Skip to main content
. 2014 Dec 2;5:460. doi: 10.3389/fphys.2014.00460

Table 1.

Thermal transition temperatures of ASWT and mutants.

Mutant TM50 TM1 TM2 TM3 ΔH1 ΔH2 ΔH3 ε1 ε2 ε3 n
Degrees celsius Kcal/Mol
ASWT 45.3 ± 0.3 28.1 ± 2.5 n/a 45.5 ± 0.1 −22 ± 8 n/a −144 ± 29 0.38 ± 0.03 n/a 0.64 ± 0.04 9
E40K 44.0 ± 0.2* 38.2 ± 0.8 43.9 ± 0.2 51.8 ± 1.0 −38 ± 12 −146 ± 36 −128 ± 34 0.39 ± 0.08 0.41 ± 0.06 0.18 ± 0.05 9
E54K 45.3 ± 0.1 37.8 ± 0.6 44.3 ± 0.1 52.6 ± 0.3 −36 ± 10 −146 ± 23 −118 ± 22 0.39 ± 0.07 0.36 ± 0.06 0.24 ± 0.05 9
E62Q 47.9 ± 0.5 37.9 ± 0.4 45.1 ± 0.1 51.5 ± 1.0 −30 ± 7 −149 ± 64 −141 ± 48 0.35 ± 0.09 0.35 ± 0.11 0.29 ± 0.19 11
L185R 46.8 ± 0.3* 30.4 ± 1.9 n/a 46.5 ± 0.1 −24 ± 6 n/a −155 ± 33 0.39 ± 0.01 n/a 0.61 ± 0.02 9

Shown are the results of thermal denaturation spectra fitted to a two and three-transition model (see methods for description). The values represent mean ± SE of the values acquired from the fits. The melting temperature (TM50), transition temperatures (TM1, 2, 3), corresponding enthalpy values (ΔH) and extinction coefficients (ε) for each mutant are reported for the spectra measured the number of times shown (n). Statistical significance for temperatures were determined by ANOVA followed by Dunnett's multiple comparisons test;

*

p < 0.05,

p < 0.001.