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Abstract

Colorectal cancer is the second leading cause of death from cancer in the United States. To 

facilitate the efficiency of colorectal cancer screening, there is a need to stratify risk for colorectal 

cancer among the 90% of US residents who are considered “average risk.” In this article, we 

investigate such risk stratification rules for advanced colorectal neoplasia (colorectal cancer and 

advanced, precancerous polyps). We use a recently completed large cohort study of subjects who 

underwent a first screening colonoscopy. Logistic regression models have been used in the 

literature to estimate the risk of advanced colorectal neoplasia based on quantifiable risk factors. 

However, logistic regression may be prone to overfitting and instability in variable selection. Since 

most of the risk factors in our study have several categories, it was tempting to collapse these 

categories into fewer risk groups. We propose a penalized logistic regression method that 

automatically and simultaneously selects variables, groups categories, and estimates their 

coefficients by penalizing the L1-norm of both the coefficients and their differences. Hence, it 

encourages sparsity in the categories, i.e. grouping of the categories, and sparsity in the variables, 

i.e. variable selection. We apply the penalized logistic regression method to our data. The 

important variables are selected, with close categories simultaneously grouped, by penalized 

regression models with and without the interactions terms. The models are validated with 10-fold 

cross-validation. The receiver operating characteristic curves of the penalized regression models 

dominate the receiver operating characteristic curve of naive logistic regressions, indicating a 

superior discriminative performance.
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1 Introduction

Prognostic models are useful tools in medicine to support tasks such as benchmarking, 

identification of patients at risk, and individual clinical decision making. A number of 

techniques have been suggested for the development of clinical prediction, including a 

variety of statistical methods (e.g. logistic and linear regression, discriminant analysis, and 

recursive partitioning), and the clinical judgment of experts.1,2 For predicting binary 

outcomes, such as mortality or the presence of disease, logistic regression has emerged as 

the statistical technique of choice.3

Logistic regression is widely used to model medical problems because the methodology is 

well established and coefficients may have intuitive clinical interpretations. However, when 

a number of risk factors are presented, logistic regression may be inadequate to handle these 

variables including their interactions; such highly parameterized models may overfit the data 

and could perform poorly for prediction. Moreover, the logistic model breaks down in the 

face of sparse outcomes for the different categories determined by these risk factors. To 

identify the “important” variables in predicting the outcome, model selection methods such 

as stepwise deletion and subset selection are often adopted. These techniques, though 

practically useful, are prone to problems such as a lack of stability as analyzed, for example, 

by Breiman.4 Another disadvantage of logistic regression is that, unlike classification 

methods such as decision trees,2 it cannot be easily converted to a set of rules, a limitation 

that may reduce its clinical utility.

In this paper, we focus on scenarios where the risk factors are categorical, and maybe 

ordered, which is common in clinical settings. In cases where there is no a priori ordering 

expected between the categories and the outcome, a categorical covariate is modeled by the 

use of dummy variables. In many cases, however, we might expect the effect of category on 

the outcome to follow some natural ordering. For instance, the odds ratio for the light 

smoker category is expected to be smaller than that for the heavy smoker category. When the 

coefficients of two neighboring categories are close in risk magnitude, it is tempting to 

collapse them into one risk group for easier clinical use. This, along with the above-

mentioned concerns, motivates us to propose a penalized logistic regression method that 

automatically and simultaneously selects variables, groups categories, and estimates their 

coefficients.

Tibshirani et al.5 first proposed the fused lasso method, which penalizes the L1-norm of both 

the coefficients and their successive differences, for problems with features that can be 

ordered in some meaningful way. Lin et al.6 proposed to develop cancer staging systems by 

using a Cox proportional hazards model with penalties on the differences between 

neighboring coefficients. Following the same line of thought, we attempt the double tasks of 

selection and grouping by using a lasso-type penalty in the usual logistic regression. 

Specifically, we pose constraints on neighboring coefficients such that
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(1)

where βj,k is the coefficient for the kth level of the jth covariate, and s > 0 is a pre-specified 

tuning parameter. These penalty terms together encourage sparsity in both variable selection 

and the grouping of the categories. The constraints can also be modified to handle 

interaction terms.

An attractive feature of this penalized regression method is that, by including fewer variables 

into the model and at the same time aggregating their categories, it produces a relatively 

small number of unique predicted values. These predicted values can then be directly used in 

decision rules for risk stratification or treatment selection. The well-known tree-based 

methods, being self-explanatory and easily converted to a set of rules, are theoretically 

applicable.2 However, since a decision tree does not assign estimated coefficient values to 

the variables deemed important, the magnitude of the covariate effects could be somewhat 

unclear. Moreover, as decision trees use a “divide and conquer” method, they tend to 

perform well if a few highly relevant attributes exist, but less so if many complex 

interactions are present.

The penalized regression method can be easily adapted to handle two-way interactions of 

interest. This represents another strength of the proposed approach. For instance, for 

colorectal cancer (CRC), used as a motivating example in Section 3, no existing 

epidemiology studies of this disease have systematically explored interactions.

The structure of this paper is as follows. In Section 2, we describe the motivating data 

example of advanced colorectal neoplasia. The proposed penalized logistic regression 

method is described in Section 3 along with the computational approach and estimation of 

the tuning parameter. The method is then illustrated using the example of advanced 

colorectal neoplasia in Section 4. Discussion and conclusions are presented in Section 5.

2 The advanced colorectal neoplasia data

CRC is the second leading cause of death from cancer in the United States. This year, it is 

estimated that there will be 147,000 newly diagnosed cases of CRC and nearly 50,000 

deaths associated with this disease.7 Screening is an effective way to reduce cause-specific 

mortality. Colonoscopy is the most commonly used screening test in the US, promoted in 

cancer prevention guidelines for people starting at age 50 because of its higher sensitivity 

than other less costly procedures such as stool-sample tests.8–10 Colonoscopy allows doctors 

to examine the entire colon and remove abnormal tissue growths called adenomatous polyps 

that may progress to cancer. However, high non-adherence to colonoscopy is observed 

because of its risks, cost, feasibility (availability and insurance coverage), and uncertain 

incremental benefit over other screening tests for meaningful patient outcomes such as 

cancer-related morbidity and mortality.11,12
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One reason for support of widespread colonoscopic screening is that there is no accurate and 

precise way to stratify risk for advanced colorectal neoplasia (CRC and advanced, 

adenomatous polyps) among the 90% of US residents who are considered “average risk.” If 

such stratification could be established, then a tailored screening recommendation would be 

both highly effective and cost-effective. For example, people in the subgroup at very low risk 

for advanced neoplasia could have screening deferred or performed with methods less 

invasive than colonoscopy; for people at high risk, colonoscopy would be considered the 

preferred strategy. Tailoring according to risk of advanced neoplasia could also be useful for 

allocating CRC screening resources.

In this paper, we investigate such risk stratification rules for advanced neoplasia among 

people considered to be average risk. We use a recently completed large cohort study funded 

by the National Cancer Institute of subjects undergoing first time screening colonoscopy in a 

variety of clinical outpatient settings. The targeted risk factors are derived from the NCI’s 

CRC Risk Assessment tool (http://www.cancer.gov/colorectalcancerrisk) and include a 

previous cancer-negative sigmoidoscopy/colonoscopy in the last 10 years, polyp history in 

the last 10 years, history of CRC in first-degree relatives, aspirin and non-steroidal anti-

inflammatory drug (NSAID) use, cigarette smoking, body mass index (BMI), leisure-time 

vigorous activity, vegetable consumption, and for women, post-menopausal estrogen use. All 

risk factors are categorical variables, with two to four levels. The derived rules are expected 

to facilitate decisions about initial CRC screening.

Logistic regression models have been used in the literature to estimate the risks of CRC 

based on quantifiable risk factors. For instance, with a similar group of variables, Freedman 

et al.13 developed models for men and women that use logistic regression to estimate future 

risk for CRC. In this paper, we will illustrate that the proposed penalized logistic regression 

can be a better choice for developing such risk stratification tools than the usual logistic 

regression.

3 Penalized logistic regression

3.1 A Lasso-type modeling procedure

We consider a prediction problem with N cases having binary outcomes y1, y2, …, yN and 

covariates xij, i = 1, 2, …, N, j = 1, 2, …, p. In logistic regression, the outcome yi follows a 

Bernoulli probability function that takes on the value 1 with probability πi and 0 with 

probability 1 − πi, where πi varies over the observations as an inverse logistic function of 

the vector xi:

To estimate β, we can maximize the conditional log-likelihood
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(2)

with respect to the regression coefficients β = {βj}, j = 1, 2, …, p. The usual iteratively 

reweighted least squares (IRLS) procedure is used to obtain maximum likelihood estimates 

of the parameters.14

We focus on situations where the covariates are categorical, which corresponds to the 

advanced colorectal neoplasia study and is very common in clinical settings. We rewrite β as 

{βj,k}, j = 1, 2, …, q, k = 1, 2, …, nj, where q is the number of covariates and nj is the 

number of categories or levels (excluding the reference level) for covariate j. Suppose that 

all covariates have an a priori ordering. Then, without loss of generality, β is ordered such 

that 0 ≤ βj,1 ≤ ··· ≤ βj nj, j = 1, …, q, with 0 being the coefficient of the reference level. The 

double tasks of selection and grouping can be attempted by using a lasso-type model 

selection technique. We propose to estimate β such that it minimizes the penalized negative 

log-likelihood:

(3)

where λ is a tuning parameter. The two penalty terms together encourage sparsity in the 

variables, i.e. variable selection, and sparsity in the categories, i.e. grouping of the 

categories. This penalty is similar to the fused lasso penalty,5 yet different in that it enforces 

a natural ordering.

The sparsity-enforcing property of the penalty results in fewer variables as well as fewer 

categories in the final model, leading to a relatively small number of unique predicted 

values. These predicted values can then be directly used as decision rules for risk 

stratification or for guiding a management strategy. The penalty provides a continuous 

model that ensures the stability of model selection. It also facilitates model stability in the 

presence of sparse outcome data for different categories determined by these risk factors.

Our method naturally deals with ordinal and categorical risk factors by imposing constraints. 

In fact, with the ordering constraint, the absolute values in equation (3) can be dropped and 

the objective function can be simplified as min

(4)
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Note that only the coefficient for the highest level category of each covariate is taken into 

account in equation (4). Yet this is mathematically equivalent to equation (3) and will give 

the same estimates as the original formulation. Normally, different weights are given to 

covariates with different numbers of levels in order to avoid excess penalty on covariates 

with large number of categories. This is not needed here since the penalty only involves one 

coefficient for each covariate.

The penalty can be easily adapted for covariates without a priori ordering or that are 

partially ordered. For covariates without a priori ordering, the penalty is the summation of 

all pairwise absolute differences (including the differences with the reference level):

(5)

Now with all pairwise absolute differences included, a smaller weight can be given to the 

penalty term in order to avoid excess penalty on this covariate. This is similar for covariates 

that are partially ordered.

3.2 Computational approach

Because it does not feature absolute values, the penalized logistic regression in equation (4) 

can be solved by the usual IRLS procedure with the weighted least squares step replaced by 

a constrained weighted least squares procedure. Let X denote the design matrix with xi as 

the ith row and π = (π1, …, πn)T, where πi = 1/(1 + e−βTxi). Denote A = diag(πi(1 − πi)), z 

= Xβ + A−1(y − π), and . Then at the kth iteration, β̂(k) is the solution of

(6)

where z and A are based on β(̂k−1). The iterative procedure is as follows:

1. Fix λ and initialize β̂ = 0.

2. Compute π, A and z based on the current value of β̂.

3. Minimize (z − Xβ)T A(z − Xβ) + Pλ(β) subject to 0 ≤ βj,1 ≤ ··· ≤ βj,nj, J = 

1, …, q.

4. Repeat steps 2 and 3 until convergence of β̂.

The minimization in step 3 can be done through a quadratic programming procedure. When 

“warm starts” are used for computing the path of solutions over a grid of λ’s, the initial β̂ in 

step 1 is set to be the solution for the previous λ.

When covariates without a priori ordering are present, their contribution to the penalty as in 

equation (5) can be added into Pλ(β) with proper weights. The same iterative procedure is 

then applied. The computation can become more difficult when the absolute values remain 

Lin et al. Page 6

Stat Methods Med Res. Author manuscript; available in PMC 2015 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the penalty. In this case, the computational approach introduced by Tibshirani et al.5 for 

the fused lasso can be applied as an alternative.

3.3 Estimation of the tuning parameter

Estimates from equation (4) depend on the tuning parameter λ. When λ = 0, the solution is 

the usual logistic regression estimate. As λ increases, the absolute differences between 

neighboring coefficients go to 0 successively, corresponding to the successive grouping and 

dropping of the coefficients, until all coefficients are dropped. The estimated coefficients 

from the penalized logistic regression fit can be displayed as a function of the tuning 

parameter λ; an example is given in Section 4. “Warm starts” are used to efficiently compute 

the path of solutions over a grid of values for λ.

A method is needed to select the optimal tuning parameter λ. Following Lin et al.,6 we 

propose to use the Bayesian Information Criterion (BIC)

(7)

to select the tuning parameter λ, where ℓ(β̂λ) is the log-likelihood with β̂λ, and kλ is the 

model’s degrees of freedom. In this paper, we estimate kλ by the number of unique 

parameters. Intuitively, the BIC inflates the negative log-likelihood by a penalty term 

proportional to the effective number of parameters.15 The BIC is calculated over a grid of 

values of λ which are uniformly distributed on the log scale from 0 to some big number, and 

the value λ̂ yielding the lowest estimated BIC is selected.

3.4 Two-way interactions

The penalized regression method can be adapted to handle two-way interactions of interest. 

For simplicity, we consider a model with two categorical covariates with p and q levels 

(excluding the reference levels), respectively, and their interaction terms. With some abuse 

of notation, we denote θ = (α1, …, αp, β1, …, βq, ν1,1, …, νp,q)T as the model parameters, 

where α’s and β’s are regression coefficients for the two main effects and ν’s are 

coefficients for the two-way interaction. Let X denote the design matrix with the interaction 

and xi the ith row of X. The log-likelihood is

To develop the penalty, we consider the interaction terms {νj,k}, j = 1, …, p, k = 1, …, q, as 

features arranged on a two-way grid. Like the main effects, we expect to shrink and group 

the interaction terms. An intuitive way is to constrain the differences between neighboring 

coefficients in both directions in the two-way grid, as well as the difference with the 

reference, such that
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(8)

Hence when both main effects are a priori ordered, the penalized logistic regression can be 

written as

(9)

We do not assume here the interactions are ordered whenever the main effects are ordered. 

In many cases it might be safe to assume this, and the interactions will satisfy a partial 

ordering constraint, i.e. 0 ≤ νj,1 ≤ ··· ≤ νj,q and 0 ≤ ν1,k ≤ ··· ≤ νp,k, j = 1, …, p, k = 1, …, q. 

The above penalty can be further simplified given these constraints.

4 Data analysis and results

Study subjects were aged 50 to 80 years and underwent first-time screening colonoscopy 

between 12/2004 and 9/2011. Advanced neoplasia, the outcome of interest, is defined as a 

tubular adenoma greater than 1 cm, a polyp with villous histology or high-grade dysplasia, 

or CRC. Among 4,526 subjects (mean age 57.30 ± 6.78 years; 51.8% women), the 

prevalence of advanced neoplasia was 7.96%. Among the 4,464 (98.6%) with complete data 

(mean age 57.25 ± 6.70 years; 51.6% women), the prevalence of advanced neoplasia was 

8.36%, including 46 subjects with CRC.

4.1 Fitted models

Data from men and women are analyzed separately. Table 1 presents a summary of the 

variables included in the analysis. There are eight risk factors for men and nine for women. 

Among the nine variables, eight are a priori ordered with greater index associated with 

higher risk, and one (screening and polyp history) is partially ordered – patients in category 

3 are expected to have higher risk than those in category 1. BMI is divided into three 

categories for men and two categories for women. Some categories have very few cases in 

them (e.g. categories 1 and 3 of screening and polyp history), which might be problematic 

under a naive logistic regression.

We fit a naive logistic regression, a penalized logistic regression with only main effects 

(PLR-1), and a penalized logistic regression with main effects and their two-way interactions 

(PLR-2). A naive logistic regression with interactions cannot be fit because of its singular 

design matrix. Table 2 presents the model estimates for men. Because of the natural 

ordering, all coefficients are expected to be positive. The penalized regression models are 

able to preserve these orders by dropping unimportant variables and by merging the 

categories that violate the ordering constraints. This is not guaranteed by the naive logistic 

regression, where the coefficients for vegetable consumption and BMI are negative, 
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contradictory to common knowledge. These variables are found to be not significant for 

predicting advanced neoplasia under all models.

Six and five variables are selected, respectively, by the main effect penalized model and the 

penalized model with interactions. Vegetable consumption and BMI are deemed unimportant 

variables under both models. The estimated coefficients are shrunk to reach a more stable 

model. The coefficients for polyp history are shrunk the most since this risk factor is most 

likely to be correlated with other risk factors. Close categories are grouped simultaneously 

under both models. For instance, the four-level variable of leisure-time activity can be 

simplified into two groups, nonactive and active, under the penalized model with 

interactions.

In addition to five main effects, the interaction model selects six interaction terms (of 

possibly grouped categories). At the same time, some main effect coefficients become much 

smaller in the interaction model, especially cigarette smoking and polyp history. It appears 

that these variables, as well as NSAID/aspirin use, which is dropped under the interaction 

model, exhibit risk that is modified by other factors. For example, cigarette smoking does 

more harm when other risk factors (i.e. polyp positive, non-user of NSAID/aspirin, and 

relatives with CRC) are presented. Hence this model sheds more light on how the variables 

interact and better explains the risk of advanced neoplasia than the main effect model.

Figure 1 shows the estimated coefficients for men for the six selected variables under the 

main effect penalized model as a function of the log tuning parameter log(λ). The dotted 

line is where the BIC is minimized. From this figure, we gain a glimpse of the relative 

importance of the risk factors. For instance, cigarette smoking, non-activity, and older age all 

retain large coefficients for most values of λ, reflecting the significance of their effects on 

the risk for advanced neoplasia.

Table 3 displays the model estimates for female subjects. For women, seven of nine 

variables are selected by the main effect penalized model. The findings and interpretations 

are similar to those for men. One thing worth mentioning is that the main effect coefficient 

of estrogen use is zero under the interaction model because of its significant interactions 

with many other risk factors. Again, the penalized regression is considered superior and 

provides more information than the simple logistic regression.

In summary, the penalized logistic regression simultaneously selects important risk factors 

and provides models with fewer categories. The penalized model with interactions is more 

desirable since it offers more detailed risk stratification. As the penalized interaction models 

have only 12 and 16 distinct estimated coefficients for men and women, respectively 

(compared to a full interaction model which would have 83), these models can be 

conveniently developed into risk stratification rules for guiding treatment strategy.

4.2 Model validation

We validate and compare the discriminatory performance of the logistic regression models 

using receiver operating characteristic (ROC) curves. The area under an ROC curve (AUC) 

indicates how well a prediction model discriminates between healthy patients and patients 
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with disease. ROC curves are generated by means of 10-fold cross-validation for the three 

models. The increase in the AUC was evaluated and tested for significance using the test 

proposed by DeLong et al.16

The ROC curves of the penalized regression models dominate that of naive logistic 

regression at most cutoff thresholds for men (Figure 2). The naive logistic regression 

achieves an AUC of 0.567 (95% CI, 0.531–0.604). The penalized regression models achieve 

AUCs of 0.586 (95% CI, 0.549–0.623) and 0.615 (95% CI, 0.578–0.651) without and with 

interactions, respectively. The penalized model with interactions performs significantly 

better (p-value = 0.026) than the naive logistic regression, while the difference between the 

main effect penalized model and the naive logistic regression is not significant (p-value = 

0.322). No statistically significant difference is found between the AUCs of the two 

penalized models (p-value = 0.394). These findings suggest that the proposed penalized 

logistic regression models, in particular the model with interactions, have a favorable 

performance compared to naive logistic regression.

Validation is also performed for women and similar improvement in performance is 

observed (Table 4). The ROC curves are shown in Figure 3. Again, the penalized model with 

interactions performs significantly better (p-value = 0.009) than the naive logistic regression. 

No statistically significant difference is found between the AUCs of the two penalized 

models (p-value = 0.155).

Note that in this example, all models examined show modest discriminatory power (AUC = 

0.57–0.62). This suggests the need to find additional strong risk predictors. Nonetheless, the 

proposed model is able to improve discriminatory power without using extra covariates. It is 

well documented that improvement on AUC is extremely difficult.17–20 Often “extremely” 

strong association improvement is needed for meaningful improvement in AUC.17 To gauge 

the improvement based on AUC, Gail19 and Raji et al.20 showed that adding many newly 

discovered biomarkers to existing risk models only improved AUC by around 0.03. The 

benefit we see here is hence substantial in terms of improvement in AUC. Moreover, holding 

sensitivity at 80%, the improvement in specificity is 10%. This is significant considering we 

are looking at a screening program with millions of subjects.

5 Discussion and conclusions

In this paper, we have considered a penalized logistic regression method that automatically 

selects variables, groups categories, and estimates their coefficients. The model penalizes the 

L1-norm of both the coefficients and their differences. Thus it encourages sparsity in the 

categories via grouping of the categories and also sparsity in the variables via variable 

selection. The method can investigate many variables including their interactions in logistic 

regression where the traditional maximum likelihood based method can break down due to 

the high number of parameters and insufficient outcome data for certain categories. The 

order and partial order constraints we put on risk factors in the model incorporates existing 

scientific findings so that the probability of disease does not decrease at a higher level of 

risk. The penalty we put on odds ratio coefficients for adjacent categories encourage 

grouping and lead to parsimonious models. We have applied our method to a recently 
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completed colon cancer screening data. Advantages of our method are seen in terms of both 

the ROC curves and fitted coefficients for risk factors over naive logistic regression. The 

capability for investigating various interactions among numerous risk factors should make 

our method a powerful tool for cancer risk modeling because currently very few, if any, 

scientific publications systematically consider interaction terms when there are many risk 

factors.

Risk stratification models in our example, as well as in some other CRC literature.13,21 were 

developed gender-specifically because the risk factor of estrogen use is only relevant for 

women. Yet a model including both sexes by ignoring estrogen use is likely as useful given 

that fact that estrogen use shows limited effect in the resulting models. Risk stratification is 

not and does not have to be gender-specific in many other disease areas, and including both 

sexes is very easy to do statistically.

In our example, we consider the final penalized models “minimally parsimonious models” 

based on BIC alone. They are not necessarily the best in terms of parsimony since the BIC 

might not choose the most parsimonious model but the one meets the mathematical criterion. 

In order to meet the requirements of simplicity, the users of this method can always get 

further reductions by posing heavier penalty on the number of variables, or by directly 

choosing the number of variables to have at the end.

Low discriminatory power (Figures 2 and 3) seen in this, as well as other studies,21 has been 

a common issue with CRC risk stratification/prediction. This limitation is largely due to the 

current limited scientific knowledge on CRC risk stratification and presents a broader 

scientific issue that is out of the scope of our paper. There will be more favorable examples 

in other medical areas than colorectal screening, and perhaps our readers will know of such 

and try our method on them. Nevertheless this paper offers an improvement, and with 

continuing clinical advances it will be even more useful.

Our models estimate the probability of developing advanced neoplasia over a prespecified 

time interval from data collected from a recently completed large cohort study. The data are 

reasonably representative of the US population. Yet an external validation is still desirable to 

support further evaluation of the prognostic models across increasingly diverse settings. 

Among the fitted models, the ones with interactions are particularly interesting. These 

models will also need to be further evaluated.

Although we used colon cancer as illustration, our methodology has general appeal. The 

penalized model is flexible enough to accommodate practical variations. In particular, if no 

prior knowledge supports the order constraint of a variable, such a constraint can be easily 

dropped from our method. The method also can incorporate more than two way interactions 

although computation will be much more involved. The variables in the colon cancer 

screening example are entirely categorical, but the penalized regression model can be 

applied to continuous variables with no extra difficulty. In addition to binary outcomes, our 

method can generalize to other types of outcomes such as continuous or time to event 

outcomes.
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One limitation of the logistic regression model is that it models additive effects of covariates 

on the logs odds ratio (in contrast to regression trees, for instance). Such models may or may 

not be biologically plausible. The penalized model might address this limitation with proper 

modification. The flexibility allowed by the proposed model’s relaxation of strict additivity 

could make the limitations less onerous (for example, in the ultimate relaxation, a saturated 

model, the link is irrelevant). Our model can also easily be extended to other links/scales, 

and to guide we have a variety of diagnostic methods.

A possible limitation of our method is speed of computation. Our penalty shares the property 

with fused lasso of requiring extensive computation. When high-dimensional data are 

involved, the procedure in Section 3.2 might not be adequate for computing the estimates. 

The least angle regression (LAR) algorithm of Efron et al.22 efficiently solves a wide 

spectrum of lasso problems by exploiting the fact that the solution profiles are piecewise 

linear functions of the L1-bound. However, an LAR-style algorithm for quickly solving the 

fused lasso type problem can be much more complex because of the many possible ways 

that the active sets of constraints can change. This would present interesting challenges for 

future work.

The main purpose of this study and the analysis is to develop a sparse prognostic model 

rather than formal testing. Therefore, we have not developed a significance testing procedure 

for the model estimates. One option is to get confidence intervals by bootstrapping but this 

might be computationally intensive. On the other hand, for the penalized model, the final 

variables can be considered “significant” given their being selected by the penalized 

regression model.

We have not shown asymptotic properties of the resulting estimators. Fan and Li23,24 have 

shown oracle properties for lasso-type estimates under various models. Rinaldo25 

investigated the asymptotic properties for the fused lasso under the least squares settings. 

Establishing such properties for our estimators may also be possible and will be a topic of 

future research.
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Figure 1. 
Coefficient estimates for men for the six selected variables under the main effect penalized 

logistic regression model as a function of log(λ). The dotted line represents the value of 

log(λ) that minimized the BIC.
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Figure 2. 
Receiver-operating characteristic (ROC) curves for the risk prediction models: male 

subjects.
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Figure 3. 
Receiver-operating characteristic (ROC) curves for the risk prediction models: female 

subjects.
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Table 1

Summary of variables in the advanced colorectal neoplasia data set.

Variable Categories Male (n = 2160) Female (n = 2304)

Age group 0 = younger than 65 1910 2019

1 = older than 65 250 285

Sigmoidoscopy/colonoscopy and polyp history 0 = Unknown screen or polyps 301 314

1 = Screened and NO polyps 24 14

2 = No screening 1793 1938

3 = Screened and polyps 39 38

Number of relatives with CRC 0 = 0 relatives w/CRC 1554 1430

1 = 1 relative w/CRC 432 575

2 = 2 or more relatives w/CRC 174 299

Cigarette smoking, pack-years 0 = 0 pack-year 1172 1537

1 = greater than 0 and <20 460 437

2 = 20 or more pack-years 528 330

Leisure-time vigorous activity 0 = greater than 4 h/week 1341 1127

1 = 2–4 h/week 161 203

2 = 0–2 h/week 114 134

3 = 0 h/week 544 840

Vegetable consumption 0 = 5 or more servings/day 73 141

1 = less than 5 servings/day 2087 2163

BMI 0 = less than or equal to 24.9 410

1 = greater than 24.9 and ≤ 29.9 974 1581

2 = greater than 29.9 776 723

NSAID use 0 = Regular user of Aspirin/NSAID 1148 1089

1 = Nonuser of Aspirin/NSAID 1012 1215

Estrogen use (female) 0 = estrogen use in the past 2 years – 953

1 = no estrogen use in the past 2 years – 1351

NSAID: non-steroidal anti-inflammatory drug; BMI: body mass index.
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