at any given Z belong to the
fast-folding tail of this distribution. It is interesting in this
regard to note asymmetry of the Z histogram for the selected
sequences presented in Fig. 4. Selection pressure from the
algorithm results in a fast decay of the distribution at large Z;
the algorithm does not find fast-folding sequences with Z >
-26. The slow decay of the distribution at low Z can be fit by
an exponential. This is likely due to the interplay of two factors
(as in any optimization algorithm): bias toward further opti-
mization and the opposing entropic factor. In our case, this
means that although it is more likely to find a fast-folding
sequence among low Z sequences, there are too few of them,
so that it becomes unlikely that the algorithm finds such
sequences. The steady state seen in Figs. 2 and 3 is reached due

Biophysics: Gutin et aL
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to the balance between the tendency to optimize the folding
rate and entropy in sequence space. This stabilizes the histo-
gram in Fig. 4, making it peak around Z -28 with statistical
fluctuations toward lower Z values. The parameter that gov-
erns the balance between the optimized parameter and en-
tropy in simulated annealing is temperature. In our case, the
effective temperature plays the role of the criterion of accep-
tance of a mutation at step 2 (20% increase in rate). Decrease
of temperature is equivalent to a more demanding requirement
that the rate increases upon accepted mutation, but like any
optimization algorithm this one will freeze at lower tempera-
ture because of insurmountable barriers in sequence space.

It was found experimentally (see table I of ref. 27 and table
II of ref. 28) and in lattice model simulations (15) that stability
is not a single factor determining the folding rate: various
mutations may have a comparable impact on stability while
having a differing impact on folding rate. To the best of our
knowledge, the only folding mechanism consistent with these
experimental findings, where there is a clear distinction be-
tween "kinetically important" residues and other residues, is
the nucleation growth mechanism via a specific nucleus (15).
It was shown (15) that sequences have different folding rates
while having the same energy in the native state. The impor-
tant factor is how this stabilization energy is distributed
between nucleus contacts and the remaining ones. We cannot
exclude the possibility that there may be other factors deter-
mining folding rates. Our approach provides a unique oppor-
tunity to study these factors, providing numerous sequences,
which were selected as fast-folding ones, and comparing them
with a number of other sequences selected by thermodynamic
design (9, 12) to have the same Z score. The statistically
meaningful differences in their folding rate point to features,
in addition to thermodynamic stabilization, that lead to faster
folding.

In this paper, we have applied the selection algorithm to the
simple lattice model of proteins analogous to ones used in
previous studies (4, 5, 10, 17). Lattice models of proteins
proved useful for investigation of principal aspects of protein
folding, especially its faster stages when backbone topology
becomes established. It is almost certain that more detailed
models are required to study the final stages of folding where
the native structure forms and side-chain packing becomes
important. There are cases when fast, two-state, kinetics
describes the whole folding process, up to formation of the
native protein (29). It is conceivable that tight packing of side
chains is less important for kinetics here and therefore lattice
model simulations may be more applicable to such cases.

In conclusion, a simple evolution-like algorithm proposed in
this paper generated fast-folding sequences. All of them have
low relative energy of the native conformation compared to
random sequences, and all are considerably more stable in the
native conformation at the simulation temperature. This im-

plies that lowering the native state energy is a necessary
condition for fast folding in the studied model of proteins.
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