Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Mar;73(3):857–867. doi: 10.1172/JCI111281

Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport.

C J Rebouche, A G Engel
PMCID: PMC425090  PMID: 6707204

Abstract

The human primary carnitine deficiency syndromes are potentially fatal disorders affecting children and adults. The molecular etiologies of these syndromes have not been determined. In this investigation, we considered the hypothesis that these syndromes result from defective transport of carnitine into tissues, particularly skeletal muscle. The problem was approached by mathematical modeling, by using the technique of kinetic compartmental analysis. A tracer dose of L-[methyl-3H]carnitine was administered intravenously to six normal subjects, one patient with primary muscle carnitine deficiency (MCD), and four patients with primary systemic carnitine deficiency (SCD). Specific radioactivity was followed in plasma for 28 d. A three-compartment model (extracellular fluid, muscle, and "other tissues") was adopted. Rate constants, fluxes, pool sizes, and turnover times were calculated. Results of these calculations indicated reduced transport of carnitine into muscle in both forms of primary carnitine deficiency. However, in SCD, the reduced rate of carnitine transport was attributed to reduced plasma carnitine concentration. In MCD, the results are consistent with an intrinsic defect in the transport process. Abnormal fluctuations of the plasma carnitine, but of a different form, occurred in MCD and SCD. The significance of these are unclear, but in SCD they suggest abnormal regulation of the muscle/plasma carnitine concentration gradient. In 8 of 11 subjects, carnitine excretion was less than dietary carnitine intake. Carnitine excretion rates calculated by kinetic compartmental analysis were higher than corresponding rates measured directly, indicating degradation of carnitine. However, we found no radioactive metabolites of L-[methyl-3H]carnitine in urine. These observations suggest that dietary carnitine was metabolized in the gastrointestinal tract.

Full text

PDF
859

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooks D. E., McIntosh J. E. Turnover of carnitine by rat tissues. Biochem J. 1975 Jun;148(3):439–445. doi: 10.1042/bj1480439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carroll J. E., Brooke M. H., Shumate J. B., Janes N. J. Carnitine intake and excretion in neuromuscular diseases. Am J Clin Nutr. 1981 Dec;34(12):2693–2698. doi: 10.1093/ajcn/34.12.2693. [DOI] [PubMed] [Google Scholar]
  3. Carter A. L., Lennon D. L., Stratman F. W. Increased acetyl carnitine in rat skeletal muscle as a result of high-intensity short-duration exercise. Implications in the control of pyruvate dehydrogenase activity. FEBS Lett. 1981 Apr 6;126(1):21–24. doi: 10.1016/0014-5793(81)81023-x. [DOI] [PubMed] [Google Scholar]
  4. Cederblad G., Lindstedt S. Metabolism of labeled carnitine in the rat. Arch Biochem Biophys. 1976 Jul;175(1):173–180. doi: 10.1016/0003-9861(76)90496-3. [DOI] [PubMed] [Google Scholar]
  5. Engel A. G., Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science. 1973 Mar 2;179(4076):899–902. doi: 10.1126/science.179.4076.899. [DOI] [PubMed] [Google Scholar]
  6. Engel A. G., Rebouche C. J., Wilson D. M., Glasgow A. M., Romshe C. A., Cruse R. P. Primary systemic carnitine deficiency. II. Renal handling of carnitine. Neurology. 1981 Jul;31(7):819–825. doi: 10.1212/wnl.31.7.819. [DOI] [PubMed] [Google Scholar]
  7. Engel A. G., Siekert R. G. Lipid storage myopathy responsive to prednisone. Arch Neurol. 1972 Aug;27(2):174–181. doi: 10.1001/archneur.1972.00490140078011. [DOI] [PubMed] [Google Scholar]
  8. Frohlich J., Seccombe D. W., Hahn P., Dodek P., Hynie I. Effect of fasting on free and esterified carnitine levels in human serum and urine: correlation with serum levels of free fatty acids and beta-hydroxybutyrate. Metabolism. 1978 May;27(5):555–561. doi: 10.1016/0026-0495(78)90022-7. [DOI] [PubMed] [Google Scholar]
  9. Glasgow A. M., Eng G., Engel A. G. Systemic carnitine deficiency simulating recurrent Reye syndrome. J Pediatr. 1980 May;96(5):889–891. doi: 10.1016/s0022-3476(80)80571-3. [DOI] [PubMed] [Google Scholar]
  10. Grüner E., Aurich H., Strack E. Uber das Vorkommen von Trimethyl-acetonyl-ammoniumhydroxyd im menschlichen Harn. Hoppe Seylers Z Physiol Chem. 1965;343(4):240–245. [PubMed] [Google Scholar]
  11. Huth P. J., Schmidt M. J., Hall P. V., Fariello R. G., Shug A. L. The uptake of carnitine by slices of rat cerebral cortex. J Neurochem. 1981 Feb;36(2):715–723. doi: 10.1111/j.1471-4159.1981.tb01647.x. [DOI] [PubMed] [Google Scholar]
  12. Karpati G., Carpenter S., Engel A. G., Watters G., Allen J., Rothman S., Klassen G., Mamer O. A. The syndrome of systemic carnitine deficiency. Clinical, morphologic, biochemical, and pathophysiologic features. Neurology. 1975 Jan;25(1):16–24. doi: 10.1212/wnl.25.1.16. [DOI] [PubMed] [Google Scholar]
  13. Khairallah E. A., Wolf G. Carnitine decarboxylase. The conversion of carnitine to beta-methylcholine. J Biol Chem. 1967 Jan 10;242(1):32–39. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Molstad P., Bohmer T., Eiklid K. Specificity and characteristics of the carnitine transport in human heart cells (CCL 27) in culture. Biochim Biophys Acta. 1977 Dec 1;471(2):296–304. doi: 10.1016/0005-2736(77)90257-7. [DOI] [PubMed] [Google Scholar]
  16. Rebouche C. J. Carnitine movement across muscle cell membranes. Studies in isolated rat muscle. Biochim Biophys Acta. 1977 Nov 15;471(1):145–155. doi: 10.1016/0005-2736(77)90402-3. [DOI] [PubMed] [Google Scholar]
  17. Rebouche C. J., Engel A. G. Carnitine metabolism and deficiency syndromes. Mayo Clin Proc. 1983 Aug;58(8):533–540. [PubMed] [Google Scholar]
  18. Rebouche C. J., Engel A. G. Carnitine transport in cultured muscle cells and skin fibroblasts from patients with primary systemic carnitine deficiency. In Vitro. 1982 May;18(5):495–500. doi: 10.1007/BF02796479. [DOI] [PubMed] [Google Scholar]
  19. Rebouche C. J., Engel A. G. In vitro analysis of hepatic carnitine biosynthesis in human systemic carnitine deficiency. Clin Chim Acta. 1980 Oct 9;106(3):295–300. doi: 10.1016/0009-8981(80)90313-7. [DOI] [PubMed] [Google Scholar]
  20. Rebouche C. J., Engel A. G. Kinetic compartmental analysis of carnitine metabolism in the dog. Arch Biochem Biophys. 1983 Jan;220(1):60–70. doi: 10.1016/0003-9861(83)90387-9. [DOI] [PubMed] [Google Scholar]
  21. Rebouche C. J., Engel A. G. Primary systemic carnitine deficiency: I. Carnitine biosynthesis. Neurology. 1981 Jul;31(7):813–818. doi: 10.1212/wnl.31.7.813. [DOI] [PubMed] [Google Scholar]
  22. Rebouche C. J., Engel A. G. Significance of renal gamma-butyrobetaine hydroxylase for carnitine biosynthesis in man. J Biol Chem. 1980 Sep 25;255(18):8700–8705. [PubMed] [Google Scholar]
  23. Schwartz I. L., Schachter D., Freinkel N. THE MEASUREMENT OF EXTRACELLULAR FLUID IN MAN BY MEANS OF A CONSTANT INFUSION TECHNIQUE. J Clin Invest. 1949 Sep;28(5 Pt 2):1117–1125. doi: 10.1172/JCI102145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seim H., Ezold R., Kleber H. P., Strack E. Stoffwechsel des L-Carnitins bei Enterobakterien. Z Allg Mikrobiol. 1980;20(9):591–594. doi: 10.1002/jobm.3630200909. [DOI] [PubMed] [Google Scholar]
  25. Seim H., Löster H., Kleber H. P. Reduktiver Stoffwechsel des L-Carnitins und strukturverwandter Trimethylammoniumverbindungen in Escherichia coli. Acta Biol Med Ger. 1982;41(11):1009–1018. [PubMed] [Google Scholar]
  26. Stokke O., Bremer J. A simple method for preparation of methyl-labelled (-) carnitine. Biochim Biophys Acta. 1970 Dec 15;218(3):552–554. doi: 10.1016/0005-2760(70)90021-4. [DOI] [PubMed] [Google Scholar]
  27. Strack E., Seim H. Die Bildung von gamma-Butyrobetain aus exogenem L(-)-Carnitin in vivo bei Maus und Ratte. Hoppe Seylers Z Physiol Chem. 1979 Feb;360(2):207–215. [PubMed] [Google Scholar]
  28. Unemoto T., Hayashi M., Miyaki K., Hayashi M. Formation of trimethylamine from DL-carnitine by Serratia marcescens. Biochim Biophys Acta. 1966 May 26;121(1):220–222. doi: 10.1016/0304-4165(66)90382-5. [DOI] [PubMed] [Google Scholar]
  29. Waber L. J., Valle D., Neill C., DiMauro S., Shug A. Carnitine deficiency presenting as familial cardiomyopathy: a treatable defect in carnitine transport. J Pediatr. 1982 Nov;101(5):700–705. doi: 10.1016/s0022-3476(82)80294-1. [DOI] [PubMed] [Google Scholar]
  30. Willner J., DiMauro S., Eastwood A., Hays A., Roohi F., Lovelace R. Muscle carnitine deficiency. Genetic heterogeneity. J Neurol Sci. 1979 Apr;41(2):235–246. doi: 10.1016/0022-510x(79)90042-x. [DOI] [PubMed] [Google Scholar]
  31. YUE K. T., FRITZ I. B. Fate of tritium-labeled carnitine administered to dogs and rats. Am J Physiol. 1962 Jan;202:122–128. doi: 10.1152/ajplegacy.1962.202.1.122. [DOI] [PubMed] [Google Scholar]
  32. Zierler K. A critique of compartmental analysis. Annu Rev Biophys Bioeng. 1981;10:531–562. doi: 10.1146/annurev.bb.10.060181.002531. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES