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Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly
approaching real world installations. A significant part of this move is the orders of magnitude increases in
the rate at which secure key bits are distributed. However, these advances have mostly been confined to the
physical hardware stage of QKD, with software post-processing often being unable to support the high raw
bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the
system unnecessarily. Here we report details of equally high rate error correction which is further adaptable
to maximise the secure key rate under a range of different operating conditions. The error correction is
implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the
ideal secure key rate over all fibre distances from 0–80 km.

Q
uantum Key Distribution (QKD) aims to create and provide secure key data to users for cryptographic
tasks1. With the security based upon physical principles it is able to provide a theoretical guarantee that
the keys are unknown to any third party with a high and quantifiable probability2, something not

possible with other existing types of key distribution. From the theoretical beginnings rapid experimental
progress has been made, with recent experiments demonstrating high rates of key distribution3–5 combined with
wavelength division multiplexing6–9 and network operation10.

The procedure for generating a key using QKD divides into two distinct parts. In the first stage hardware is used
for the transmission and detection of quantum states, while in the second stage the information recorded from
those quantum states is post-processed using software into a final secure key. The first stage is typically where
most of the research effort into QKD has been concentrated, with systems now able to operate stably and
continuously at Mbit/s hardware key rates11,12. However often the second stage is neglected, especially in high
key rate experiments, with secure key rates instead estimated. For a complete high speed QKD system it is also
necessary for the second stage, software post processing, to be also able to operate at Mbit/s rates to avoid limiting
the final secure key rate. A noteable exception to this is in Continuous Variable (CV) QKD, where the particularly
challenging post-processing required has seen significant research resulting in increases in the secure rate and
distance13,14. The focus of this paper however is the more commonly implemented Discrete Variable (DV) QKD.

The post-processing divides into three main steps; sifting, error correction and privacy amplification. Sifting is
computationally straightforward, consisting mainly of simple bit comparison operations, and can generally be
performed at high speed without much difficulty. Privacy amplification is in principle a relatively straightforward
matrix multiplication operation, however in order to reduce statistical finite data size effects very large (approxi-
mately 1 to 100 Mbit per dimension) matrix sizes should be used. Computing such large multiplication quickly is
a challenge, with approaches using more complex algorithms such as number theoretic transforms suggested to
enable operation at both large block sizes and with short computation times15. Here we focus on error correction
which is generally a relatively computationally complex operation. As noted recently16,17 much QKD error
correction research has aimed at minimising the extra redundant information sent to correct the errors whereas
in practice other parameters are also important. As the redundant information can also be intercepted by an
eavesdropper and so must be removed from the secure key it is important to minimise it, but in a complete QKD
system it is necessary to also consider two other parameters of the error correction; the bit throughput rate and the
error correction failure rate. The throughput rate determines how much information can be processed by the
error correction per time period and so sets a hard upper limit on the secure key rate. The failure rate indicates the
fraction of data which cannot be corrected and so must be discarded, causing a corresponding percentage
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decrease in the secure key rate. For a given QKD system and oper-
ating distance it is important to find the optimum combination of all
three parameters to generate a secure key at the highest rate possible.

The new contribution detailed in this work is an approach to error
correction designed with this in mind, to give the highest possible
secure key rate in a practical QKD system. The error correction is
based on rate adaptable LDPC codes and two implementations are
described, the first entirely software (CPU) based and the second
using additional graphical processing unit (GPU) hardware to accel-
erate the throughput rate. A bi-directional approach is implemented
which can increase the throughput by up to a factor of 2 for any
LDPC implementation. The error correction implementation is
applied to a high speed QKD system to determine and optimise
the maximum secure key rate at different operating points.

Results
We selected Low Density Parity Check (LDPC) codes18,19 for QKD
error correction due to several factors. Firstly they have a range of
well studied decoding algorithms available offering different com-
promises between computational complexity (and so data through-
put rates) and failure probability. Algorithms can also be selected
which perform well while disclosing close to the theoretical min-
imum amount of redundant information. Their flexibility allows
the same error correction scheme to be employed while dynamically
changing priority between throughput and information disclosure as
required. Using rate adaptation techniques the codes are also able to
correct efficiently over a wide range of error rates. LDPC codes
further have very low communication complexity, requiring only a
single message in one direction. This makes them relatively immune
to the effects of network latency and also more suitable for parallel
hardware implementation, where multiple units each with interact-
ive bi-directional communication can saturate data communication
channels.

LDPC is asymmetrical – one party (the encoder) calculates syn-
drome information from their sifted key data and provides this syn-
drome information to the second party (the decoder). The syndrome
consists of information derived from the encoder’s key data, for
example by calculating the parity of subsets of the key data bits.
The decoder then uses this syndrome information to correct their
sifted key data so that it identically matches the encoder’s. The
decoder is significantly more computationally complex than the
encoder, which only has to calculate the syndrome message consist-
ing of a single iteration of parity (XOR) operations, and as such the
decoder is generally the most important operation to optimise.

Two implementations of LDPC were investigated, the first based
entirely in software and carrying out the decoding on a standard
server PC (Intel X5675 3 GHz CPU, 3 GB RAM) and the second
using a PC with an additional graphical processing unit (NVidia
M2090 GPU) to perform the decoding. The decoder is belief pro-
pagation based and uses the Sum-Product algorithm19 with log like-
lihood ratio (LLR) messages. Other algorithms, including offset and
normalised Min-Sum20, were tested and while the Sum-Product algo-
rithm is the most computationally complex this results in it decoding
successfully with the least additional information. Furthermore by
implementing syndrome checking after each iteration to end decod-
ing once all errors are corrected, Sum-Product has the flexibility to
operate at the higher throughput rates of simpler algorithms by
increasing the amount of additional information and so reducing
the number of iterations until error corrections completes. If syn-
drome checks fail after a specified maximum number of iterations
(typically between 50 and 100, set based on the failure rate) is reached
then decoding ends and failure is declared.

Serial message update scheduling21 is applied on the CPU and
flood scheduling on the GPU. While serial scheduling is more effec-
tive (typically reducing the number of iterations by half) the memory
access model of the GPU results in better performance with flood

scheduling. Both floating point (32 bit) and integer (32 bit) repre-
sentations of the messages were implemented; however on the
hardware tested performance was almost identical with either imple-
mentation. Using shorter bit length representations also did not
improve performance. The most computationally expensive maths
expression calls are evaluated using pre-built lookup tables on the
CPU and native function calls on the GPU. The decoding algorithm
is parallelised to run in multiple threads – for the CPU implementa-
tion 6 cores were used and the best performance was found when
using one thread per logical core supported by the CPU architecture.
Additionally in order to optimise the memory access pattern for the
GPU implementation multiple sifted key file blocks are decoded
simultaneously. Due to the use of rate adaptation (discussed below)
it is not necessary for these sifted key blocks to all have the same
QBER.

As mentioned above, LDPC is asymmetric in the sense the decoder
is much more computationally complex than the encoder. As such
the QKD transmitter’s computer, assuming they perform the encod-
ing, is idle for much of the time while the overall error correcting bit
rate throughput is determined by the speed of the decoder processing
on the QKD receiver’s computer. To avoid this asymmetrical and
inefficient use of computational resources we implement a bi-dir-
ectional approach for the error correction as follows. The parties each
split their sifted key data into two equal subsets, with the transmitter
performing encoding on one subset (A) and the receiver performing
encoding on the other subset (B) in parallel. Following encoding
calculated syndrome A is sent from the transmitter to the receiver
and syndrome B from the receiver to the transmitter. Decoding is
then also performed by both parties in parallel, with the transmitter
decoding subset B and receiver decoding subset A. As the computa-
tionally expensive decoding step is now shared equally by both trans-
mitter and receiver then ideally (assuming the computational time
for the encoding calculation is small) the error correction throughput
rate should be increased by a factor of 2. Implementing this experi-
mentally we find the throughput is increased by almost exactly this
factor for both the CPU and GPU implementations, as illustrated in
Figure 1. This graph shows the throughput measured as a function of
error rate for both of the implementations (CPU and GPU), and also
for both single and bi-directional approaches for each. In the con-
ventional single direction mode one computer performs encoding
only and the second computer decoding only, whereas in the bi-
directional case both computers perform encoding and decoding
in parallel.

Discrete Value QKD transmission after basis sifting is analogous
to transmission through a binary symmetric channel – a classical bit
flip channel where bits are flipped with a probability of e, with e the
quantum bit error rate (QBER). For this class of channel the min-
imum amount of extra information required to correct the errors
reliably is given by information theory as H(e), with H the binary
entropy function22. The amount of information disclosed by real
error correction is then expressible as fH(e) using an efficiency para-
meter f $ 1.

For LDPC the amount of information disclosed, and so the effi-
ciency f, is determined by the code rate. The size of the syndrome
message (S, the disclosed information) is related to the rate (R) and
the size of the data to be error corrected (N) through S 5 N(1–R). Ten
different LDPC codes were constructed with a fixed code rate
between 0.55 and 0.85 and a length of 105 bits using a modified
progressive edge growth (PEG) algorithm23. Rate adaptation using
puncturing and shortening is also applied to allow the effective code
rate to be adjusted continuously between these fixed points24. Further
details on the code construction and rate adaptation are contained in
the Methods section. The choice of effective code rate to use (the rate
of the base code and the amount of punctured or shortened bits used
for rate adaptation) at each QBER is a crucial parameter in deter-
mining the overall throughput and efficiency of the error correction,
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and thus the final secure key rate of QKD. At a given QBER using a
higher rate code will disclose less information resulting in a better
efficiency and a lower rate code will finish correcting errors after
fewer iterations resulting in higher throughput. Instead of fixing this
choice we allow it to be dynamically adjusted by the software, para-
meterised by a value p. p 5 0 corresponds to using the highest
effective code rate which will reliably correct at each QBER, with
larger values of p indicating lower effective code rate choices.

Figure 2 illustrates the throughput and efficiency combinations for
different values of p from 0 to 0.5. p can be increased further until the
throughput saturates at 120 Mbit/s at an efficiency of around f 5 2.0.
At this point the number of iterations is very small, less than 5, and so
further increased in throughput would only be possible by changing
to a less complex algorithm such as Min-Sum.

Using these results we can then proceed to optimise the secure key
rate of a recent high speed QKD system25. This system uses the

efficient BB84 protocol26 with decoy states and its security analysis
includes finite key effects and composable security (with a failure
parameter of e 5 10210). Its raw and secure key rate is representative
of state of the art experimental QKD systems. Further details of the
QKD system are provided in the Methods section. We first calculate
the secure key rate using ideal error correction – that is error correc-
tion which has unlimited throughput, 0% failure rate and discloses
the theoretical minimum amount of redundant information – as a
benchmark. Figure 3(a) shows the secure key rate calculated for the
high speed QKD system using both ideal error correction and theor-
etical error correction which discloses progressively more informa-
tion from f 5 1.05 to 1.5. The secure key rate as a percentage of the
ideal error correction secure key rate is shown in Figure 3(b), where
the effect of using imperfect error correction on the final key rate can
be more easily seen. The transmission fibre is standard telecom fibre
with an attenuation of 0.2 dB/km, and no implementation based
bottlenecks, for example privacy amplification throughput, are
considered.

Proceeding to real error correction, Figure 4(a) shows the secure
key rate calculated as a function of distance using the LDPC imple-
mentations described in this paper and also a reference Cascade27

implementation. The LDPC implementations are shown for the
same three values of p shown in Figure 2. Cascade as an error cor-
rection scheme is simple to implement and widely used in QKD
systems. It proceeds by dividing up the input data into blocks, cal-
culating and comparing block parity values, and then employing
interactive recursive searches to correct mismatched parities.

Figure 4(b) shows the secure key rate as a percentage of the ideal
rate obtained using perfect error correction (f 5 1.0 and infinite
throughput). At short distances the effect of the error correction
throughput on the secure rate can be clearly seen. As the distance
becomes shorter the transmission fibre losses will decrease leading to
an increased sifted, and so secure, bit rate. At a certain point however
the error correction schemes are no longer able to perform error
correction at the rate the sifted key bits are being produced at. At
this point the output rate of the error correction becomes fixed,
preventing the secure key rate from rising with increasing sifted rates
as can be seen in Figure 4(a). The distance this point happens at is
determined by the maximum throughput of the error correction.

Figure 1 | Throughput bit rate of single direction and bi-directional
LDPC error correction implemented on CPU and GPU, as a function of
QBER.

Figure 2 | Throughput (upper panel) and efficiency (lower panel) as a function of quantum bit error rate for CPU and GPU implementations (note
efficiency is the same for both CPU and GPU for a given p). The different lines show varying trade-offs between throughput and efficiency, parameterised

by p.
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At distances longer than this point, the secure key rate is deter-
mined principally by the amount of redundant information disclosed
by the error correction (its efficiency). This can be seen most clearly
in Figure 4(b), where the secure key rate at longer distances falls
roughly along three lines. These lines correspond to different effi-
ciency points in the throughput-efficiency trade-off, with Cascade
corresponding closely to the p 5 0.25 value at intermediate distances
and p 5 0.5 at long distances. Intuitively the secure key rate changes
by approximately half the change in error correction efficiency.

The failure probability of the error correction has an effect on the
secure key rate, as failed blocks must be discarded. We found the
optimal failure rate across different QBERs to be 0.1% on average and
always below 1%, and so the direct effect on the secure key rate is
small. After 1% the failure rate increases very rapidly with QBER, and
so any gain in efficiency is more than outweighed by the decrease in
secure key rate from discarded blocks. If the failure probability
becomes high then the throughput is reduced in two ways. Firstly
the secure key rate is directly affected as data is discarded, reducing
the secure rate by the failure rate. Less obviously the LDPC decoder
throughput will also decrease, as it will complete the full specified

maximum number of iterations before failing. For successful correc-
tion the decoder will exit at an iteration earlier than this maximum
once all the errors have been corrected, increasing the throughput.
Conversely if the failure probability is required to be too low there is
little direct increase in secure key rate (less than 0.1% at most), while
the amount of syndrome information required increases significantly
thus reducing the secure key rate by a much greater amount.

Discussion
Approaching error correction as a part of a QKD system, not a
standalone problem, the important metric to look at and optimise
for is the final secure key rate instead of individual error correction
parameters. For high speed QKD systems with sifted key rates of
multiple megabits per second error correction throughput is a ser-
ious concern. As Figure 4 shows a standard error correction scheme
can reduce the secure key rate to 15% or less of its possible value at
short fibre distances. At longer distances however the amount of
redundant data disclosed is the more important parameter, and close
to the distance limit of QKD even a few percent difference in this
redundant information efficiency can have a significant effect on

Figure 3 | Secure key rate calculated for a high speed QKD system using ideal and theoretical error correction. Different lines correspond to different

error correction efficiency (f) values. (a) The rate as a function of distance. (b) The secure key rate as a percentage of the rate obtained using perfect error

correction (f 5 1.0, black line in (a)).
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secure key rate. As such it is advantageous to have an error correction
scheme which is flexible in terms of which parameter to prioritise for
different operating conditions of a QKD system. The LDPC based
scheme described allows the throughput and efficiency to be con-
tinuously adjusted to maximise the secure key rate. Figure 4 shows
this for 3 discrete values of a throughput-efficiency parameter p. In
practice however as this parameter simply sets the effective code rate
to use (and the effective code rate can be adjusted continually using
puncturing and shortening techniques) p can also be adjusted con-
tinuously. Using the GPU implementation, at 0 km p is set to 0.5 as
this maximises the secure key rate by providing sufficient through-
put. As the distance increases p is gradually decreased until it
becomes 0.25 at around 11 km (the point just before the p 5 0.25
curve begins to drop in Figure 4(b)), and then 0 at around 25 km (the
similar point for the p 5 0 curve) to maximise the secure key rate by
using the highest efficiency. At distances longer than this p remains at
0. Using this approach the secure key rate remains close to 94% of its
ideal value between 25 and 60 km and remains above 90% of its ideal
value for all fibre distances between 0 and 80 km. This approach can
also adapt to changing conditions at a fixed fibre distance, where
environmental fluctuations tend to cause variations in detector count
rates and error rates over time, to allow the secure rate to be opti-
mised continuously based on measured experimental parameters.

In order to select the effective code rate and to initialise the
decoder an estimate of the QBER of the sifted key block is required.
This estimate is also required for the secure key rate calculation. To
estimate this we follow the standard approach of comparing in public
a small sample of the key block, which is subsequently discarded. An
alternative approach is to use the exact error rate of the previously
error corrected block (which can be easily computed by comparing
the before and after error corrected block). The first approach intro-
duces statistical uncertainty while the second is inaccurate if the
QBER changes significantly with time. An improved idea which
reduces both uncertainties is to use the received syndrome informa-
tion to estimate the QBER prior to decoding28. The approach which
provides more accurate results depends on several factors including
the size of the key blocks and the time variation of the error rate.
However, for the secure key rate calculation in general an estimate of
several different error rates is required – the minority and majority
basis, signal, decoy and vacuum QBERs. Furthermore these error
rates should be estimated with well defined statistical bounds for
robust finite key size handing in the security calculation. As the
decoy, vacuum and minority basis sifted bits are not typically error
corrected but entirely used for parameter estimation we find it more
consistent to also use a similar parameter estimation method (com-
paring bits in public) for the error corrected bits.

The Blind protocol29 also approaches QKD error correction from
the point of view of the overall system, considering secure key rates as
the important metric. This approach uses much shorter length LDPC
codes (2 3 103 compared to this work’s 105). As discussed in Refs
9,30, which also implement similar length codes, these shorter codes
offer higher throughput rates and are also more suitable in an FPGA
or other hardware based implementation. However the inevitable
trade-off to using these shorter length codes is a reduction in effi-
ciency and so an overall lower secure key rate in the non-throughput
limited regime as the codes require more redundant information to
reliably correct, although the Blind protocol does offer an improve-
ment on this limitation. Quasi-cyclic LDPC codes have lower mem-
ory requirements and so are also suitable for hardware based
implementation, and high throughput speeds have been demon-
strated with these type of codes31.

The Cascade protocol which is traditionally used for QKD error
correction has recently been shown to be able to operate at improved
efficiencies, and also at high Mbit/s throughput rates17,32, making it
competitive with LDPC. However as noted by the authors Cascade
remains sensitive to latency in the communication channel, which in

a real network may be unpredictable. Polar codes have also been
implemented for QKD applications33 and show good throughput
and efficiency, although to achieve this very large block sizes are
required.

It should be noted that in all the calculations of the secure key rate
only throughput limitations arising from error correction have been
considered. In practice a QKD system may also have other through-
put bottlenecks, for example from the privacy amplification process
(especially for larger block sizes the computational time can be long),
the digitisation of detector output signals and the sifting process,
which would all also artificially limit the secure rate. For privacy
amplification in particular there is a similar trade off as with error
correction, where high throughput rates can be obtained for small
block sizes at the expense of reduced secure key rates due to finite key
considerations. To maximise the secure key rate of a complete high
speed QKD system it is then important to fully characterise each
stage from the hardware upwards in terms of throughput limits
and effect on the secure key rate. Each stage’s parameter’s should
then be optimised taking into account not just that stage’s individual
output but the entire system performance.

Methods
The high speed QKD system described in Ref 25 implements the BB84 protocol using
phase coding with asymmetrical Mach Zender interferometers, 3 intensity decoy
states and asymmetrical basis choices. The transmission fibre is standard single mode
telecom fibre (SMF-28) with an attenuation of 0.2 dB/km at the laser wavelength of
1550 nm. Photons are detected using InGaAs APDs operated in gated mode and
using a self differencing34 technique to enable a gating frequency of 1 GHz, equal to
the transmitter’s laser pulse repetition rate. The APDs operate at an efficiency of 20%,
a dark count probability of 2.1 3 1025 per gate and an after pulse probability of 5%.
The secure key rate is calculated taking into account finite key size for a key block of
1200 seconds duration and with a composable security parameter (key failure rate) of
e 5 10210.

In total 10 different LDPC codes are generated with rates from R 5 0.85 to 0.55.
The LDPC codes are randomly generated initially using a modified progressive edge
growth algorithm23 and stored on each computer. The standard progressive edge
growth algorithm aims to create an LDPC code with a specified variable node degree
(the total edges connected to a variable node) distribution and also with the largest
possible cycles. Cycles are formed when a variable node is connected back to itself
through a chain of check and variable nodes, and short cycles generally lead to
reduced performance of codes as information does not propagate efficiently. The
standard PEG algorithm aims to avoid this by placing one edge at a time and using a
tree expansion from each variable node to find the check node with the largest
distance. The modified PEG algorithm employs in addition a check node degree
distribution to choose the check node to connect the edge to in the case two or more
check nodes have the same distance from the variable node. The check and variable
node degree distributions are both irregular and optimised using the density evolu-
tion algorithm to give the highest performance codes.

Rate adaptation using the puncturing and shortening techniques as described in
Ref 24 is implemented to allow the code rate to by dynamically adjusted. Prior to error
correction the sifted key data is padded with a certain number of random bits by the
encoder. The value of these bits is either disclosed to the decoder (for shortened bits)
or kept secret (for punctured bits). The decoder can then reliably fix the value of the
shortened bits, which increases the algorithms ability to correct the remaining bits
(and thus correcting them in fewer iterations). Conversely for punctured bits the
decoder will have no a priori information on these bits, unlike the bits which come
from photon detections which contain noisy information, and are therefore more
difficult for the algorithm to correct. More formally the effect of this is that adding
shortened bits decreases the effective code rate and adding punctured bits increases it.
The optimal operating QBER point for each of the 10 different rate codes is deter-
mined based on the block failure rate, and at QBER values in between these points
punctured or shortened bits are added progressively to cause a smooth change in
effective code rate.
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