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Abstract

The successful establishment and maintenance of a bacterial infection depends on the pathogen’s 

ability to subvert the host cell’s defense response and successfully survive, proliferate, or persist 

within the infected cell. To circumvent host defense systems, bacterial pathogens produce a 

variety of virulence factors that potentiate bacterial adherence and invasion and usurp host cell 

signaling cascades that regulate intracellular microbial survival and trafficking. Mycobacterium 

tuberculosis, probably one of the most successful pathogens on earth, has coexisted with humanity 

for centuries, and this intimate and persistent connection between these two organisms suggests 

that the pathogen has evolved extensive mechanisms to evade the human immune system at 

multiple levels. While some of these mechanisms are mediated by factors released by M. 

tuberculosis, others rely on host components that are hijacked to prevent the generation of an 

effective immune response thus benefiting the survival of M. tuberculosis within the host cell. 

Here, we describe several of these mechanisms, with an emphasis on the cyclic nucleotide 

signaling and subversion of host responses that occur at the intracellular level when tubercle 

bacilli encounter macrophages, a cell that becomes a safe-house for M. tuberculosis although it is 

specialized to kill most microbes.
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1. Introduction

The unique crosstalk between microbial pathogens and their hosts reflects the co-

evolutionary balance that the host and pathogen must reach in order to secure their survival. 

Mycobacterium tuberculosis- an intracellular and primarily vacuolar pathogen-has evolved a 

plethora of virulence factors which subvert a range of host physiological responses to allow 

propagation of the bacilli in one of the most inhospitable cells in the body, the macrophage. 
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However, this interaction of M. tuberculosis with macrophages is by no means 

unidirectional; they engage in a true two-way biochemical interaction pivoting on dedicated 

proteins, small molecules and secretion systems which export bacterial molecules into the 

host cell cytoplasm. Recognition of these pathogen-associated molecular patterns (PAMPs), 

during bacterial internalization as well as when M. tuberculosis either resides inside a 

membrane bound phagosomal compartment or translocates into the cytoplasm, by host 

pattern recognition receptors (PRRs) that activate myriad of signaling cascades. Signaling 

events initiated by PAMP and PRR interaction are critical components of the host defense 

arsenal and allows the host to mount immunoresponses against M. tuberculosis [1–4].

While much remains to be learned, research over the past few decades is beginning to reveal 

how M. tuberculosis manages to withstand the hostile environment inside the macrophages 

or manipulate host responses in order to replicate and persist. Many of these strategies are 

uniquely employed by pathogenic mycobacteria compared to other intracellular pathogens 

(recently reviewed by Jayachandran et al. [3]). While some overlap exists, most pathogens 

have evolved specific ways to interfere with and circumvent host immune responses; this 

may be due to either the discrete intracellular niches that different pathogens occupy or the 

exclusivity of various pathogens with regard to their physiological necessities.

2. Subversion of host responses from beginning to the end: phagocytosis, 

phagosomal trafficking and maturation

Tuberculosis (TB) is primarily an airborne respiratory infection which is transmitted by 

aerosolized M. tuberculosis from patients with active TB. The establishment of a primary 

focus of infection depends on the activation status of the resident alveolar macrophages 

(AM) that phagocytose the inhaled bacilli as well as the virulence of the bacilli [5–7]. As the 

first line of cellular defense against inhaled bacilli, AMs express a broad range of immune 

receptors, including Fcγ receptors (FcγRs), complement receptors (CRs), toll-like receptors 

(TLRs), PRRs such as C-type lectin mannose receptors (MR), dectin-1, and scavenger 

receptors (SRs) that mediate phagocytosis (recently reviewed by Kleinnijenhuis et al. [8]). 

In addition, the dendritic cell (DC)-specific intracellular adhesion molecule (ICAM)-3-

grabbing nonintegrin (DC-SIGN) receptor also plays a critical role in M. tuberculosis 

internalization by the DCs [9–10]. An array of biosynthetically related mannosylated 

lipoglycoconjugates within the mycobacterial cell envelope (e.g., phosphatidyl-myo-inositol 

mannosides (PIMs), lipomannan (LM) and mannose-capped lipoarabinomannan 

(ManLAM)) [11], glycoproteins (e.g. the 38-kDa and 19-kDa protein antigens), and 

mycobacterial heat shock proteins 60/65 have been shown to bind to the receptors on 

macrophages, DCs and other phagocytic cells to facilitate receptor-mediated internalization 

of M. tuberculosis and bacterial entry to the phagosome. Details on receptor mediated 

internalization of M. tuberculosis have recently been reviewed [8, 12].

Recognition and internalization of the bacteria by specific receptors trigger diverse host 

intracellular signaling pathways, which initiate the development of the unique phagosome 

biochemistry, characteristic of M. tuberculosis infection, and determine the nature of the 

early inflammatory response. For example, Fc receptor-mediated internalization results in a 

respiratory burst [13], whereas CR3-mediated uptake of M. tuberculosis prevents the 
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activation of the macrophages and leads to the cholesterol-dependent prevention of 

phagosome-lysosome fusion [14–15]. Further, activation through TLRs and dectin-1 

initiates what is essentially a pro-inflammatory response by signaling through the DC-SIGN. 

The primary function of MRs and CRs is to modulate internalization, without necessarily 

triggering a pro-inflammatory response. Interestingly, although MRs and DC-SIGN are both 

C-type lectins that recognize M. tuberculosis ManLAM, they regulate phagosomal 

trafficking differently. While the former is involved in efficient phagocytosis, endocytosis 

and endosomal sorting, the latter targets M. tuberculosis to lysosomes. This may explain 

why M. tuberculosis prefers macrophages, which possess high surface MR levels, for its 

major intracellular niche over DCs, which possess high surface levels of DC-SIGN and 

rapidly shuttle bacteria to the destructive environment of the lysosomes. Employing several 

proteins and lipid molecules, M. tuberculosis interferes with the phagosomal maturation 

pathway thereby blocking its transfer to lysosomes [12]. The M. tuberculosis lipid 

phosphatase SapM dephosphorylates phosphatidylinositol 3-phosphate (PI3P) [16–17]; the 

tyrosine phosphatase PtpA dephosphorylates and inactivates the host vacuolar protein 

sorting- VPS33B which in turn regulates membrane fusion and arrests phagosome 

maturation [18]. Additionally, ManLAM inhibits the Ca/Calmodulin and Rab5-dependent 

recruitment of PI3K resulting in reduced PI3P formation on the phagosomal membrane [19–

20]. Phagosomes containing M. tuberculosis also fail to acidify due to bacterial interference 

with the recruitment of the vesicular proton ATPase pump and failure to acquire late 

endocytic markers such as Rab7 [12].

Another host pathway that M. tuberculosis regulates coronin-1-dependent cytosolic calcium 

influx and activation of calcineurin via its lipoamide dehydrogenase [21–22]. During 

phagocytosis, coronin-1 (a phagosomal coat protein) is released from the cytosolic surface 

of the maturing phagosome resulting in fusion of the phagosome with the lysosome and 

transfer of its internal contents for degradation. M. tuberculosis is known to prevent or delay 

coronin-1 release, thereby blocking phagosomal fusion with lysosomes [22–23]. M. 

tuberculosis also possesses at least 11 eukaryotic-like protein kinases which have been 

shown to regulate mycobacterial signal transduction pathways, morphology, and cell 

division [24–25]. An example is PknD which has been shown to play an active role in the 

invasion of the central nervous system by M. tuberculosis [26] in addition to its role in 

regulation of gene expression by phosphorylation of alternative sigma factor regulators [27]. 

Another kinase, PknG, has been shown to be released from pathogenic mycobacteria inside 

the macrophage cytosol where it prevents lysosomal delivery and degradation [28–29]. It 

has also been proposed that M. tuberculosis interferes with phagolysosome biogenesis by a 

putative Zn2+-dependent metalloproteinase (Zmp1) that interferes with caspase-1 dependent 

activation and secretion of IL-1β [30]. Recently, several groups have reported that 

mycobacterial ‘enhanced intracellular survival protein’ (Eis) may inhibit JNK-dependent 

ROI production thereby inhibiting TNF-α production and preventing macrophage activation, 

inflammation, and autophagy [31–33].

There is considerable evidence that M. tuberculosis cell wall lipids act as virulence factors 

during infection [4, 34–37]. While there is a scarcity of information regarding the nature of 

molecular interactions of mycobacterial lipids with the host cells, M. tuberculosis lipids 
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have been observed to intercalate into host membranes leading to decreased membrane 

fluidity and increased passive permeability [38]. The ability of mycobacterial phthiocerol 

dimycocerosates (PDIMs) and trehalose-6, 6′-dimycolates (TDMs) to alter host membrane 

fluidity may influence the process of phagocytosis as well as subsequent trafficking. M. 

tuberculosis lipids are abundantly produced during macrophage infection and have been 

shown to be actively trafficked out of the phagosome [39–42] and finally exocytosed from 

infected macrophages where they are taken up by neighboring macrophages [43–44]. This 

process could potentially influence CD1-mediated lipid antigen presentation by resident 

DCs and subsequent immune responses [42, 45]. Consequently, host lipids are important 

regulators of inflammatory signaling pathways in bacteria as well, since several host lipids 

are the primary building blocks of the mycobacterial lipid load [46]. Recent reports of 

nuclear receptor-peroxisome proliferator-activated receptor (PPAR)-mediated sensing of 

mycobacterial fatty acid derived eicosanoids and modulation of cytokine responses and its 

effect on virulence and pathogenicity of M. tuberculosis further highlights the complexity 

and importance of lipids in host-pathogen crosstalk [47–48].

While M. tuberculosis employs several strategies to prevent phagolysosome-mediated early 

killing by the host, how the bacilli manipulate other macrophage functions while residing 

within the phagosome remains an intriguing question. Several studies have demonstrated 

that M. tuberculosis successfully accesses and/or translocates into the macrophage 

cytoplasm from the phagosome [49–51]. ESAT-6, a member of the region of difference- 1 

(RD-1) gene cluster, plays a key role in this process [51–52]. The M. bovis-derived vaccine 

strain Bacille Calmette-Guérin (BCG), which lacks the RD-1 region, is unable to translocate 

to the cytosol and is avirulent [52]. Therefore, cytosolic escape could be a potential 

mechanism of virulence exerted by the proteins encoded within the RD-1 region. The 

ESAT-6 is a member of the ESX-1 specialized secretion system that not only allows 

bacterial proteins to be secreted, but also damages the phagosomal membrane thereby 

permitting mixing of luminal contents with the cytoplasm of the host cell [1, 53–54]. The 

mixing of phagosomal and cytoplasmic contents allows for recognition of mycobacterial 

components, including bacterial chromosomal DNA, CpG motifs, peptidoglycan fragments, 

dsRNA, and nucleotides by a range of host cytosolic receptors such as nucleotide-binding 

oligomerization domain (NOD) proteins [55–56], nucleic acid receptors [1, 57–64]. Once 

engaged, these cystosolic receptors activate inflammatory response pathways including 

Type-1 IFN, the inflammasome, and autophagy [1–2, 65–67]. Interestingly, a recent study 

demonstrated that an ESAT-6-deficient M. tuberculosis laboratory strain of H37Rv and M. 

bovis BCG could translocate into the cytosol in the absence of TLR signaling, indicating that 

host TLR signaling plays a decisive role in preventing mycobacterial translocation into the 

host cytosol [68]. Since several mycobacterial components are known to regulate TLR 

signaling, this study suggests that M. tuberculosis may regulate its translocation into the 

cytosol by modulating TLR signaling. Thus, it is apparent that M. tuberculosis occupies 

several intracellular niches based on host cell immunity and activation status coupled with 

temporal requirements at particular phases of infection. Table 1 lists some of the prominent 

host- receptors, which are involved in recognition of M. tuberculosis and its components and 

initiation of immune responses. For details of receptor mediated signaling and cytokine 
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responses refer to the chapter ‘Pro- and anti-inflammatory cytokines in TB’ by Eliana 

Coccia.

3. Host-pathogen crosstalk via nucleotide second messengers

While there is no doubt that the role of ESX-1-based specialized secretion, phagosomal 

permeabilization, and cytosolic translocation during M. tuberculosis infection are important 

determinants of host-pathogen molecular exchange and crosstalk, there is a vast array of 

small, soluble, signaling molecules from the bacteria that enter the host cell by known or 

unknown mechanisms [69–71]. These small molecules have been shown to control host 

gene expression or relay information to effector molecules within the host cell [72–74]. 

Classical second messengers include diverse molecules such as cyclic nucleotides (cAMP 

and cGMP), guanosine pentaphosphate or tetraphosphate [(p)ppGpp], Ca2+, inositol 

trisphosphate, and diacylglycerol (DAG) [75–78]. Recent additions to this list include 

cyclic-di-nucleotide molecules such as cyclic di-guanylate (c-di-GMP) [79–80], cyclic di-

adenylate (c-di-AMP) [81], and cyclic-GMP-AMP (c-GAMP) [82–85]. Nucleotide polymers 

are perhaps the oldest molecules of life, and the cyclized form of the energy building block 

ATP, 3′, 5′-cyclic adenosine monophosphate (cAMP), is a carrier of sensory information in 

all domains of life While the roles of cAMP and its sister molecule 3′, 5′-cyclic guanosine 

monophosphate (cGMP) have been studied for over five decades [69–70], the cyclic 

dinucleotides c-di-GMP [79–80], c-di-AMP [81], and c-GAMP [82–85] were more recently 

identified as important signaling molecules in both prokaryotes and eukaryotes. In this 

review, we aim to provide a perspective on how cAMP and c-di-nucleotides participate in 

the crosstalk between M. tuberculosis and the macrophage, and how these molecules 

facilitate M. tuberculosis survival and pathogenesis.

3.1 Modulation of cAMP homeostasis and subversion of host immunity

3.1.1 cAMP signaling in bacteria and the host: an overview—Although the basic 

module of cyclic nucleotide signaling is conserved from bacteria to complex eukaryotes, the 

molecular players that are involved in the signaling pathways are often markedly different 

[69, 86–87]. The initiation of signaling cascades is triggered by the first messenger (external 

stimuli or stress such as alterations in levels of ambient biochemicals including nutrients, 

hormones, or neurotransmitters) leading to activation of adenylyl (ACs) and guanylyl 

cyclases (GCs) which catalyze the formation of cyclic nucleotides (the second messenger) 

from either ATP or GTP. This is followed by binding of the cyclic nucleotides to 

corresponding receptors leading to downstream regulatory effector functions and, finally, 

culminating in the hydrolysis of the cyclic nucleotide by corresponding phosphodiesterases 

(PDEs) [88]. In prokaryotes and eukaryotes the primary effector function of cyclic 

nucleotide signaling is regulation of gene expression. As cyclic nucleotide signaling governs 

functions unique to both the host and the bacterial pathogen, there are numerous bacterial 

virulence strategies that interfere with host cyclic nucleotide signaling. Similarly, there are 

host defense strategies for counter-regulation.

In bacteria, glucose depletion induces AC activition in some but not all species [69, 89–90]. 

The use of the cAMP receptor protein (CRP) family of transcription factors, which bind 

upstream of specific promoters to stimulate transcription, is a common means of cAMP 
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message relay. The effects of cAMP are further amplified in some cases by cAMP-mediated 

co-regulation of other global regulators [74, 91–92]. In Escherichia coli alone, CRP is 

known to activate transcription from more than 100 different promoters, suggesting a wide 

range of cAMP-mediated regulatory effects in bacteria [93]. In eukaryotes, binding of the 

first messenger to G-protein coupled receptors (GPCRs) leads to activation of cellular ACs 

[86, 94–96]. The resulting elevated cAMP levels lead to protein kinase A (PKA) activation 

by promoting release of its catalytic subunit. PKA-mediated phosphorylation of target 

proteins, including the cAMP response element binding protein (CREB), finally results in 

differential expression of target genes. AC activity is also regulated by an inhibitory G-

protein α-subunit (Gαi) that reduces AC activity following binding to ligands which include 

several chemokines and leukotrienes [94]. To date, among the existing six classes of ACs, 

four are restricted to prokaryotes [71]. The most widely distributed ACs are the class III 

enzymes which are metal-dependent [71]. Class III ACs are found in mycobacteria and are 

also represented by the eukaryotic, GPCR-activated ACs. The activity of all three classes of 

cAMP-hydrolyzing PDEs is also metal dependent. Class I PDE enzymes are present 

exclusively in eukaryotes; while low affinity, class II PDEs have been identified in yeast, 

Vibrio species, and Dictyostelium. Class III PDEs were first described in E. coli. In 

eukaryotes, 10 AC isoforms and 11 PDE families are known to be expressed in a tissue-

specific manner [71]. The structural and functional classifications of the cAMP ACs and 

PDEs are described in detail by a recent review [71].

Literature spanning several decades has described a multitude of bacterial signaling 

pathways that are regulated by cAMP. These include catabolite repression in enteric 

bacteria, regulation of competence, chromosomal replication by binding to DnaA, phototaxis 

and heterocyst formation in cyanobacteria, secondary metabolite production and 

germination in Streptomycetes, regulation of virulence regulons in Pseudomonas, and 

biofilm formation in Vibrio cholerae [69, 90, 97–98]. In higher eukaryotes, cAMP and 

cGMP are important second messengers that mediate effects of light, nitric oxide, hormones, 

and other signals to regulate vision, muscle contraction, vasodilatory effects, sleep, memory, 

and various other functions [99]. cAMP mediates the regulation of ion channels such as the 

hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which have also 

recently been reported to be co-regulated by c-di-AMP [100]. PKA-independent functions of 

cAMP include activation of calcium channels and binding of cAMP to exchange protein 

activated (Epac) family proteins. These proteins activate small Ras-like GTPases such as 

Ras-proximate-1 (Rap1) which is predominantly involved in cell adhesion and cell junction 

formation during cell proliferation [101–103]. cAMP is also known to enhance the 

phosphorylation of extracellular-signal-regulated kinases-1/2 (ERK-1/2) via a mitochondria-

derived, reactive oxygen species (ROS)-dependent activation of Ras [104].

It is evident from the above discussion that cAMP plays important regulatory roles in many 

cellular processes in both bacteria and host cells. Not surprisingly, there are also highly 

efficient, bacterial systems that target host ACs and PDEs to subvert host cAMP-governed 

processes. Elevated levels of cAMP can suppress innate immune functions by modulating 

the expression of inflammatory mediators, inhibiting phagocytic responses, and reducing 

intracellular killing of ingested pathogens [69–70]. Increased intracellular cAMP is also 
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known to interfere with the phagosomal actin assembly cascade and phagosome maturation 

in macrophages [105]. Bacterial pathogens are known to elevate host intracellular cAMP 

levels via several distinct mechanisms: (i) by direct injection of bacterial ACs into the host 

cell (ii) by regulating the activity of host ACs through GPCR, (iii) by secretion of cAMP 

directly into the host cell, and (iv) by exploiting alternative host signaling pathways to 

indirectly trigger cAMP production (see reviews by Ahuja et al. [106] Agarwal and Bishai. 

[70], McDonough and Rodriguez. [69]). A rapid increase of cAMP levels in the host cell 

following infection with pathogenic bacteria results in impaired chemotaxis, phagocytosis, 

ROI and RNI responses, induction of apoptosis, and reduced bactericidal activity of 

macrophages and neutrophils [107–114].

3.1.2. Subversion of cAMP signaling during M. tuberculosis infection—
Adenylate cyclase activity was first reported in mycobacterial cell-free extracts close to four 

decades ago [115–116]. To date, 16 AC-like proteins, ten of which possess confirmed AC 

activity, have been reported in M. tuberculosis [71, 117]. In contrast, only a single protein 

(Rv0805) with cAMP PDE activity has been identified [118]. In addition to the AC catalytic 

core region, many M. tuberculosis ACs contain other domains such as receptor binding 

domains, DNA-binding elements, and HAMP (histidine kinases, ACs, methyl-binding 

proteins, and phosphatases) domains suggesting that their AC activity is linked to a 

regulatory function [71]. Furthermore, sub-cellular localization studies of mycobacterial 

ACs reveals multiple cellular locations suggesting the presence of soluble, membrane-

bound, and membrane-integral subclasses [71]. The presence of multiple AC genes in the M. 

tuberculosis genome is also intriguing as the mammalian genome encodes multiple ACs 

with tissue-specific expression. Since M. tuberculosis can infect a range of cell types, 

whether mycobacterial ACs have host cell-specific expression remains an interesting puzzle.

Unlike E. coli, exogenous glucose does not have a prominent effect on M. tuberculosis 

cAMP levels [116, 119]. However, a range of in vitro conditions that mimic infection 

conditions, such as pH, fatty acids, carbon dioxide (CO2), hypoxia and starvation, directly 

alter expression of M. tuberculosis ACs [74]. Several studies have reported an increase in 

cAMP level in the macrophage cystosol following mycobacterial infection [119–120]. 

Agarwal et al. reported the key of role of an M. tuberculosis AC, Rv0386, in delivering 

bacterial-derived cAMP into the host cytoplasm [120]. In addition, that study highlighted the 

role of the bacterial cAMP-specific PDE, Rv0805, which, when over-expressed in M. 

tuberculosis, significantly reduced intra-bacterial and intra-macrophage cAMP 

concentrations with consequent reductions in CREB phosphorylation and TNF-α production 

in murine macrophages (Figure 1). Agarwal et al. also demonstrated that a dysregulated host 

inflammatory response following the M. tuberculosis-mediated, cAMP intoxication of the 

macrophage cytoplasm favors bacterial survival. This confirms cAMP as a mycobacterial 

virulence mediator and suggests that there may be therapeutic value in manipulating 

mycobacterial cAMP or PDE activity [121].

Because of the functional redundancies of multiple ACs, several investigators targeted 

downstream signaling molecules to study the effect of modulation of cAMP in M. 

tuberculosis. M. tuberculosis possesses ten putative cAMP-binding proteins [71, 74, 122], 

two bona fide CRP-family transcription factors (Crp and Cmr), and a cAMP-responsive 
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protein lysine acetylase [123–125]. Of the two transcription factors, Crp, controls a regulon 

of >100 genes in M. tuberculosis [124], while Cmr, has been shown to control the 

expression of a different set of genes in response to cAMP levels and macrophage passage 

[126]. Deletion of the crp gene (Rv3676) results in a mutant strain with impaired in vitro 

and in vivo growth and attenuated virulence in mice [123]. The functions of the cAMP-

responsive lysine acetylase and the remaining putative cAMP-binding proteins remain 

unknown.

Recently, another exciting novel function of cAMP in M. tuberculosis has recently been 

reported by Pelly et al., wherein they have identified a small, non-coding RNA (sRNA) 

ncrMT1302 in a locus involved in cAMP metabolism that is responsive to changes in pH 

and cAMP concentration [127]. The differential expression of ncrMT1302 observed in wild-

type M. tuberculosis during growth is abolished in a strain lacking MT1302 (Rv1264), an 

AC-encoding gene. They also report that ncrMT1302 is expressed in M. tuberculosis 

residing in the lungs of mice during active infection. As cAMP contributes to virulence and 

a pH stress response is vital for the survival of the bacillus, this study demonstrates a key 

link between cAMP-mediated responses and sRNA-regulated transcriptional regulation.

3. 2. Modulation of cyclic di-nucleotide signaling and subversion of host immunity

3.2.1. Cyclic di-nucleotide signaling: an overview—With the exception of c-di-

GMP, which was discovered more than two and a half decades ago as an allosteric activator 

of cellulose synthase in the fruit-degrading bacterium Gluconacetobacter xylinus [128], both 

c-di-AMP and the cyclic AMP-GMP hybrid dinucleotide c-GAMP (both bacterial and 

eukaryotic) are the newest additions to the growing list of second messenger molecules that 

are involved in host-pathogen crosstalk (see [77, 79, 129–130] for recent reviews). c-di-

GMP and c-di-AMP synthesizing and degrading enzymes are found in a number of bacterial 

species [130–131], but to date such enzymes have not been found in mammalian cells. 

These two signaling, cyclic dinucleotides (CDNs) share several common features. Both c-di-

AMP and c-di-GMP are synthesized by domains that are usually part of multi-domain 

proteins, such that more than one input signal may affect their enzymatic activity. Both 

molecules regulate a variety of similar physiological processes, including cell wall 

metabolism, antibiotic resistance, biofilm formation, cell differentiation, morphology, and 

motility [130–131]. And several of the regulatory functions exerted by these two CDNs have 

direct effects on bacterial virulence mechanisms [130–131]. For example, c-di-GMP plays a 

central role in the switch from the motile to sessile state within multicellular biofilms in 

several bacterial pathogens [132]. Likewise, deletion mutants for the cyclase gene or gene 

domain for either of these CDNs exhibit compromised virulence in these pathogens [130, 

132–133].

While the precise mechanism of c-di-AMP-mediated regulation in bacteria remains 

unknown, the basic signaling modules are similar for both c-di-AMP and c-di-GMP. 

Following an external or internal signal, condensation of two nucleotide triphosphates (GTP 

or ATP) by CDN cyclases generates either c-di-GMP or c-di-AMP. The CDNs then bind to 

target proteins and elicit allosteric changes which alter effector protein function thereby 

regulating specific cellular pathways [78, 131]. Finally, CDNs are degraded by specific 
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CDN-PDEs. Both of these CDNs have also been shown to bind specific riboswitches that 

are known to regulate transcription and translation of downstream sequences [134–136].

The hybrid CDN of bacterial origin, 3′-5′-c-GMP-AMP (cGAMP), is a canonical nucleotide 

formed by 3′-5′ linkages between the guanosine and the adenosine residues, as is also the 

case with c-di-AMP and c-di-GMP [64, 83]. To date, 3′-5′-cGAMP has only been reported 

in Vibrio cholerae where it is required for efficient intestinal colonization [137]. The 

mammalian cGAMP is a 2′3′-CDN produced in mammalian cells by cGAMP synthase 

(cGAS) in response to double-stranded DNA detected in the cytoplasm [64, 85, 129]. 2′3′-

cGAMP is also referred to as ‘non-canonical’ cGAMP due to the presence of the atypical 

2′-3′ phosphodiester linkages between the nucleotide residues. A fascinating phenomenon is 

that despite structural and source differences between the bacterial and host-derived CDNs, 

both the 3′5′-cGAMP of bacterial origin and 2′3′-cGAMP of mammalian origin (as well as 

c-di-AMP and c-di-GMP) are detected by a common detector protein in the host cell 

cytoplasm - the stimulator of interferon gene signaling (STING) protein. STING activates 

the TBK1-IRF3-dependent Type-I IFN signaling pathway leading to IFN-β production [82–

84]. However, recent studies have revealed mechanisms that may differentiate these two sets 

of CDNs. Certain variants of STING are able to distinguish between the non-canonical and 

canonical cGAMP [138–139]. Further, cGAMP is more potent in activating the Type I IFN 

response than c-di-AMP or c-di-GMP, bacterial-derived cyclic dinucleotides that also bind 

STING [140]. Moreover, while physiologically relevant levels of c-di-AMP and c-di-GMP 

trigger robust secretion of IL-1β in an NLRP3 inflammasome-dependent manner [141], the 

host-derived cGAMP does not stimulate IL-1β release [142]. Thus, host cells appear capable 

of recognizing the presence of bacterial CDNs in the cytoplasm and launching an immune 

response that is qualitatively different from the response generated by self-derived cGAMP, 

though there is a certain degree of overlap with respect to the Type-I IFN responses. Given 

the presence of cytosolic DNA receptors, such as DDX41, which recognize both bacterial 

DNA (bDNA) and bacterial CDNs and the fact that some host receptors are regulated by 

bacterial CDNs (e.g., IFI16 and p202) [143], it may be difficult to assess the relative 

contribution of bDNA versus CDNs to simulating IFN-β induction during bacterial 

infection. Further evidence of overlap between the bDNA- and CDN-based responses is in 

the induction and regulation of autophagy- a key mechanism by which macrophages kill 

intracellular bacteria [1–2, 144]. Induction of autophagy has been reported in murine 

macrophage cells following exogenous stimulation with synthetic, bacterial CDNs [2]. 

Further, direct interaction between cGAS and the autophagy protein Beclin-1 not only 

suppresses cGAMP synthesis to halt IFN-β production upon dsDNA stimulation, but also 

enhances autophagy-mediated degradation of cytosolic pathogen DNA to prevent excessive 

cGAS activation and persistent immune stimulation [145]. Thus, the cGAS-Beclin-1 

interaction governs innate host defense strategies by regulating both cGAMP production and 

autophagy induction.

The Type-I IFN response is a well-characterized and critical antiviral host response. In the 

case of bacterial infections, Type-I IFNs appear to exert both beneficial and detrimental 

effects on the host [146–148]. An enhanced Type I IFN response as a consequence of 

elevated c-di-AMP levels has been observed in several studies with laboratory as well as 
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clinical isolates of pathogenic bacteria [149–151]. A c-di-AMP over-secreting Listeria 

monocytogenes strain which induces a host IFN-β response was found to be attenuated in a 

mouse model of infection [149]. Similarly, the deletion of a c-di-GMP cyclase gene, cgsB, 

in Brucella melitensis produced hypervirulence, while deletion of the PDE genes, bpdA and 

bpdB, resulted in attenuation of virulence [152]. Likewise, deletion of CDN PDEs from 

other pathogenic bacteria has resulted in attenuation of virulence in animal models of 

infection [133, 153]. In contrast, mutation of the c-di-AMP cyclase, dacA, reduces fitness in 

some strains of Staphylococcus aureus and L. monocytogenes [154–155].

3.2.2. Cyclic dinucleotides and modulation of host responses during M. 
tuberculosis infection—While most of the bacterial species possess multiple CDN-

cyclases and CDN-PDEs, the M. tuberculosis genome encodes only one cyclase and one 

PDE for c-di-GMP and similarly one cyclase and one PDE for c-di-AMP (Table 2) [156–

158]. However, the diguanylate cyclase (DGC) domain-containing protein in M. 

tuberculosis (Rv1354c) is a bi-functional protein possessing both GGDEF and EAL domains 

which possess cyclase and phosphodiesterase activities, respectively [157]. Studies with M. 

smegmatis c-di-GMP null and overexpression mutants demonstrate that while neither of 

these defects affect growth or biofilm formation, they do affect long-term survival under 

conditions of nutritional starvation [158]. Furthermore, Hong et al. reported that while a 

diguanylate cyclase (DGC) deletion mutant of the M. tuberculosis Rv1354c gene exhibited 

an increased dormancy phenotype, the c-di-GMP PDE (Rv1357c) deletion strain exhibited a 

reduced dormancy phenotype [159]. They also reported that the c-di-GMP PDE deletion 

strain was attenuated for virulence and pathogenicity in both human THP-1 derived 

macrophages as well as in a mouse model. However, none of these studies convincingly 

demonstrated whether the attenuation phenotype is due to the effects of altered c-di-GMP 

levels on the bacteria alone, the host responses, or both.

In M. tuberculosis, Rv3586 (disA, also referred as dacA) encodes a diadenylate cyclase 

[156]. Orthologues of dacA exist in all mycobacterial genomes with the exception of M. 

leprae. It has been reported that synthesis of c-di-AMP by a DisA homologue in M. 

smegmatis is inhibited by RadA (Rv3585), encoded by the adjacent gene, through a physical 

interaction with the cyclase [160]. Furthermore, a c-di-AMP binding transcription factor, 

DarR, was identified in M. smegmatis, and this transcription factor represses the expression 

of several genes associated with fatty acid metabolism and transportation [161]. However, a 

DarR orthologue has not been identified in M. tuberculosis.

Dey et al. recently showed that c-di-AMP is produced by M. tuberculosis and is secreted 

into the host cytosol during infection. This leads to STING-dependent induction of the 

cytoplasmic surveillance pathway (CSP) and consequently, induction of the Type I IFN 

pathway, autophagy, and increased secretion of a number of pro-inflammatory cytokines 

such as IL-1α, IL-6 and TNF-α (Dey, B et al., 2014, unpublished data). They further found 

that a di-adenylate cyclase (dacA) over-expressing M. tuberculosis strain that secretes excess 

c-di-AMP into the macrophage cytoplasm displayed attenuated virulence in mice compared 

to the dacA deficient and wild type strains. c-di-AMP-mediated IFN-β induction during M. 

tuberculosis infection was also found to be dependent on STING-signaling with 
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contributions from DDX41 (Dey, B et al., 2014, unpublished data). In addition, cGAMP 

synthase (cGAS) [82, 84, 162], while contributing to the overall Type I IFN response, was 

not strictly required for c-di-AMP mediated responses since c-di-AMP could activate the 

Type I IFN pathway even in the absence of this cytosolic DNA receptor (Dey, B et al., 2014, 

unpublished data).

These observations by Dey et al. expand upon earlier studies which suggested that 

mycobacterial DNA is the exclusive ligand for inducing the host Type I IFN response, and 

that the bacterial Esx-1 secretion apparatus is required for signaling [1]. By employing 

multiple bacterial strains (the M. tuberculosis CDC1551 and Erdman strains, and M. bovis 

BCG) each modified to overexpress c-di-AMP and a variety of host phagocytic cells, 

including those defective in important mediators of the CSP (STING, DDX41, and cGAS), 

Dey et al. consistently demonstrated that c-di-AMP, not bacterial DNA alone, is a key 

mediator of Type I IFN responses (Figure 2) (Dey, B et al., 2014, unpublished data). They 

also showed that bacterial-derived c-di-AMP activates Type I IFN in the absence of an 

Esx-1 secretion system and, while contributory, Esx-1 is not required for c-di-AMP-

triggered IRF pathway activation. Along similar lines, Bishai and colleagues and others also 

found that a c-di-AMP-PDE deletion strain (Rv2837c) of M. tuberculosis induced a 

heightened Type-I IFN response and that this mutant was also attenuated in the murine 

model of TB (Bishai and colleagues, unpublished data)[150].

Cyclic di-AMP mediated enhanced Type I IFN response during M. tuberculosis infection 

observed by Dey et al. extends correlative observations by several studies with laboratory as 

well as clinical isolates of pathogenic bacteria [149–151]. While Type I IFNs are critical for 

resistance to viruses, there are reports as to whether the IFN-α/β response is beneficial or 

detrimental to the host during TB [146–148]. For example, loss of the IFN-α/β receptor 

knockout mice confers resistance to M. tuberculosis infection, suggesting that Type I IFN 

responses are counterproductive in TB [163]. In contrast, IFNα/β promote antigen cross-

presentation in DCs and activation of cytolytic CD8 T cells, which are crucial for M. 

tuberculosis clearance [164–165]. Furthermore, in Type II IFN deleted mutant mice, the 

Type I IFN response has also been shown to limit lung infectivity of M. tuberculosis [166]. 

Importantly, a human transcriptome analysis of peripheral blood in patients with TB also 

revealed high levels of Type I and Type II IFN inducible genes, suggesting an overlapping 

and dynamic role of both types of IFN in TB pathogenesis [167].

It is evident from the above discussion that CDNs play an important regulatory role in many 

cellular processes in both the virulence and pathogenicity of M. tuberculosis and host-

pathogen crosstalk during infection. Thus, it is not surprising that both the host and pathogen 

employ strategies to regulate intracellular CDN levels to establish supremacy over the other. 

Future research in these areas is warranted to uncover the exquisite virulence mechanism 

based on CDNs that M. tuberculosis utilizes to manipulate host defense machinery.

4. Summary and future perspectives

The enduring co-evolution of M. tuberculosis with its hosts has enabled the pathogen to 

develop a number of strategies to thwart the host defense for its survival, especially within 
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macrophages. These tactics range from interfering with phagosomal acidification and 

trafficking, blocking autophagy and apoptosis-mediated killing, perturbing calcium 

signaling, and inhibiting inflammasome activation in order to modulate the host cytokine 

responses and quench the reactive oxygen and nitrogen species produced by activated 

macrophages. Manipulation of these host pathways is achieved by employing a plethora of 

bacterial components including cell wall lipids, serine threonine kinases, phosphatases and 

proteases, and actively using specialized secretion systems. In this review, we have focused 

on a relatively recently described virulence strategy involving perturbation of nucleotide-

based second messenger signaling in the host.

Subversion of host signaling molecules, particularly nucleotide second messengers, has 

emerged as a common evolutionary strategy of pathogens to counteract the host’s innate 

responses [168–171]. For instance, a number of pathogenic viruses such as Murine hepatitis 

virus (MHV) and Group A rotavirus (RVA) efficiently counteract innate immunity by 

degrading host derived oligoadenylates employing specific phosphodiesterase thus 

inhibiting activation of ribonuclease L (RNase L), which constitute important components of 

the host antiviral pathway [172–173]. Moreover, recent research has demonstrated that 

cGAS is an important innate sensor of retroviral DNA such that infection with human 

immunodeficiency viruses (HIV), simian immunodeficiency viruses (SIV), or murine 

leukemia virus (MLV) activates cGAS to produce cGAMP, thus stimulating the cGAMP/

STING/IFN axis [82]. These viruses are well-known to obviate CSP responses by 

concealing viral nucleic acids within capsid structures and/or limiting the accumulation of 

cytosolic viral DNA by co-opting host factors such as TREX1 and SAMHD1 [174]. TREX1 

is a cytosolic exonuclease, which inhibits the host CSP or Interferon stimulatory DNA 

response by degrading the cytosolic DNA derived from HIV. TREX1 has also been shown 

to play an important role in M. tuberculosis-induced Type I IFN response. Knocking out the 

TREX1 gene substantially increased the cellular innate response while its over-expression 

resulted in a reduced host response to M. tuberculosis infection [1]. Such observations may 

establish important links in the co-pathogenesis of HIV and M. tuberculosis, each of which 

is known to exacerbate the other in co-infected humans. It is interesting to speculate 

presence of specific bacterial and viral mechanisms to manipulate CDN second messenger 

signaling to facilitate TB-HIV co-infection. Box 1 summarizes some of the key issues 

related to cyclic nucleotide signaling in M. tuberculosis infection.

Box 1

Key issues on cyclic nucleotide signaling in M. tuberculosis infection

• How does M. tuberculosis secrete cyclic mono- and di-nucleotides?

• Do mycobacteria secrete cyclic nucleotide cyclases and phosphodiesterases into 

the host cell to utilize host substrate molecule as well as to subvert host 

signaling pathways?

• How do both the bacilli and the host regulate the balance and interconnected 

functions of multiple cyclic nucleotides?
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• How does the host differentiate seemingly similar self and non-self cyclic 

nucleotides to initiate specific signaling cascades?

• Like the host, does M. tuberculosis expresses different cyclic nucleotide 

cyclases and phosphodiesterases in a tissue- or organ-specific manner during 

infection?

• Does cyclic-nucleotide signaling plays any role in TB-HIV co-infection?

• Does small molecule targeting of the cyclic nucleotide signaling pathways have 

potential for developing therapeutics or immunotherapeutics against TB?

The past decade has revealed numerous mechanisms which contribute to the virulence of M. 

tuberculosis. Similarly there are host mechanisms in place to counteract these M. 

tuberculosis virulence strategies. Considering the overlapping and interconnected nature of 

the host-microbe crosstalk in tuberculosis, future research to characterize this interplay 

promises to unravel new vistas of therapeutic and prophylactic possibilities against this 

stubborn pathogen.

Acknowledgments

Research in the laboratory of William R. Bishai is funded by the NIH grants AI36973, AI37856, and AI097138 and 
the Howard Hughes Medical Institute (HHMI). Postdoctoral fellowship support to Bappaditya Dey is funded by 
HHMI. We thank Ruchi Jain Dey and Shaaretha Pelly for critical reading of the manuscript and useful suggestions. 
We acknowledge Connie William for proofreading of the manuscript.

Abbreviations

AC Adenylyl Cyclase

AKAP7 A-Kinase Anchor Protein 7 isoform gamma

AM Alveolar Macrophage

ATP Adenosine Triphosphate

BCG Bacille Calmette–Guérin

cAMP Cyclic Adenosine Monophosphate

CD1 Cluster of Differentiation 1

c-di-AMP Cyclic-di-Adenosine Monophosphate

c-di-GMP Cyclic-di-Guanosine Monophosphate

CDN Cyclic Dinucleotide

cGAMP Cyclic- Guanosine Monophosphate - Adenosine Monophosphate

cGAS Cyclic GMP-AMP synthase

cGMP Cyclic Guanosine Monophosphate

CR Complement Receptor

CREB cAMP Response Element-Binding Protein
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CSP Cytoplasmic Surveillance Pathway

DAG Diacyl-Glycerol

DC Dendritic Cell

DC-SIGN Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing 

Non-integrin

DGC Diguanylate Cyclase

disA DNA Integrity Scanning Protein-A

Eis Enhanced Intracellular Survival protein

ESAT-6 Early Secretory Antigenic Target - 6

ESX-1 ESAT-6 secretion system

FcγR Complement Factor- γ Receptor

GC Guanylyl Cyclase

GTP Guanosine Triphosphate

HCN Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels

HIV Human Immunodeficiency Virus

ICAM Intercellular Adhesion Molecule 1

IFN interferon

IL interleukin

LM Lipomannan

M. tuberculosis Mycobacterium tuberculosis

ManLAM Mannose-Capped Lipoarabinomannan

MHV Murine Hepatitis Virus

RNasL Ribonuclease L

MLV Murine Leukemia Virus

MR Mannose Receptors

MyD88 Myeloid Differentiation; Primary Response Gene 88

NLRP3 NLR Family Pyrin Domain Containing 3

NOD Nucleotide-Binding Oligomerization Domain

PAMP Pathogen Associated Molecular Pattern

PDE Phosphodiesterase

PDIM Phthiocerol Dimycocerosates

PI3P Phosphatidylinositol 3-Phosphate
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PIM phosphatidyl-myo-inositol mannosides

PKA Protein Kinase A

(p)ppGpp Guanosine Pentaphosphate or Tetraphosphate

PRR Pattern Recognition Receptor

SAMHD1 SAM Domain and HD Domain-Containing Protein 1

SR Scavenger Receptors

STING Stimulator of Interferon Gene

TB Tuberculosis

TDM Trehalose Dimycolates

TLR Toll-Like Receptor

TNF Tumor Necrosis Factor

TREX1 Three Prime Repair Exonuclease 1

VPS33B Vacuolar Protein Sorting-Associated Protein 33b
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Highlights

• The macrophage cytosolic surveillance pathway detects foreign DNA and 

nucleotides.

• M.tb delivers pathogen-derived cAMP into the host cell eliciting 

hyperinflammation.

• c-di-AMP and c-di-GMP are bacterial derived nucleotides detected by host 

receptors.

• Bacterial DNA and M.tb- derived c-di-AMP trigger IFN-β secretion and 

autophagy.

• Manipulation of the cytosolic surveillance pathway may enable therapeutics for 

TB.
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Figure 1. cAMP-mediated signaling in M. tuberculosis infection
Macrophages produce intracellular cAMP through G-protein-coupled receptor (GPCR)-

adenylate cyclases (ACs). Increased cAMP stimulates protein kinase A (PKA) leading to the 

phosphorylation of cAMP response-element-binding protein (CREB), and subsequent 

transcriptional changes including modulation of cytokine expression. M. tuberculosis 

secretes cAMP directly into host macrophages leading to increased intracellular cAMP 

levels following infection. The M. tuberculosis infection-induced cAMP burst activates the 

PKA–CREB pathway leading to production of TNF-α, one of the key cytokines for TB 

granuloma formation. P = phosphate, TNF-a = tumor necrosis factor-a, CBP = CREB-

binding protein, ERK1/2 = extracellular-signal-regulated kinase-1/2, p38 = p38 mitogen-

activated protein (MAP) kinase.
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Figure 2. Cyclic dinucleotide signaling in M. tuberculosis infection
Cyclic dinucleotides (c-di-AMP and c-di-GMP) secreted by either phagosomal or 

cytoplasmic M. tuberculosis are detected by host cytoplasmic receptors DDX41 and STING. 

Receptor-bound DDX41 also interacts with and activates STING. Activated STING 

subsequently interacts with and activates kinase TBK1 leading to phosphorylation and 

dimerization of IRF3 which translocates into the nucleus and stimulates transcription of 

Type-1 IFN response genes. Activated STING also co-localizes with LC3, an 

autophagosome membrane component, and initiates autophagosome formation that 

ultimately leads to bacterial degradation. Correspondingly, bacterial DNA gains access to 

the cytosolic compartment and binds to the dsDNA receptor cyclic-GAMP synthase (cGAS) 

stimulating the synthesis of 2′,3′-cGAMP. Host-produced cGAMP binds to STING and 

stimulates a signaling cascade similar to that of the bacterial cyclic dinucleotides. P = 

phosphate, IFN = interferon, STING = stimulator of interferon genes, TBK1 = TANK-

binding kinase 1, IRF3 = interferon regulatory factor 3.
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Table 1

Host immune receptors involved in recognition of M. tuberculosis components

Host receptorsa M. tuberculosis component Type of immune response/function Reference

Cell surface receptors

TLRs LM, lipoprotein, PIMs Pro-inflammatory 8, 12

CRs C3-opsonized/non-opsonized bacteria, PIMs Low levels of inflammation 12, 14, 15

MR ManLAM, PIMs Anti-inflammatory 8, 11, 12

DC-SIGN ManLAM, LM, PIMs Anti-inflammatory 8, 9, 10

Dectin, Mincle Glycolipids, TDM Anti-/Pro-inflammation 8, 12

Fc γRs IgG-opsonzed bacilli Phagolysosome fusion 8, 13

SR-A, CD14 non-opsonized bacteria Anti-/Pro-inflammation 8, 12

Cytosolic receptors

NOD Peptidoglycan Pro-inflammatory 55, 56

TLR9 CpG DNA Pro-inflammatory 57, 58

DAI, cGAS dsDNA Type 1 IFN, pro- inflammatory 59, 64

AIM2, NLRP3 dsDNA Inflammasome activation 65, 66

IFI16 ssDNA, dsDNA Type 1 IFN, pro- inflammatory 60

STING c-di-GMP, c-di-AMP, cGAMP Type 1 IFN, pro- inflammatory 1, 2, 62, 67

DDX41 dsDNA, c-di-GMP, c-di-AMP Type 1 IFN, pro- inflammatory 62, 63

RNA Pol III AT rich dsDNA Type 1 IFN, pro- inflammatory 61

a
DAI, DNA-dependent activator of IFN-regulatory factors; AIM2, Absent in melanoma 2; IFI16, Interferon-inducible protein-16. See 

Abbreviations for other definitions.
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Table 2

Cyclic di-nucleotide cyclases and phosphodiesterase of M. tuberculosis

Cyclic di-GMP

Gene number/name Function Domain composition

Rv1354c Cyclase- phosphodiesterase (bi- functional 
protein)

Rv1357 Phosphodiesterase

Cyclic di-AMP

Rv3586
disA
dacA

Cyclase

Rv2837c
NrnA
cnpB

Phosphodiesterase

Domain composition of cyclic di-nucleotide cyclases and phosphodiesterases are shown as predicted using the SSDB Motif (http://www.kegg.jp/
kegg/ssdb/) and conserved domain (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?db+cdd) databases. Gene nomenclature is according to 
the M. tuberculosis H37Rv genome annotation. Major functional domains: GGDEF, c-di-GMP cyclase; EAL, c-di-GMP phosphodiesterase; DisA-
N, c-di-AMP cyclase; DHH, c-di-AMP phosphodiesterase.
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