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Abstract

Nitric oxide (NO) synthase 2 (NOS2), a major inflammatory protein, modulates disease
progression via NO in a number of pathologies, including cancer. The role of NOS2-derived NO is
not only flux-dependent, which is higher in mouse vs. human cells, but also varies based on spatial
and temporal distribution both within tumor cells and in the tumor microenvironment. NO donors
have been utilized to mimic NO flux conditions and to investigate the effects of varied NO
concentrations. As a wide range of effects mediated by NO and other nitrogen oxides such as
nitroxyl (HNO) have been elucidated, multiple NO- and HNO-releasing compounds have been
developed as potential therapeutics, including as tumor modulators. One of the challenges is to
determine differences in biomarker expression from extracellular vs. intracellular generation of
NO or HNO. Taking advantage of new NO and HNO releasing agents, we have characterized the
gene expression profile of estrogen receptor-negative human breast cancer (MDA-MB-231) cells
following exposure to aspirin, the NO donor DEA/NO, the HNO donor IPA/NO and their
intracellularly-activated prodrug conjugates DEA/NO-aspirin and IPA/NO-aspirin. Comparison of
the gene expression profiles demonstrated that several genes were uniquely expressed with respect
to NO or HNO, such as miR-21, HSP70, cystathionine y-lyase and IL24. These findings provide
insight into targets and pathways that could be therapeutically exploited by the redox related
species NO and HNO.
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NOS2 in Disease

Nitric oxide (NO) synthase 2 (NOS2; aka inducible NOS, iNOS) is an inflammatory protein
in humans and mice. NOS2 modulates disease initiation and progression in pathologies
including asthma, neurological disorders and cancer [1-6]. While the specific activities of
human and mouse NOS2 are nearly identical, the promoter regions differ dramatically,
leading to significantly higher levels of NO generated by mouse vs. human cells [7-10].
These observations implicate differences in the physiological roles of NOS2-derived NO in
the two species. For example, elevated NOS2-derived NO generated by murine immune
cells acts as an immunotoxin [10,11]. In contrast, human NOS2-derived NO is generated at a
much lower flux and mediates pro-survival signaling and cancer progression [7,12]. The
flux-dependent role of NO suggests that care must be taken when extrapolating data from
murine models to humans. Nonetheless, understanding of the chemical biology of NO has
relied heavily on analysis in both humans and rodents.

In the 1980s, Hibbs and coworkers implicated a role for NO in the tumoricidal effects of
activated murine macrophages [13,14]. Mechanistically, Stuehr and Nathan later reported
the induction of apoptosis in leukemic cells by NOS2-derived NO [15]. Generation of
NOS2-derived NO by cytokine stimulated rodent vascular cells also imparted cytotoxic
effects in a human erythroleukemia cell co-culture model, through the involvement of
nonheme iron-nitrosyl complex formation and inhibition of mitochondrial complexes | and
I1 [16]. Similarly, Xie and coworkers demonstrated anti-tumor activity of transfected murine
NOS?2 in a variety of murine cancer cell lines [17]. This tumoricidal activity involved high
NO fluxes, leading to nitrosation of amines to form carcinogenic nitrosamines in murine
macrophages [18].

Tannenbaum and coworkers first reported elevated nitrite/nitrate levels in the urine of a
subset of healthy volunteers who were immune stimulated due to a temporary infection,
which suggested the involvement of NO during human response to disease and
inflammation [19]. Subsequent studies demonstrated increased nitrite and nitrate in human
hepatocytes, which lead to the cloning of human NOS2 [20-22]. Moncada and coworkers
went on to assess NOS2 activity in human tumors and cancer cells [23-25]. They observed
that while human tumor cells with high NOS2 expression grew slowly in culture, tumor
xenografts of these cells exhibited more aggressive tumor characteristics, suggesting an
oncogenic role of human NOS2 in disease progression. Ambs and Harris also showed that
elevated NOS2 expression in human colon adenomas correlated with elevated tumor
progression and angiogenesis [26—28]. They went on to show NOS2 regulation by p53 [29];
while high NO fluxes induced p53 stabilization, p53 inhibited NOS2 expression, indicating
p53 regulation of NOS2 via negative feedback [30,31]. Thus, mutations in p53 can lead to
chronic NOS2 expression in the tumor epithelium.
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Jeannin and coworkers explored the role of NOS2 expression in tumor progression using
two murine syngeneic models [32]. Two clonal populations were isolated from EMT-6
breast cancer cells; one clone (EMT-6J) expressed constitutive NOS2 and secreted high
levels of NO while the other clone (EMT-6H) did not. Cytokine stimulation (IL-18 + TNF-
a) induced NOS2 expression and nitrite/nitrate production in both clones with EMT-6J cells
producing 15-fold higher NO than EMT-6H cells. In vivo studies demonstrated increased
survival of EMT-6J tumor-bearing BALB/c mice when compared to the EMT-6H model,
suggesting that high fluxes of NO abate tumor progression. Interestingly, when the same
study was repeated in wild type and NOS2 knockout animals, tumor-bearing NOS2
knockout mice survived longer, independent of the cell clone xenograft. While elevated
tumor NOS2 (15-fold greater) mediated cytotoxic and cytostatic effects on tumor growth,
the authors also suggested that FAS-mediated cell death, and the involvement of CTL and
NK cells may be important in the anti-tumor effects of high-flux NO. On a similar note,
other reports have shown that NO donors can promote FAS and TRAIL apoptotic pathways
through inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF«xB)
[33-37]. Thus, the impact of NO on cellular and disease processes is temporally-, spatially-,
and concentration-dependent.

In contrast, our in vitro model indicated that NOS2 induction in human breast cancer cells
produced an NO flux of <300 nM [7]. This level of NO promoted cell migration and drug
resistance, which was abated by the NOS2 inhibitor aminoguanidine [7]. Importantly,
aminoguanidine also dramatically decreased growth rates of MB-231 tumor xenografts and
brain metastases [7]. Moreover, while the same level of NO activated NFxB, NO fluxes
exceeding this level has inhibitory effects, as demonstrated by a bell shaped NO dose
response. These results suggest that NO can inhibit pro-survival signaling through
nitrosative mechanisms [38]. Similarly, reactive nitrogen species (RNS) associated with
high NO flux mediated anti-tumor activity by inhibiting both EGFR and NF«B signaling
[39]. Importantly, examination of the gene expression profile of high NOS2 expressing
breast tumors suggests that this level of NO induces tumor biomarker expression that leads
to increased metastasis and poor outcome [7,12]. Thus, when compared to human NOS2,
fully activated murine NOS2 produces a higher localized flux of NO with vastly different
effects.

Elevated tumor NOS2 expression in human tumors now correlates with increased
aggressiveness in brain, lung, pancreas, breast and colon cancers [5,12,40-42] (Figure 1).
Recent reports have shown that NOS2 expression in tumor versus leukocytes is a key
determining factor that dictates tumor progression and immunosuppression. Elevated levels
of NO in leukocytes increase cellular toxicity, which either directly or indirectly orchestrates
the tumor-host immune response [43-45]. While there are contradicting reports with respect
to the role of NOS2 in tumor progression, for a diagnostic point of view, NOS2 is not a
single prognostic marker but rather should be employed in conjunction with other tumor
biomarkers to yield detailed information about cancer phenotype. Such information may
lead to improved treatment regimens and disease outcomes. Clinical studies demonstrating
localization of NOS2 in the tumor cell vs. stroma or leukocyte have shown that elevated
NOS2 expression in the tumor epithelium correlates with reduced disease-specific survival.
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Thus, clinical studies implicate a key role of the spatial dependence of NO in modulating
tumor behavior and tumor-host immune response.

Mimics of NO-flux Profile In Vivo

To understand the mechanisms of NO in cellular function and the dependence on NO
concentration, various donors have been used to mimic NO flux conditions at the cellular
level [46]. Toward this end, NONOates, due to their controlled release profiles with little
influence on extraneous conditions, have emerged as indispensable tools to assess or mimic
the effects of intracellular NOS-derived NO [47]. Using different NONOates at varying
concentrations, our laboratory and others have identified NO flux-dependent signaling
profiles that mediate different biological mechanisms. Brune and coworkers identified that
HIF-1a and p53 levels are increased by different NO concentrations, thus demonstrating the
NO flux-dependence of cell signaling [48-50]. Thomas et al. showed that low NO levels (<
50 nM steady state NO) increased cGMP-dependent mechanisms, while higher levels (500-
800 nM steady state NO) led to increased HIF-1a and p53 [51,52]. Importantly, this work
demonstrated a pro-tumorigenic level of NO at lower concentrations, while higher NO
fluxes induced stress responses involving p53. Similar responses have been observed in a
variety of cells including endothelial cells [53]. Taken together, NO-induced signaling
occurs at concentrations ranging from high picomolar to low micromolar. This five-order of
magnitude concentration range provides insight into the versatility of NO signaling while
emphasizing the importance of concentration, spatial and temporal constraints, In particular,
chromic exposure to elevated NO fluxes profoundly affects cancer phenotype [54,55].

Nitric Oxide as a Cancer Therapeutic

A wide range of NO-releasing compounds have been developed as potential therapeutic
agents to exploit the diverse biological roles of NO. These donors range from organic
nitrates such as glyceryl trinitrate or derivatized NSAIDs to S-nitrosothiols and NONOates
[47,56,57]. Macromolecular NO-releasing scaffolds are also promising due to their ability to
store and deliver larger NO payloads in a more controlled and effective manner compared to
low molecular weight donors [58,59]. In addition to NO donors, there are numerous NOS
inhibitors and scavengers that can be used for modulation of NO flux [60,61]. Strategically
combining these donors and inhibitors may provide unique tools for exploring potential
therapeutic applications of NO [62]. Also, drug resistance and the toxicity of therapeutics
are both clinical hurdles. In the face of these obstacles, NO modulation has emerged as a
powerful adjuvant for the hypersensitization of tumors to more traditional chemo- and
radiation therapies. Furthermore, emerging evidence indicates that NO donors have the
potential to function independently in the clinical management of cancer [63].

Nitric oxide donors of the NONOate class are routinely used as reliable sources of NO in
laboratory settings [64,65]. Such donors have been instrumental in exploration of the
concentration and temporal profiles of NO with respect to tumor response. However, using
these compounds in vivo to treat solid tumors is problematic due to systemic hypotension,
which has limited the amount of NO that can be delivered to the tumor. However, clinical
application of sub-vasoactive levels of glyceryl trinitrate has shown some success in limiting
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recurrence of prostate and lung cancers [66—68]. In addition, a new generation of prodrugs
have emerged based on the strategy of activation at the lesion site to abate the adverse
cardiovascular effects of systemically administered drugs that modulate NO flux [69].

Another area of research involves development of hybrid compounds of functional groups
with potential therapeutic value conjugated with NO donors (e.g., ester nitrates, furoxans,
benzofuroxans, NONOates, S-nitrosothiols, metal nitrosyl complexes) designed to release
NO while maintaining the native drug activity. This approach has proved useful in targeting
cardiovascular, inflammatory, bacterial, fungal, viral, parasitic, and ocular diseases as well
as cancer [70]. Potent and selective NOS inhibitors are also being designed, often through an
enzyme structure based process. However, the high homology shared by the NOS isoforms,
is a challenge in this pursuit.

Several reports have suggested that NOS may generate nitroxyl (HNO) [71-74] in addition
to NO, in a condition-dependent manner. In cardiovascular models, HNO donors were
shown to elicit unique effects when compared to NO [75-77], thus suggesting related but
distinct targeting mechanisms [78,79]. Donors of HNO has also been shown to have
anticancer activity [80], in part due to modification of a critical thiol of the glycolytic
enzyme GAPDH [80]. As with NO, several classes of HNO donor have been developed,
including NONOates [81,82].

We recently demonstrated that the NONOate-based prodrugs DEA/NO-aspirin and IPA/NO-
aspirin, which donate NO and HNO, respectively, were activated by esterase cleavage
within the cell [83]. These prodrugs thus facilitate intracellular delivery of these redox
modulators compared to the parent NONOates. Interestingly, the intracellular release of
HNO by IPA/NO-aspirin and, to a lesser extent, NO by DEA/NO-aspirin inhibited
proliferation of A549 non-small cell lung cancer cells. In contrast, the same prodrugs were
not appreciable toxic toward primary human endothelial cells (HUVECS). This observation
suggests that IPA/NO-aspirin and DEA/NO-aspirin induce cancer-specific anti-proliferative
pathways. The prodrugs also were protective against the gastrointestinal toxicity associated
with aspirin in rats.

nduction of NO and HNO Inside and Outside of the Cell

Our recent work has demonstrated a key role of NOS2 in estrogen receptor negative (ER(-))
breast cancer disease progression [7]. Here, we employed MB-231 ER(-) breast cancer cells
to examine the presence of NOS2 responsive gene set. We also were sought to explore the
effects of intracellular and extracellular delivery of HNO and NO. MB-231 cells were
exposed to 50 uM aspirin, DEA/NO, IPA/NO, DEA/NO-aspirin, or IPA/NO-aspirin or to 10
mM NaOH (vehicle control) for 24 h. DEA/NO and IPA/NO are short-lived donors (half-
lives of ~5 min under physiological conditions [84,85]). Thus, NO/HNO levels will rise
quickly to a maximum and then decay [86]. The aspirin derivatives are much more stable to
spontaneous hydrolysis, with half-lives of 7.5 and ~36 h [87]. In the presence of cellular
esterases, hydrolysis is accelerated, such that complete dissociation of IPA/NO aspirin
occurs in ~150 min. DEA/NO-aspirin is somewhat longer-lived in cells. Slower donation
will lead to lower, but more steady fluxes of HNO or NO.
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Following treatment, RNAs were harvested with TRIzol, followed by reverse transcription
and in vitro transcription to generate sufficient aRNA fragments, and then hybridized to an
Affymetrix GeneChip Human Gene ST Array for transcriptome analysis. High throughput
gene expression data were exported to BRB ArrayTools, Partek Genomic Analysis Suite for
data mining and Ingenuity Pathway Analysis for pathway analysis.

For a global view of the RNA fingerprinting data, multivariate analysis was adopted. Non-
supervised hierarchical clustering analysis using different combinations of linkage methods
and distance measuring algorithms confirmed that the gene expression fingerprinting for
different treatment groups is not only consistent but also unique (Figure 2). In order to
identify unique gene subsets that can differentiate each treatment group, class comparison
analysis was adopted to identify subsets of genes that are statistically significant and
uniquely expressed among the treatment groups (Tables 1-6). Genes identified in the
comparison analyses are components of various pathways, which as described below.

Nitrogen Oxide-Modulated Genes

microRNA 21 (miRNA21)

Micro RNAs (miRNA) are short non-coding RNAs that are involved in post-translational
regulation of gene expression in multicellular organisms by affecting both the stability and
translation of MRNA. miR21 (aka oncomiR21) expression has been reported in various types
of cancers including breast, colorectal and brain and is believed to be oncogenic [88-91]. In
this regard, miR21 negatively regulates the tumor suppressor PTEN [92]. Moreover, Harris
and coworkers identified enhanced miR21 and PI3K signaling in association with elevated
NOS2 expression and KRAS activation in lung cancer cells [93]. miR21 can be detected in
human serum and has predicted poor therapeutic outcome in cancer patients [94-99].

When compared to control cells, IPA/NO caused roughly a three-fold increase in miR21,
while IPA/NO-aspirin only modestly increased miR21. This may indicate a localization
effect of HNO delivery. Interestingly, while miR21 was induced by both DEA/NO-aspirin
and IPA/NO-aspirin, our earlier studies have demonstrated cytotoxic activity of these
prodrugs [100]. These contrasting observations may implicate miR21 as a potential
candidate for modulating drug resistance by these prodrugs.

Cystathionase (cystathionine y-lyase; CTH)

Cystathionase catalyzes the last step in the trans-sulfuration pathway from methionine to
cysteine and also can generate the endogenous signaling molecule hydrogen sulfide (H,S).
Pupo et al. reported that HoS is pro-angiogenic and promotes migration in a tumor
environment [101,102]. CTH also acts as a cysteine-protein sulfhydrase by mediating
sulfhydration of target proteins. The sulfhydration reaction regulates target proteins
including the NFxB subunit RelA, PTPN1 and GAPDH by converting -SH groups on
specific cysteine residues to -SSH.

Our study demonstrated significant decreased CTH expression in the IPA/NO-aspirin
treatment group when compared to control, which may in part explain the anti-angiogenic
and anti-metastatic properties of HNO-releasing drugs. Fukuto and colleagues have
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demonstrated HNO-mediated inhibition of GAPDH activity in human breast cancer cells
and tumor xenografts, as well as reduced blood vessel density and growth of tumor
xenografts [80]. The authors suggested that the anti-tumor mechanisms of HNO may stem
from the inhibition of GAPDH to impede glycolysis and reduce HIF-1a levels and tumor
angiogenesis. Importantly, this work demonstrated that the anti-cancer mechanisms of HNO
are different from those of current clinically available anti-cancer therapeutics. Collectively,
these observations suggest that HNO drugs, including IPA/NO-aspirin, may improve
therapeutic tumor response.

Heat Shock 70 kDa Protein 1A/1B (HSPA1A/1B)

Thioredoxin

Heat shock 70 kDa proteins 1A and 1B are members of the heat shock protein 70 family. In
conjunction with other heat shock proteins, these proteins stabilize existing protein
aggregates and mediate the folding of newly translated proteins in the cytosol and in
organelles. Both HSPA1A and HSPA1B are expressed in a cell-type-specific manner, and
certain human tissues constitutively express varying levels of HSPAL and HSPAZ2 proteins
in a highly differentiated way [103]. Various diseases demonstrate elevation of HSP70
family proteins, such as human breast cancer, murine triple negative mammary cancer,
metastatic breast cancer stem cells, hyperthermia, and adult T-cell leukemia [104-108].
Since silencing the HSP1A1 is cytotoxic to transformed but not normal cells, various HSP70
inhibitors are in development in the hope of triggering cell cycle arrest in cancer cells [109].
Unexpectedly, elevated HSP70 was found to be beneficial to therapy as reported in
Nakatsu’s breast cancer study, as increased HSPA1A enhanced sensitivity to anti-cancer
drugs [110].

We found that HSP70 family proteins are significantly up-regulated in the IPA/NO-aspirin
group and slightly up-regulated in the DEA/NO-aspirin and DEA/NO groups. To our
surprise, IPA/NO itself down-regulates both HSPA1A and HSPA1B expression. This
finding is in accordance with Nakatsu’s work and strongly suggests that overexpressed
HSP70 proteins triggers different downstream pathways than the commonly reported anti-
apoptotic pathway.

Interacting Protein (TXNIP)

Thioredoxin interacting protein mediates oxidative stress by inhibiting thioredoxin activity
or by limiting its bioavailability [111]. Increased reactive oxygen species (ROS) production
increases cancer progression in some tumors, including pancreatic cancer, while ROS
inhibits disease progression in others such as hepatocellular carcinoma [112]. In general,
TXNIP is thought to be a tumor suppressor. TXNIP functions as a transcriptional repressor,
possibly by acting as a bridge molecule between transcription factors and corepressor
complexes, and its over-expression induces GO/G1 cell cycle arrest [113]. In addition,
TXNIP is required for the maturation of natural Killer cells. It inhibits the proteasomal
degradation of DDIT4 and thereby contributes to the inhibition of the mammalian target of
rapamycin complex 1 (mTORCL). Elevated TXNIP has been associated with poor
histological grade in phyllodes tumors [114].
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Our analysis demonstrated significantly reduced TXNIP expression levels in only the
IPA/NO-aspirin and DEA/NO-aspirin treatment groups, suggesting that IPA/NO-aspirin or
DEA/NO-aspirin combined with mTOR inhibitors may further improve the cytotoxic
responses of these prodrugs.

DNA-Damage-Inducible Transcript 3 (DDIT3)

DNA-damage-inducible-transcript 3 is a multifunctional transcription factor in endoplasmic
reticulum (ER) stress response. It plays an essential role in the response to a wide variety of
cellular stress and induces cell cycle arrest and apoptosis in response to ER stress [115].
DDITS3 positively regulates transcription of TRIB3, IL6, IL8, 1L23, TNFRSF10B/DR5,
PPP1R15A/GADD34, BBC3/PUMA, BCL2L11/BIM and EROLL and negatively regulates
expression of BCL2 and MYOD1, ATF4-dependent transcriptional activation of asparagine
synthetase (ASNS), CEBPA-dependent transcriptional activation of hepcidin (HAMP) and
CEBPB-mediated expression of peroxisome proliferator-activated receptor gamma
(PPARG) [115]. DDIT3 plays a regulatory role in the inflammatory response through the
induction of caspase-11 (CASP4/CASP11), which induces the activation of caspase-1
(CASP1) [115]. Both caspases increase activation of pro-1L1J to mature IL-1f, which
mediates inflammatory response. NO-induced apoptosis has been reported in pancreatic 3
cells, p53-deficient microglial cells and RAW 264.7 cells [116-118], which are triggered by
DDIT3 through ER stress. Also, DDIT3 inhibits the canonical WNT signaling pathway by
binding to TCF7L2/TCF4, impairing its DNA-binding properties and repressing its
transcriptional activity.

Our study demonstrated decreased DDIT3 by IPA/NO-aspirin. This may indicate that
IPA/NO-aspirin and WNT inhibitors may be attractive drug combinations.

Nitric Oxide Driven Pathways

Using the Canonical Pathway Analysis module in the Ingenuity Pathway Analysis portal
reveals the most significantly affected cellular pathways to be: (1) endothelin-1 (ET1)
signaling, (2) NO signaling in the cardiovascular system, (3) relaxin signaling, (4) G-protein
coupled receptor signaling and (5) HER2 signaling in breast cancer. Given that ET1 and NO
signaling are known to play key roles in the cardiovascular system, it is not surprising to see
that these two pathways are among the highest-scoring in our analysis.

(1&2) Endothelin-1

ET1 is a 21-amino acid vasoconstrictor peptide, which is able to induce cardiac hypertrophy.
ET1 synthesis includes NO and its intracellular effectors cGMP, prostacyclin, atrial
natriuretic peptides, and steroid hormones [119]. ET1 is considered a stress-responsive
regulator working in a paracrine and autocrine fashion in a variety of organs, with both
beneficial and detrimental roles in mammals [120]. In addition to its potent cardiovascular
actions, ET1 causes contraction of nonvascular smooth muscle; stimulation of the release of
neuropeptides, pituitary hormones, and atrial natriuretic peptide; biosynthesis of aldosterone;
modulation of neurotransmitter release; and increase of bone resorption [121,122].
Furthermore, ET1 has mitogenic properties, causing proliferation and hypertrophy of
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vascular smooth muscle, cardiac myocytes, mesangium, bronchial smooth muscle, and
fibroblasts. ET1 also induces expression of several proto-oncogenes, including c-Fos, c-Jun,
and c-Myc [123-125]. These actions are of potential significance in chronic congestive heart
failure, renal disease, hypertension, cerebral vasospasm, and pulmonary hypertension, all of
which are conditions commonly associated with increased expression of ET1 [126].

Relaxin is a polypeptide hormone that is secreted by the corpus luteum into the circulation
during the menstrual cycle and throughout pregnancy [127]. Binding of relaxin to its
receptor also activates a tyrosine kinase pathway that inhibits the activity of a
phosphodiesterase (PDE) that degrades cAMP. The consequent rise in CAMP levels
activates protein kinase A (PKA), which leads to activation of transcription factors like the
cAMP response-element binding protein and NFxB. PKA phosphorylates and inactivates I-
kappa-B-a, the inhibitor subunit of the transcription factor NFxB, thus allowing NF«B to
translocate into the nucleus and bind the NOS promoter, resulting in expression of NOS2.
Relaxin can act on several of its targets by increasing the expression and/or activity of NOS
isoenzymes, thereby promoting generation of NO. NOS3 can be activated by direct
stimulation of the 8 and v subunits of the g-proteins. This is accomplished by means of
stimulation of PI3-kinase, followed by Akt/PKB, which in turn activates NOS3 by
phosphorylation at Ser-1179 [128]. By stimulation of distinct signal transduction pathways,
relaxin can have pleiotropic downstream effects, many of which may have useful clinical
applications [129]. Relaxin elicits a vasodilatory response in several target organs. This
response is mediated by the stimulation of intrinsic NO generation. In the uterus NO
production via NOS is up-regulated during pregnancy by relaxin. NO induces uterine
quiescence, which is deemed necessary for the maintenance of pregnancy. Relaxin increases
intracellular cGMP levels in a concentration-related fashion. This effect of relaxin is likely a
consequence of stimulation of NO production by this hormone. In fact, NO binds to the
heme iron of soluble guanylate cyclase and thereby activates the synthesis of cGMP
[130,131]. In turn, increased production of cGMP plays an important role in vasorelaxation.
Moreover, relaxin induces changes in cell shape and the actin cytoskeleton that are
consistent with cell relaxation [128].

(4) G-protein Coupled Receptors (GPCRS)

G-protein-coupled receptors are activated by a wide variety of external stimuli. Upon
receptor activation, the G-protein exchanges GDP for GTP, causing dissociation of the GTP-
bound a and B/y subunits and triggering diverse signaling cascades. Receptors coupled to
different heterotrimeric G-protein subtypes can utilize different scaffolds to activate the
small G-protein/MAPK cascade, employing at least three different classes of tyrosine
kinases. Src family kinases are recruited following activation of PI3Ky by the p/y subunits.
They are also recruited by receptor internalization, cross-activation of receptor Tyr kinases,
or by signaling through an integrin scaffold involving Pyk2 and/or FAK. GPCRs can also
employ PLCP to mediate activation of PKC and CaMKII, which can have either stimulatory
or inhibitory consequences for the downstream MAPK pathway [132-134].
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(5) HERZ2 signaling in breast cancer

Dysregulation of HER-mediated signaling pathways results in the growth and spread of
cancer cells [135]. Inappropriate signaling may occur as a result of receptor overexpression
or dysregulation of receptor activation, which may lead to increased or uncontrolled cell
proliferation, decreased apoptosis, enhanced cancer cell motility, and angiogenesis [136—
138].

Future for Diagnosis

Although the molecular and genetic determinants of most sporadic breast cancers remain
unclear, significant advances in the understanding of events that contribute to breast cancer
formation have been made. Deactivation mutations in tumor suppressor genes, such as p53,
BRCAL, BRCA2, PTEN, or ATM, epigenetic functional inactivation of other tumor
suppressor genes such as SYK and NES1, or activation of proto-oncogenes, such as HER2/
Neu, can all play important roles in breast carcinogenesis [139]. Breast cancer is a clinically
heterogeneous disease, and there is evidence that the varied clinical courses of patients with
histologically similar tumors are due to molecular differences among cancers. Therefore,
detailed molecular analysis of the cancer could yield important diagnostic and prognostic
information as well as aid in the design of treatment regimens. Recent advances in molecular
analytical techniques have led to a rapid expansion of new diagnostics designed to
personalize breast cancer care [140]. However, approximately one-quarter of patients with
lymph node-negative disease and one half of patients with lymph node-positive tumors will
ultimately develop distant recurrent breast cancer. Standard treatment of metastatic breast
cancer generally includes systemic treatment and surgery or radiation as needed and when
indicated for palliation of localized symptomatic metastases [141]. The immediate challenge
is to learn how to utilize the molecular characteristics of an individual and their tumor to
improve tumor detection rate, enhance treatment effectiveness, reduce metastasis, and
ultimately to prevent the development of breast cancer recurrence.

To better predict the clinical outcome of malignant disease, researchers have tried to use
NOS2 to predict prognosis in various diseases. Toward this end, Huang has shown that
NOS2 expression was higher in lymph node metastasis and recurrent groups in supraglottic
squamous cell carcinoma [142]. Later, Hara and Qiu reported that elevated NOS2
expression predicted poor survival in human astrocytic glioma and immunoglobulin A
nephropathy (IgAN) [143,144]. In addition, Li reported that increased NOS2 and
nitrotyrosine (NT) predicted poor survival of gastric adenocarcinoma patients [145]. Also
Pinlaor reported that the co-activation and co-localization of HIF1A and NOS2 was
associated with poor survival of intrahepatic cholangiocarcinoma [146]. As mentioned
earlier, Glynn has shown that NOS2 expression predicted poor survival of ER- breast cancer
patients [12,147]. Zhang and Wang added that NOS2 expression also correlated with poor
prognosis in gastric cancer patients and salivary gland adenoid cystic carcinoma [95,148].
Evidence supports the strategic combination of NOS2 with other relevant biomarkers, which
could greatly improve the prognostic accuracy of various malignancies.

Besides genetically engineered mice, xenograft transplantation is another common tool
adopted for cancer research. Xenograft transplantation via intravenous, intraperitoneal,
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subcutaneous or orthotopic injection is a well-defined approach for breast cancer metastasis
research and has been utilized for years. Since metastasis is a multi-step process, and cancer
interact differently with its surrounding microenvironment is a crucial step, spontaneous
metastasis from primary tumor provides an improved model to mimic human breast cancer
[149]. Interestingly, tumor cells targeting different target organs have distinct gene
expression profiles, and this in vivo selection experiment allows efficient identification of
target genes and specific drugs to treat metastatic breast cancer patients. In our murine
model, xenograft transplantation (231-GFP) under the mammary fat pad leads to
spontaneous brain metastasis and some lung metastasis, thus providing an excellent
orthotopic model for breast cancer metastasis research. Moreover, our NO/HNO prodrugs
provided a class of compound that may be used together with other therapeutic agents
(chemotherapy, radiation, etc.) to enhance tumor killing and reduce metastasis.

Conclusion

In this study, we identified distinct molecular signatures from NO- and HNO-donor treated
breast cancer cells. Given that other cancer cells may be activated/modulated by these
molecular changes, we suggest that other cell types may show similar cellular responses in
the presence of NO- and HNO-donors. We are in the process of testing this hypothesis in
lung and pancreatic cancer cells. However, due to the heterogeneity and sporadic nature of
cancer, we may not expect that other cell types will show the exact molecular signatures as
breast cancer cells. Nonetheless, such comparisons across cell types would assist in
discovery and identification of key gene sets that governing the molecular response to NO
and HNO.

In order to accurately assess the effects of NO production, it is important to have a basic
understanding of the spatial and temporal distributions of NO at the cellular level. The latest
developments in NONOate derivatives and animal models are expected to facilitate
deciphering of the mechanisms by which NO modulates cellular responses under different
stress conditions. Our group identified uniquely expressed genes such as mir21, CTH,
HSP70, TXNIP and DDIT3, and key pathways such as ET-1 and relaxin signaling, in
response to NO. These findings enable the fine mapping of the cellular responses modulated
by NO. Strikingly, we demonstrated that the HNO releasing donor, IPA/NO, is able to
suppress HSP70 gene expression which functions like a HSP70 inhibitor while the IPA/NO
derivative IPA/NO-aspirin can elevate HSP70 gene expression to a much higher level. This
could trigger an alternate cellular pathway that also leads to cancer cell death. Taken
together, our findings provide insight in evaluating and improving the cytotoxicity of the
NONOate derivatives especially IPA/NO-aspirin in cancer therapy.
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231-GFP
AKT
aRNA
ASNA
ATM
BBC3
BCL2
BCL2L11
BIM
BRCALl
BRCA2
CaMKIlI
CAMP
CASP1
CASP11
CASP4
CEBPA
CEBPB
c-Fos
c-Jun
c-Myc
cGMP
CTC
CTH
CTL
DDIT3/4
DEA/NO
DEA/NO-aspirin
DR5
EGFR
ER

MDA-MB-231 cells stably transfected with green fluorescent protein

V-Akt murine thymoma viral oncogene homolog 1
amplified RNA

asparagine synthetase

ataxia telangiectasia mutated

BCL2 binding component 3

B-cell CLL/lymphoma 2

BCL2-like 11 (apoptosis facilitator)
BCL2-interacting mediator

breast cancer 1, early onset

breast cancer 2, early onset
calcium/calmodulin-dependent protein kinase Il inhibitor 1
cyclic adenosine monophosphate

caspase 1, apoptosis-related cysteine peptidase
SR-related CTD-associated factor 1 (SCAF1)
caspase 4, apoptosis-related cysteine peptidase
CCAAT/enhancer binding protein (C/EBP), alpha
CCAAT/enhancer binding protein (C/EBP), beta
FBJ murine osteosarcoma viral oncogene homolog
jun proto-oncogene

v-myc avian myelocytomatosis viral oncogene homolog
cyclic guanosine monophosphate

circulating tumor cells

cystathionase (cystathionine-gamma-lyase)
cytotoxic T cell

DNA-damage-inducible transcript %
diethylaminamine NONOate

DEA/NO-aspirin conjugate

death receptor 5

pidermal growth factor receptor

estrogen receptor
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FAK
FAS
GADD34
GAPDH
GDP
GPCR
GTP
HAMP
HER2
HIF1l a
HNO
H,S
HSPA1A/1B
HSP70
IgAN
IL1B
1L23
1L24

IL6

IL8
IPA/NO
IPA/NO-aspirin
KRAS
MAPK
MB-231
mir21
MMTV
mTOR
MYOD1
NES1
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endoplasmic oxidoreductin-1-like protein \ (S. cerevisiae);
ET1,endothelin-1

protein tyrosine kinase 2

Fas cell surface death receptor

growth arrest and DNA damage-inducible protein
glyceraldehyde-3-phosphate dehydrogenase
cyclic guanosine diphosphate

G-protein-coupled receptor

cyclic guanosine triphosphate

hepcidin antimicrobial peptide

v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2
hypoxia inducible factor 1 a

nitroxyl

hydrogen sulfide

heat shock 70 kDa protein 1A/1B

heat shock protein 70

immunoglobulin A nephropathy

interleukin 1 beta

interleukin 23

interleukin 24

interleukin 6

interleukin 8

isopropylamine NONOate

IPA/NO-aspirin conjugate

Kirsten rat sarcoma viral oncogene homolog
mitogen-activated protein kinase

MDA-MB-231 cells

microRNA 21

mouse mammary tumor virus

mechanistic target of rapamycin (serine/threonine kinase)
myogenic differentiation 1

kallikrein-related peptidase 10 (KLK10)
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NOS2
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NT
PDE
PI3K
PLCB
PKA
PKB
PKC
PPARG
PPP1R15 A
PTEN
PTPN1
PUMA
Pyk?2
RelA
RNS
ROS
Src
SYK
TCF4
TCF7L2
TNFa
TNFRSF10B
TRAIL
TRIB3
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v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2
on-steroidal anti-inflammatory drug

nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
natural killer

nitric oxide

nitric oxide synthase

nitric oxide synthase 2 (inducible NOS)

nitric oxide synthase 3 (endothelial NOS)

nitrotyrosine

phosphodiesterase

phosphoinositide-3-kinase

phospholipase C, beta

protein kinase A

protein kinase B

proetin kinase C

peroxisome proliferator-activated receptor gamma

protein phosphatase 1, regulatory subunit 15A

phosphatase and tensin homolog

protein tyrosine phosphatase, non-receptor type 1

P53 upregulated modulator of apoptosis

PITPNM family member 3 (PITPNM3)

v-rel avian reticuloendotheliosis viral oncogene homolog A
reactive nitrogen species

reactive oxygen species

v-src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog
spleen tyrosine kinase

transcription factor 4

transcription factor 7-like 2 (T-cell specific, HMG-box)
tumor necrosis factor alpha

tumor necrosis factor receptor superfamily, member 10b
TNF-related apoptosis-inducing ligand

tribbles pseudokinase 3
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TXNIP thioredoxin interacting protein
WAP whey acidic protein
WNT wingless-type MMTV integration site family
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NOS2 is Associated with Different Cancers
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Figure 1.
NOS?2 is associated with different cancers. Dashed lines: predict poor prognosis. Solid lines:

weak to not predictive or not studied. Asterisk: some studies indicate that NOS2 is
associated with poor prognosis.
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Dendrogram for clustering experiments,
using centered correlation and average linkage.
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Hierarchical Clustering Analysis. Non-supervised learning hierarchical clustering analysis
computed with different combinations of single, complete and average linkage methods and

Euclidean, centered correlation and uncentered correlation distance measurement
algorithms. Figure 2A showed the clear separation of control, IPA/NO-aspirin and

DEA/NO-aspirin groups. Figure 2B showed the clustering patterns when all six treated

groups were analyzed together.
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