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Abstract

Infection with human papillomaviruses is strongly
associated with the development of multiple cancers
including esophageal squamous cell carcinoma. The HPV
E6 gene is essential for the oncogenic potential of HPV.
The regulation of apoptosis by oncogene has been related
to carcinogenesis closely; therefore, the modulation of
E6 on cellular apoptosis has become a hot research topic
recently. Inactivation of the pro-apoptotic tumor suppressor
p53 by E6 is an important mechanism by which E6
promotes cell growth; it is expected that inactivation of
p53 by E6 should lead to a reduction in cellular apoptosis,
numerous studies showed that E6 could in fact sensitize
cells to apoptosis. The molecular basis for apoptosis
modulation by E6 is poorly understood. In this article, we
will present an overview of observations and current
understanding of molecular basis for E6-induced apoptosis.
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INTRODUCTION

Papillomaviruses are small DNA viruses that infect various
epithelial tissues. Papillomaviruses replicate in the stratified
layers of skin and mucosa, and usually give rise to benign
lesions such as warts or papillomas. Human papillomaviruses
(HPVs) can be classified as either high-risk or low-risk type
on the basis of their clinical associations. The high-risk HPV
types, of  which type 16 (HPV-16) is the most prevalent

type, are commonly associated with lesions that can progress
to high-grade intraepithelial neoplasia and ultimately to
carcinoma, while the low-risk HPV types, such as HPV-6
and -11, are found associated primarily with benign lesions,
which rarely progress to cancer[1]. A subgroup of low risk
HPV types, including HPV-5 and -8, are frequently detected
in skin cancers that develop from multiple flat warts when
combined with certain physical and chemical carcinogens[2].

HUMAN PAPILLOMAVIRUS AND THE

DEVELOPMENT OF ESOPHAGEAL CANCER
Squamous cell cancer of Esophagus is the pathological type
that is most closely associated with HPV infection in
gastrointestinal malignancies. Syrjanen group found
condyloma-like lesions in the specimens of esophageal
cancer in 1982, which links HPV infection to esophageal
cancer for the first time[3]. This finding was soon substantiated
by the demonstration of HPV structural proteins in these
lesions using immunohistochemistry[4]. Numerous reports
have been published since then. However, there is a wide
variation on HPV infection rates among different studies,
ranging from 0% to 88%, which make it still hard to
consolidate the role of  HPV (Table 1). This variation seems

Table 1  Detection of human papillomavirus in esophageal squamous
cell carcinomas1

     HPV positive
Area or Country      Dectection method    Reference

  %                         n

Germany                                         0          0/23 PCR                               [90]

Japan                                                0          0/4 IHC                               [91]

Italy                                                  4.4          2/45 PCR                               [92]

United States                                4.5          1/22 PCR                               [93]

Belgium                                           4.8          1/21 PCR                               [94]

Linxian, China                              6.7          2/32 PCR                               [95]

Japan 16        12/75 PCR                               [96]

Northern China 16.8        17/101 PCR                               [97]

Northern China 16.9     118/700 ISH                               [6]

Cixian, China 20.3        26/128 PCR                               [98]

Hungary 39        32/82 PCR                               [99]

Japan 42        20/48 PCR                               [100]

South Africa 46        23/50 PCR                               [101]

Italy 47          8/17 PCR                               [102]

Anyang, China 63.3        19/30 PCR                               [103]

Shanxi and Anyang, China 64        31/48 PCR                               [7]

Guangdong, China 65.5        96/176 PCR                               [104]

Beijing, China 70        28/40 ISH                               [105]

Northern India 74        20/27 PCR                               [106]

Beijing, China 83.3        15/18 PCR                               [107]

Mexico 88        20/23 PCR                               [14]

PCR, polymerase chain reaction, IHC, immunohistochemistry; ISH, in situ

hybridization. 1Only publications after 2000 were indexed in this table since

there are numerous reports on the HPV infection status in esophageal carcinomas.
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to be influenced by methodology of  detection, pathological
grading, geographic distribution and genetic sensitivity to
HPV infection. Even though different opinions do exist, a
large portion of  them strongly suggest a causal role for
HPV in esophageal carcinogenesis, or at least consider HPV
as a possible contributor in those HPV prevalent areas such
as China and South Africa.

The incidence of esophageal cancer in Anyang area is
one of the highest in China, with a mortality rate of 132×105,
significantly higher than the one of 52×105 in neighboring
area. A 132-case survey in this area showed that the infection
rate of  HPV-16 is much higher than neighboring area, 1.9 fold
by PCR (72% vs 37%) and 2.2 fold by immunohistochemisty
(49% vs 22%), and the infection of HPV is closely related
with the degree of  dysplasia[5-26]. Compared to normal
adjacent tissues, samples from esophageal carcinoma showed
significantly higher infection rate for HPV[13,20].The most
frequently detected types of HPV in esophageal cancer are
HPV-16 and -18[27].

Some indirect or direct evidences have been shown
recently to further substantiate the causal role of HPV.
When the genomes of  HPV-16 and -18 without E1 and E2
were transfected transiently into esophageal cancer cell, these
viral genomes replicated in the absence of E1 and E2, which
suggest specific host nuclear factors in esophageal squamous
epithelial cells may support HPV replication[28]. Other
researchers have reported that E6 gene can actually associate
with the nuclear matrix of esophageal carcinoma cell.
Evidence from animal studies showed that persistent
papillomatosis and carcinomas in cattle can be experimentally
reproduced with bovine papillomavirus 4 (BPV 4) infections
in these animals. Up to 96% of the cancer-bearing animals
have concomitant papillomas, and the progression from benign
papilloma to carcinomas could be clearly identified[29]. Recently
an immortal esophageal cell line was established by
transferring HPV 18E6E7 into fetal esophageal epithelium;
this cell line showed gradual change from preimmortal,
immortal, precancerous to malignantly transformed stages
upon prolonged cultivation without any co-carcinogens,
which provided valuable direct proof on the role of HPV
in carcinogenesis process of esophageal carcinoma[30,31].

The major role of HPV might be in the early stage of
carcinogenesis since it has been shown in several studies
that compared to esophagitis, precancerous leisions showed
more HPV infection (96% vs 26%), while in advanced
esophageal cancer specimens, the positive rate leveled off
a little (88%)[25]. The hypothesis might be that HPV play its
role in near-normal differentiating cells; this differentiating
status is needed for HPV to replicate and when these cells
acquire malignant phenotype changes step by step, the
differentiation process is reversed. At this stage, HPV will
have to face hostile environments to replicate. This may also
explain the wide variation on positive rates when detecting
HPV in esophageal cancer specimens since the pathological
grading may vary greatly. In this aspect, the relation of HPV
with esophageal cancer is somehow like the one of HBV
with hepatocellular carcinoma. In benign tissue of infected
liver such as cirrhosis, HBeAg and HBcAg were easily
detected, but after malignant changes happened following
virus infection, it became much harder to detect[32].

Multiple factors besides HPV are considered in
carcinogenesis of esophageal cancer, such as some chemicals
(nitrosamines, mycotoxins, cigarette smoke, excessive alcohol
intake), nutritional deficiencies and physical factors (hot
food), thus making it very hard to clearly characterize the
significance of HPV in esophageal cancer. More insights will
be needed to fully demonstrate the mechanisms involved.
Before that it might be hard to draw a final conclusion on the
causal role of HPV in esophageal carcinogenesis.

The transforming properties of  high-risk HPVs primarily
reside in two genes, E6 and E7, which are consistently expressed
in HPV-positive cervical cancers and cancer-derived cell
lines[33]. The sustained expression of E6 and E7 is essential
to maintain the transformed state of  HPV-positive cells[34].
Independent of E7, E6 exhibits important biological
activities. The modulation of E6 in apoptosis will be the
focus of this review. However, due to the technical difficulty
to establish a normal esophageal keratinocyte cell line, most
studies were carried out in keratinocytes from foreskin or
skin, or even in unrelated cell types.

PILLOMAVIRUS E6 PROTEINS

The papillomavirus E6s are relatively small proteins. For
example, HPV-16 E6 protein is a small protein of  151 amino
acids (Figure 1). E6 proteins from different HPV types or
among the animal and human papillomaviruses show
moderate amino acid homology. The common feature of
most E6 proteins is the presence of four putative Cys-X-
X-Cys motifs that are capable of binding zinc[35-37]. The
importance of Cys-X-X-Cys motifs for E6 proteins has
been implicated in functions such as transcriptional activation,
transformation, immortalization, and association with cellular
proteins[37-42]. There is a PDZ-binding motif in high-risk
HPV’s E6 that is important for association with PDZ
containing proteins[43,44]. A phosphorylation site for protein
kinase A on E6 has also been identified[45].

Figure 1  Sequence of HPV-16 E6 protein. Single-letter designa-
tions are used to represent the amino acids. The sequence is ar-
ranged into a zinc finger configuration. The amino acid residues
(121KKQR124) essential for nuclear import and the PDZ domain-bind-
ing motif (148ETQL151) are marked. T149 is a putative phosphorylation
site for protein kinase A.
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Localization of E6 has been controversial and complex,
partly due to its very low level in the cells. Nevertheless, E6
proteins have been localized to the nuclear, cytoplasmic,
and non-nuclear membrane (including Golgi membrane)
fractions in a variety of cells[46,47]. A recent study showed
that HPV-18 E6 localization is an actively controlled process[47].
Nuclear entry of  HPV-16 E6 was shown to occur via several
pathways[48]. Some recent studies also revealed differences
in cellular localization between E6 proteins from high-risk
and low-risk HPVs[47].

Non-specific double-stranded DNA-binding by E6 has
been observed in vitro[37,49]. Sequence-specifically binding to
the HPV long control region has also been described for
HPV-16 E6[50]. Recently, specific recognition of  Holiday
junctions by E6 from high-risk HPVs was demonstrated[51,52].

The oncogenic activities of E6 have been demonstrated
in multiple biological assays. These include immortalization
of  primary human epithelial cells, transformation of
established mouse fibroblasts, transcriptional activation,
resistance to terminal differentiation of  human keratinocytes,
modulation of apoptosis, and tumorigenesis in animals[53].
Some recent studies showed that E6 played an essential
role in HPV life cycle[54]. Although E6, along with E7,
efficiently immortalizes primary human epithelial cells, is
not sufficient in induction of  human cell transformation;
additional alterations are required for the cells to be fully
transformed[55].

Association of E6 with p53 is mediated by the ubiquitin
ligase E6AP that leads to the degradation of p53 by the
ubiquitination pathway[56,57]. One of the most important p53-
induced gene product is the universal cyclin-dependent kinase
(CDK) inhibitor p21Waf1/Cip1[58]. Notably, posttranscriptional
down regulation of p21 by E6 has also been reported in
several normal cell types[59]. Consistent with these observations,
differential expression of  p53 and p21 in cervical squamous
intraepithelial lesions infected with HPV has also been
observed[60]. E6 also has functions independent of  inactivating
p53 and has been shown to interact with multiple additional
cellular proteins[53]. These include the pro-apoptotic protein
Bak, tumor necrosis factor receptor 1, and the DNA repair
protein MGMT and XRCC1[61,62].

MODULATION OF APOPTOSIS BY E6

Apoptosis is a genetically programed process of cellular
destruction that is indispensable for the normal development
and homeostasis of multi-cellular organisms[63]. Apoptosis
is characterized by plasma membrane blebbing, condensation,
and fragmentation of cells and nuclei, degradation of
chromosomal DNA into nucleosomal units[64]. Apoptosis
serves to eliminate cells that are no longer required or
potentially dangerous, such as radiation-damaged, aberrantly
growing due to oncogene activation, and virally infected
cells. Regulation of  apoptosis is very important in terms of
pathogenesis of diseases. Inappropriate occurrence of
apoptosis results in neurodegenerative diseases and AIDS,
while the failure of appropriate apoptosis contributes to
autoimmune diseases and cancer. Many viral proteins have
been found to modulate apoptosis[65]. Both pro- and anti-
apoptotic activities for papillomavirus E6 have been
described. While the anti-apoptotic function of E6 can be

attributed in part to its ability to degrade p53, little is known
regarding how E6 sensitizes cells to apoptosis.

INDUCTION AND SIGNAL TRANSDUCTION OF
APOPTOTIC PATHWAYS
The apoptotic signal may originate endogenously, for example,
from DNA damage, uncoordinated induction of cell cycle, or
disruption of the cellular metabolism. This pathway involves
the mitochondria and more specifically cytochrome c, the
protein localized in the inner mitochondrial membrane and
the inter-membrane space[66]. During apoptosis, cytochrome
c is released in the cytosol and together with Apaf-1, activates
procaspase 9. Activated caspase 9 then cleaves and activates
the executioner caspase 3, an event that leads to the cleavage
of other death substrates, cellular and nuclear morphological
changes, and ultimately to cell death[67]. Apoptotic signals can
also be triggered externally once the suitable surface death
receptors are ligated. For example, the Fas (CD95/APO-1)
receptor transduces apoptotic signals upon cross-linking with
the Fas ligand (FasL). FasL binding triggers trimerization of
the Fas receptor and recruitment on the cytoplasmic death
domain DD of death-inducing signaling complex (DISC),
which includes the adaptor FADD and pro-caspase 8 as crucial
physiological death effectors. Coupling of pro-caspase 8 to
Fas results in proteolytic activation of  caspase 8. Two
pathways have been shown for the signal transduction
downstream of caspase 8, which are used in different cell
types (types I and II)[68]. In type I cells, caspase 8 directly
activates procaspase 3; in type II cells, caspase 8 cleaves
Bid, a proapoptotic member of the Bcl-2 family[69,70]. The
cleaved Bid translocates to the mitochondria and stimulates
the release of cytochrome c (Figure 2).

Figure 2  Modulation of apoptosis by E6.
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effect of p53 is largely mediated by transcriptional activation
of p21, whereas the apoptotic effect is mediated by
transcriptional activation of pro-apoptotic genes including
BAX and PUMA[72,73]. Compared to many normal tissues,
cancer cells are highly sensitized to apoptotic signals, and
survive only because they have acquired lesions such as
loss of p53 that prevent or impede cell death[71]. Much
effort has gone into determining the effects of  p53
inactivation on the response of cancer cells to the therapeutic
agents. The results have been conflicting, with some studies
indicating enhanced sensitivity and others indicating increased
resistance[74]. For example, one study showed that the p53-
deficient cells were sensitized to the effects of DNA-
damaging agents as a result of the failure to induce
expression of p21, while resistant to the effects of the
antimetabolite 5-fluorouracil; p21 was shown to inhibit Cdc2-
associated apoptosis[75]. Inappropriate activation of Cdc2
has been implicated or shown to be required for apoptotic
cell death[76,77]. In some other systems, however, inactivation
of Cdc2 increased the level of apoptosis[78]. The discrepancy
regarding Cdc2’s contribution to cell death or survival
probably depends on phosphorylation of its downstream
targets including BAD and survivin[79-81].

So far, numerous studies addressing the role of E6 in
apoptosis have been reported (Figure 2). Since different
systems have been used, conflicting and sometimes
confusing results have been obtained. As cell types could
affect experimental results, we will first focus on apoptosis
modulation by E6 in its natural host cells, the keratinocytes
or keratinocytes-derived cancer cells. Some interesting
observation made in other cell types will be discussed in the
third section. For additional information, please see other
related reviews[82].

E6 MODULATION OF APOPTOSIS IN HPV

NATURAL HOST CELLS
In primary human foreskin keratinocytes, expression of
HPV 16 E6 slightly increased spontaneous apoptosis[83,84].
After induction with chemotherapeutic agents such as
cisplatin, etoposide, and mitomycin C, enhanced sensitivity
in E6 expressing cells was observed[85]. In contrast, E6
inhibited apoptosis during serum- and calcium-induced
differentiation of human foreskin keratinocytes[86]. E6
expression correlated with prolonged expression of Bcl-2,
reduced elevation of Bax, and loss of p53[86]. While the
role of Bcl-2 and Bax in this process remains to be
determined, p53 inactivation or E6BP binding do not appear
to be essential[87]. Furthermore, co-expression of  E6
abrogated E7-mediated apoptosis by TNF[84].

In human keratinocytes immortalized by E6, low levels
of apoptosis as compared to the non-immortalized control
cells were observed after CD95 (Fas) agonist treatment[88].
Interestingly, in addition to p53 and p21, protein levels of
anti-apoptotic proteins Bcl-2 and Flip were reduced.
Proteosomal inhibition increased the susceptibility of E6
expressing cells to CD95-mediated apoptosis. But it remains
to be determined whether this sensitization is due to increased
protein levels of E6, p53, or some other molecules. In
another study, E6 reduced UVC-, mitomycin C, and serum
starvation-induced apoptosis in the immortalized human

keratinocytes (HaCaT) bearing mutated alleles of p53[89,90].
Expression of  HPV-16 E6 in HeLa cervical carcinoma

cells where the endogenous HPV-18 E6 and E7 transcription
were repressed, slightly increased the number of apoptotic
cells after prolonged incubation[91]. However, expression of
E6 to allow E7 to induce apoptosis is implicated in this
study. Similarly, intracellular targeting of  HPV-16 E6 by
E6-binding polypeptide resulted in apoptosis of  HPV-16-
positive cervical cancer cells[92]. In contrast, HPV-16 E6
expression in cervical carcinoma C33A cells leads to
atractyloside-induced apoptosis[93]. C33A cells do not contain
HPV but express mutant p53.

In summary, expression of E6 in primary human
keratinocytes or keratinocyte-derived cells consistently induces
low level of spontaneous apoptosis. Depending on the
agents used, E6 could either sensitize or inhibit keratinocytes
to apoptosis after treatment with chemotherapeutic agents.

MODULATION OF PROGRAMED CELL DEATH

BY E6 IN OTHER SYSTEMS
Numerous studies have been conducted to explore the
function of E6 or p53 using cells unrelated to keratinocytes.
Different cell types, reagents, and assays were employed.
The results are quite inconsistent and sometimes confusing.
It is impossible to discuss every report in this review. For
this reason, only some representative studies considered to
be of special interest will be discussed.

Some early studies showed that E6 inhibited E7-induced
apoptosis through p53-independent mechanism in the
developing lens of transgenic mice[94,95]. Similarly, E6 could
functionally substitute the insulin-like growth factor 1
receptor in inhibiting staurosporine-induced apoptosis in
mouse fibroblast, including p53-null cells[96]. Expressing of
E6 in human foreskin fibroblasts also inhibited caspase 3
activation after treatment with thiol-containing antioxidant
penicillamine[97]. HPV-18 E6 protected cancer cells from
Bak-induced apoptosis[98]. E6 of both cutaneous and genital
HPVs promoted proteolytic degradation of Bak[61,98]. The
role of  Bak in UV-induced apoptosis in skin cancer has
also been implicated[61].

Several studies have examined the sensitivity of cells
expressing E6 to TNF. HPV-16 E6 was shown to bind TNF
receptor 1 (TNF R1) and protect cells from TNF-induced
apoptosis in mouse fibroblasts and human histiocyte/monocyte
and osteosarcoma cells[62,99]. E6 binding to TNF R1 probably
interfered with formation of  the death-inducing signaling
complex and thus with transduction of apoptotic signals.
However, E6 did not appear to have much effect on TNF
susceptibility in human keratinocytes[84,88]. In contrast, in
human ovarian and colon cancer cells, HPV-16 E6 enhanced
susceptibility to TNF-induced apoptosis[100]. This effect of
E6 appeared to be p53-independent but may involve down-
regulation of  NF-kappa B. Notably, the BPV-1 E6
oncoprotein sensitized cells to TNF-induced apoptosis[101].
This BPV-1 E6-induced sensitization to apoptosis is distinct
from its transforming activity[102]. Interestingly, expression
of  HPV-16 E6 sensitized murine fibrosarcoma L929 cells
to TNF-induced necrosis instead of apoptosis[103]. The E6-
enhanced cytolysis correlated with an increase in reactive oxygen
species level and was independent of p53 and caspases[103].
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In human diploid fibroblasts, expression of  HPV-16 E6
resulted in an inhibition of oxidant-induced apoptosis as
compared to vector control within 24 h but a sensitization
after prolonged incubation[104], indicating that time point at
which cell death is measured also contributes to the
outcomes. Dying E6 cells exhibited a G2/M phase
distribution with elevated cyclin B/Cdc2 levels and activity.
The death of E6 cells has some features of oncosis. It
remains to be determined to what extent the elevated
cyclin B/Cdc2 activity contributes to the cell death in E6-
expressing cells. Notably, Normal human fibroblasts
expressing HPV-16 E6 showed increased cytotoxicity to
taxol[105]. Mutational analysis indicated that reduced levels
of p53 correlated with increased G2/M phase arrest and
taxol-induced apoptosis[105]. Adriamycin and cisplatin-treated
human foreskin fibroblasts expressing E6 also were arrested
at G2 with increased cyclin B/Cdc2 kinase activity but no
apoptosis[106]. Apparently, activation of cyclin B/Cdc2 kinase
in G2/M arrested cells is not by itself  sufficient to trigger
cell death. E6 expressing cells could also die at other cell
cycle stages. For example, when treated with cisplatin, normal
human foreskin fibroblasts expressing HPV-16 E6 showed
increased cytotoxicity associated with delayed progression
through S phase[107].

CONCLUSIONS

Progress has been made on observations of  E6 regulation
of apoptosis. However, the precise mechanism by which
E6 modulates apoptosis remains to be explored. In
particular, we know little about how E6 sensitizes cells to
apoptosis independently of  p53. Few studies have addressed
the functions of low-risk HPV E6s on cell proliferation
and apoptosis. Future studies should also establish the role
of more than twenty E6-interacting proteins identified
during the past decade. Understanding the mechanism by
which E6 regulates apoptosis will certainly help us fully
demonstrate the significance of  HPV in the etiology of
esophageal cancer and possibly have some therapeutic
significance.
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