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Abstract

We develop a generally applicable framework for constructing efficient estimators of regression
models via quantile regressions. The proposed method is based on optimally combining
information over multiple quantiles and can be applied to a broad range of parametric and
nonparametric settings. When combining information over a fixed number of quantiles, we derive
an upper bound on the distance between the efficiency of the proposed estimator and the Fisher
information. As the number of quantiles increases, this upper bound decreases and the asymptotic
variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate
conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-
efficient estimation. We illustrate the proposed method for several widely used regression models.
Both asymptotic theory and Monte Carlo experiments show the superior performance over
existing methods.
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1 Introduction

For regression estimations, the most widely used approach is the least squares (LS) method
(for finite-dimensional models) or local LS method (in infinite-dimensional settings). If the
data is normally distributed, the LS estimator has the likelihood interpretation and is the
most efficient estimator. In the absence of Gaussianity, the LS estimation is usually less
efficient than methods that exploit the distributional information, although may still be
consistent under appropriate regularity conditions. Without these regularity conditions, the
LS estimator may not even be consistent, for example, when the data have a heavy-tailed
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distribution such as the Cauchy distribution. Monte Carlo evidence indicates that the LS
estimator can be quite sensitive to certain outliers. In empirical analysis, many applications
(such as finance and economics) involve data with heavy-tailed or skewed distributions, and
the LS estimators may have poor performance in these cases. It is therefore important to
develop robust and efficient estimation procedures for general innovation distributions.

If the underlying distribution were known, the Maximum Likelihood Estimator (MLE) could
be constructed. Under regularity conditions, the MLE is asymptotic normal and
asymptotically efficient in the sense that the limiting covariance matrix attains the Cramér-
Rao lower bound. In practice, the true density function is generally unknown and so the
MLE is not feasible. Nevertheless, the MLE and the Crarher-Rao bound serve as a standard
against which we should measure our estimator.

For this reason, statisticians have devoted a great deal of research effort to the construction
of estimation procedures that can extract distributional information from the data, and thus
deliver more efficient estimators than the conventional LS method. For the location model Y
= a + g, where ¢ has a symmetric density, the adaptive likelihood or score function based
estimators of a were constructed in Beran (1974) and Stone (1975). Bickel (1982) further
extended the idea to slope estimation of classical linear models. For nonlinear models,
adaptive likelihood based estimations are usually technically challenging.

We believe that the quantile regression technique [Koenker and Bassett (1978); Koenker
(2005)] can provide a useful method in efficient statistical estimation. Intuitively, an
estimation method that exploits the distributional information can potentially provide more
efficient estimators. Since quantile regression provides a way of estimating the whole
conditional distribution, appropriately using quantile regressions may improve estimation
efficiency. Under regularity assumptions, the least-absolute-deviation (LAD) regression (i.e.
quantile regression at median) can provide better estimators than the LS regression in the
presence of heavy-tailed distributions. In addition, for certain distributions, a quantile
regression at a non-median quantile may deliver a more efficient estimator than the LAD
method. More importantly, additional efficiency gain can be achieved by combining
information over multiple quantiles.

Although combining quantile regression over multiple quantiles can potentially improve
estimation efficiency, this is often much easier to say than it is to do in a satisfactory way.
To combine information from quantile regression, one may consider combining information
over different quantiles via the criterion or loss function. For example, Zou and Yuan (2008)
and Bradic, Fan and Wang (2011) proposed the composite quantile regression (CQR) for
parameter estimation and variable selection in the classical linear regression models. For
nonparametric regression models, Kai, Li and Zou (2010) proposed a local CQR estimation
procedure, which is asymptotically equivalent to the local LS estimator as the number of
quantiles increases. Alternatively, one may combine information based on estimators at
different quantiles. Along this direction, Portnoy and Koenker (1989) studied asymptotically
efficient estimation for the simple linear regression model. Although the proposed estimator
is efficient asymptotically, it is not the best estimator with fixed quantiles. Also see
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Chamberlain (1994), Xiao and Koenker (2009), and Chen, Linton and Jacho-Chavez (2011)
for related work on combination of estimators.

In this paper we consider regression estimation by combining information across k quantiles
Tj=j/(k+1),j=1, ..., k. We show that for a wide range of parametric and nonparametric
regression models, more efficient estimators can be constructed via optimally combining
quantile regressions. We argue that it is essential to combine quantile information
appropriately to achieve efficiency gain. In particular, simple averaging multiple quantile
regression estimators is asymptotically equivalent to the LS method. We show that, by
optimally combining information across quantiles <, ..., t, the efficiency of the proposed
optimal weighted quantile average estimator is at most @, away from the Fisher information,
where @y is defined as (43). As the number of quantiles k — oo, under appropriate regularity
conditions, we have @, — 0 and the estimator is asymptotically efficient. Interestingly, in
the case of non-regular statistical estimation when these regularity conditions do not hold,
the proposed estimators may lead to super-efficient estimation.

The proposed methodology provides a generally applicable framework for constructing
more efficient estimators under a broad variety of settings. For finite-dimensional parametric
estimations, the method can be applied to construct efficient estimators for parameters in
both linear and nonlinear regression models with homoscedastic errors, and parameters in
location-scale models with conditional heteroscedasticity. We show that, in the presence of
conditional heteroscedasticity, some appropriate preliminary quantile regression is needed to
improve the efficiency and to facilitate the quantile combination. Different restrictions (and
thus optimal weights) are needed for estimation of the location parameters and scalar
parameters. For nonparametric function estimations, the asymptotic bias of the proposed
estimator is the same as that of the conventional nonparametric estimators (such as the local
LS and the local LAD estimators) and meanwhile the inverse of the asymptotic variance is at
most & away from the optimal Fisher information. Our extensive simulation studies show
that the proposed method significantly outperforms the widely used LS, LAD, and the CQR
method [Zou and Yuan (2008); Kai, Li and Zou (2010)] for both parametric and
nonparametric models.

The rest of this paper is organized as follows: we provide a general discussion on the
framework and assumptions for constructing efficient estimators based on quantile
regressions in Section 2. Three leading cases of regressions are then investigated in Sections
3-5. In particular, we study the parametric regression models with homoscedasticity in
Section 3. In Section 4, we study the parametric models with heteroscedasticity.
Nonparametric models are investigated in Section 5. We focus on methodology and our
discussions in Sections 3-5 consider the case with finite k. The case with k increasing to
infinity is discussed in Section 6. Simulation studies are contained in Section 8, and an
application to financial data is given in Section 9 to highlight the proposed method. Proofs
are given in the Appendix.

2 Model Setup, Assumptions, and TheWeighted Quantile Average Estimator

We consider regression models of the following form:
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Y=m(X)+o(X)e, (1)

where (X, Y, €) is the triplet of covariate, response, and noise, with & independent of X. Here
m(-) and o(-) are two functions that depend on unknown parameters 6, where 6 may be of
finite dimension (parametric case) or infinite dimension (nonparametric case).

Denote by Q.(t) the t-th quantile of € for © € (0, 1). Then the t-th conditional quantile of Y
given X, denoted by Qy (t|X), is given by

Qy (T[X)=m(X)+0(X)Q:=(7). @

As the inverse of the conditional distribution function, Qv (t|X) fully captures the
distributional relationship between Y and X. Intuitively, different distributional information
may be obtained from different quantiles, and an appropriate combination of multiple
quantiles may be more informative about the distribution than the conditional mean in the
LS methods.

Throughout this paper we consider combining information over k equally spaced quantiles ;
=jl(k+1),j=1, ..., k. The discussion of this paper focuses on the case where k is assumed
to be a given finite number. We consider the case that k — oo increases with n in Section
6.3.

We briefly introduce the idea of our proposed estimator. Let 0 be a parameter of interest.
From the conditional quantile in (2), we can usually identify some perturbed version of 6,
denoted by 0(t). Suppose there exists a class % of weights such that

k
ije(rj):ﬁ,w:[wl, o ,wk]T eW. @
j=1

Given data on (X, Y), we can use a quantile regression based on (2) to obtain some consistent
estimate, denoted by 0(<), of 6(v). In light of (3), we propose the following estimate of 0:

k
GWQAE (w):ZWjG(T),w ew. ()
Jj=1

We term 6\;\/QAE((D) by the weighted quantile average estimator (WQAE) of 6. Since
9\;\/QAE((D) is a consistent estimate of 0 for each € ¥, we propose in this paper estimation
of 0 based on w € # that minimizes the limiting variance of Oyqag(w) in parametric
settings, or the asymptotic mean squared error in nonparametric settings. If w is chosen in
such a way, we call the corresponding estimator OQVQAE((D*) the optimal WQAE (OWQAE).

The proposed estimation can be applied to a wide range of regression models. In this paper,
we focus on the following three leading cases of regression (1):

Case 1: Parametric regression models with homoscedastic errors.

Case 2: Location-scale models with conditional heteroscedasticity in ().
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Case 3: Nonparametric regressions.

We study each of these cases in the following three sections 3-5.

Suppose we have samples {(X;,Y;)};"_; from (1) with corresponding noises {e;};_;. To
facilitate the study of asymptotic theory, we impose the following assumptions.

Assumption 1 (i) {(X;, er) ez is strictly stationary; for each t, &; is independent of {X;, X;-1,
coes €=1s E€1=2, .-} (i1) {X}tez is an ergodic process.

Assumption 2 Denote by f.(-) and F¢(-) the density and distribution functions of . f; is
positive, twice differentiable, and bounded on {u : 0 < F¢(u) < 1}.

Assumption 1 provides a convenient framework for studying asymptotic theory. First, strong
mixing condition implies the ergodicity, and thus Assumption 1(ii) is weaker than the
widely used strong mixing conditions in time series analysis. Next, we illustrate two useful
properties below.

(P1) Martingale structure. Let % be the o-algebra generated by {X¢+1, X, ...} €t €t-1,
...}. By Assumption 1(i), & is independent of %_;. For any functions hy(:) and
ho(+) such that E[|h1(X{)ha(g1)|] < oo and [Ehy ()] = 0, we have Ehq(X)ha(e)]
Fi-1] = h1(X)Eha(g:)] = 0. Therefore, {h1(Xpha(gi) }tcz are martingale
differences with respect to the filtration {Z%}cz, and consequently

Z:zlhl(Xt)hz (et) is a martingale.

(P2) Law of large numbers. By ergodic theorem [Theorem 3.5.7, Stout (1974)], for
any function #(-) such that [E|¢(X;)[] < oo, the ergodicity in Assumption 1(ii)
implies

lim l

n—oon

{(Xy)=E[{(Xy)],in probability. (s)
1

In subsequent sections we adopt the following notation. For a random vector Z, we use ||Z||
to signify the Euclidean norm of Z, and write Z € 94, g > 0, if [E||Z||9) < oco.

3 Homoscadastic Parametric Regression Models

In this section we study the parametric regression model (case 1 in Section 2).
Corresponding to the general representation (1), let o(X) = 1 and m(X) = a + m(X, B), where
B € RP is the vector of unknown parameters, and the intercept a is added to ensure the
identifiability of B, we have

Y=a+m(X, B)+e. (6)
We are interested in the estimation of f.

By (2), we have the conditional quantile representation
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Qy (T]1X)=a(1)+m(X, B), wherea(T)=a+Q.(7). (7)

Given samples {(X;,Y;)}}_, from (6), let (q(r), B(x)) be an estimator of (a(t), B) from a
quantile regression based on (7):

(61(7'),/3’(7’)) —argmanpT{Yt —a—m(Xy,b)}, (g

(ab) =1

where p(z) = z(t — 1,<g) and 1 is the indicator function. Denote by m(x, ) is the partial
derivative vector of m(x, ) with respect to . Define

% (X1, 8)" -‘ )

) e RPHL,
m(Xtaﬁ)

D, = e R*@P+tandz, =

1 (X, 8)

Similar to the linear regression, D, serves as the design matrix and Z; is the equivalent
covariate corresponding to observation t for the quantile regression (8). A leading example
is the classical linear regression model [see, e.g., Koenker (1984)], corresponding to m(X, )
= XT B. In this case, Qy(t|X) = [a + Q.(v)] + X p and m(X, p) = X.

Assumption 3 The quantile regression estimator has the Bahadur representation

a(r alT DTDn -1 n B
[ BET§ ] :[ ’(6) ] fE(Qe(’i ) = Zzt ~ L cquinto( %), @

uniformly in t €.7 := [8, 1 — 8] with some small constant & > 0.

Assumption 3 is an asymptotic representation of the quantile regression estimator. Under
regularity conditions on the regression function m(-), error density, and the parameter space,
a Bahadur representation can be obtained over t on a subset of [0,1]. See, e.g., Portnoy and
Koenker (1989), Jureckova and Prochazka (1994), and He and Shao (1996) for related
study. Also see Section 4 for discussions on the conditional heteroscedastic parametric
models.

Since B does not depend on T, we can use B(x) to estimate B with any choice of t. By
Theorem 1 below (also, see the definition of g there),

Valam -2 = (0551 5 0h) o

For example, the case with © = 0.5 corresponds to the median quantile regression or LAD
estimation of f.

As discussed in Section 2, we want to combine information over the k quantiles T = j/(k +
1),j=1, ..., k, where k is assumed to be a given finite number such that j € .7". Since (1)
is a consistent estimate of B, from (3)—(4), we consider the WQAE of j:
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ﬁWQAE(w):ij/B(Tj),WhereZwJ:l. (1)
j=1 j=1

Theorem 1 Suppose Assumptions 1-3 hold and m (X, ) € %2 with x < X, Then
\/E[BWQAE (w) =Bl = N(0,25'S(w)), (12)
with S = Em(X, B)rma(X, B)T] = Era(X, B)JE[m(X, B)T] assumed to be non-singular, and

min(7;, 77) — 77y

kxk
fa(Q&(Tf))fs(Qs(Tj/)) }Jgjﬂ'/gk eR )

S(w)=w! HowithH :{

The proposed estimator, the OWQAE, of 3 is obtained by choosing ® to minimize the
asymptotic variance of Byoag(®).

Theorem 2 Under the assumptions of Theorem 1, the optimal weight is

H e, T
w'= argmin S(w)=————, wheree,=(1,...,1)". (14
w1+-‘-q-+wk-:1 ( ) ezH_lek’ ( ’ ' ) a9

With o* in (14), the OWQAE of  has the following limiting distribution:

\/E[BWQAE (w*) — 8] = N(0, 2519;1), wherer;ze,?Hflek,. (15)

Remark 1: A quick way of combining quantile information is to take a simple average of the
quantile regression estimators. This is easy to implement and has been used in the literature
[see, e.g., Kai, Li and Zou (2010) for nonparametric estimation] as a method of combining
quantile information. If we use o = [1/K, ..., 1/k]" in (11), the resulting unweighted estimator
has the asymptotic normality in Theorem 1 with S(w) replaced by

R min(7;, 7)) — T
Ry = — FARY] ity
* k%j,z:lf5<Qg<rj>>fe<Qs<ij>> 1o

Clearly, R = S(w*). See Section 6.2 for more discussions on the property of Ry.
We compute w* for some examples below using k = 9 quantiles 0.1, 0.2, ..., 0.9.

Example 1. Let € be Student-t distributed. For t; (Cauchy distribution), the optimal weight
o* ={-0.03,-0.04,0.08,0.29,0.40,0.29,0.08,-0.04,-0.03}, quantiles t = 0.4, 0.5, 0.6
contribute almost all information whereas quantiles T = 0.1, 0.2, 0.8, 0.9 have negative
weights, so the unweighted quantile average estimator would not perform well. However,
for N(0,1), »* = {0.13,0.11,0.11,0.10,0.10,0.10,0.11,0.11,0.13} are close to the uniform

Econ Theory. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Zhao and Xiao

Page 8

weights, and thus the OWQAE, the unweighted quantile average estimator, and the LS
estimator have comparable performance.

Example 2. Let & have normal mixture distributions. For Mixture 1: 0.5N(0,1)+0.5N(0,0.55)
(different variances), o* = {-0.002,-0.102,0.183,0.277,0.287,0.277,0.183,-0.102,-0.002},
quantiles 0.3, ..., 0.7 contain substantial information whereas quantiles 0.2 and 0.8 have
negative weight. For Mixture 2: 0.5N(-2,1)+0.5N(2,1) (different means), o* =
{0.185,0.156,0.153,0.078,-0.144,0.078,0.153,0.156,0.185}, quantiles © = 0.1, 0.2, 0.3, 0.7,
0.8, 0.9 are comparable while the median performs the worst.

Example 3. Let € be Gamma random variable with parameter d > 0. For d = 1 (exponential
distribution), wi=1.152,wi= — 0.124, and w* ~ o fori=3, ..., 9. Quantiles 0.1 and 0.2
contain almost all information.

As shown in Examples 1-3 above, different quantiles may carry substantially different
amount of information, and inappropriately utilizing such information may result in a
significant loss of efficiency. The latter phenomenon provides strong evidence in favor of
our proposed optimally weighted quantile based estimators.

In practice, the optimal weight w* in (14), which depends on the sparsity or quantile-density
function f¢(Qg(t)), needs to be estimated. We make the following assumption on the
estimate, denoted by b f.(Q.(1)), of f(Q.()).

Assumption 4 sup.c.7 |fSZQSEr)) = f(Qe(v))| = 0p(2) for .7 in Assumption 3.

Plugging the consistent estimate fSZQSZr)) of f.(Q(1)) into the matrix H in (14), we can
obtain the following consistent estimate of the optimal weight o*:

A1 .
. H e { min(7;, Tj/) — TjTj

wzik,wherel:[: —= — } .
fs(Qs(Tj))fs(Qs(Tj’)) 1<4,j'<k

1
e{H e <k

Theorem 3 below asserts that, B\;VQAE((D;) with the estimated weight o* achieves the same
efficiency of Bwoag(®*).

Theorem 3 Under the assumptions of Theorem 1 and Assumption 4, we have

VB (@) = 8] = N0, Z5' Q). s

4 The Location-Scale Models

Another class of widely used regression models is the location-scale models (case 2 in
Section 2) that allows for conditional heteroscedasticity. There is a large literature in
econometrics and statistics studying the location-scale models. Koenker and Zhao (1994)
studied L estimation of a location-scale model in the following form:

}Q:X?ﬂ+at£t,whereot:X?7, (19)

Econ Theory. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Zhao and Xiao

Page 9

under the condition x> 0. Zhao (2001) studied asymptotically efficient median regression
using the k-nearest neighbors method. In this section we study the location-scale models via
optimal quantile combination.

In the model (19), the positive constraint x7 >0 is somewhat restrictive to allow for flexible
applications. For example, it is violated for normally distributed covariates X. For this
reason, many researchers consider an alternative form of oy which can be expressed as a
linear function of absolute values of the regressors and other variables:

Yt:XtTﬁ+at5t,WhereatUtTfy =o(U), (20)

where Uy is a vector of absolute values of the regressors and other covariates [see, e.g.,
Koenker and Zhao (1996) for studies on related models]. For example, let

X! =(x41,--- ,24,), ONe may consider a location-scale model with

_ 7T P
or=0(Up)=Uj 7—70+Zj:1%\% , where UF =(1, 2], - - - , lzep]) ¥ = (Vo Y10 -0 Yp)s YO >
0,v120, -+, 7p 20,

In this section we consider the location-scale regression model (20).1 We are interested in
the estimation of 8 and y. By (2), we have the conditional quantile representation

Q, (T\X):XT,B—F UT’y(T)With"y(T)Z’st (7). ()

Given a sample of size n, we may estimate (B, y(t)) using a quantile regression similar to
(8). However, in the presence of conditional heteroscedasticity, it is more efficient to use a
weighted quantile regression with the weights reflecting the conditional heteroscedasticity.
In addition, the weighted quantile regression estimates have nice properties that helps
combining quantile information.

Thus, following the idea of Koenker and Zhao (1994), we consider the weighted quantile
regression:

~ R . "1
(ﬁ(T):V(T))ZaT%%IHZZPT{ﬁ - X{o-Ulr}, @
) t=1""%

where ,=U"5 and yNis a consistent estimate of v.

Assumption 5 (i) {(X:, Ut, e hez is strictly stationary; for each t, ; is independent of {(X;,
U, (Xt=1,Ut=1)s ---; €t=1, €t=2, --- 3 (i) {(Xt, Up ez is an ergodic process.

Assumption 6 (i) [X¢l + lUdl < ¢y and 77~ > ¢, for some constants ¢4, ¢, > 0. (ii) y~— v =
op(nY/4). (iii) Let (X, U) be distributed as (X;, Uy). Define the matrices

INote that different forms of the location-scale model can be studied similarly to our analysis in this section, and optimally weighted
quantile averaging estimators can be constructed (but the construction of optimal weights will be different, depending on the specific
form of the regression model).
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M=E

xxT xuT
|, My=E | —— |, M3=E
o(U) o(U

and

Mg=M; — Mp My ' M7, M,=M; — M7 M Mo,

The matrices My, M3, Mg and M, are non-singular.

Assumption 5 is a modification of Assumption 1 by allowing for more covariates (X;, Uy). In
Assumption 6, (i) is imposed simply for technical convenience and can be replaced by some
finite moment conditions, (ii) requires that meust be reasonably close to v, and (iii) is used
to avoid some singular design matrix.

Theorem 4 Suppose Assumptions 2, 5, and 6 hold. Then we have

|: gg:g :| - |: ry(’i-) :| nfs Qs ZZt 61<Qs(f)]+op(n_l/2)a (23)

with

g | Mj 1(Xt MM Uy o (Uy)
= M YU, — MEMTYX,) Jo(U)

We now construct estimators of § and y by optimally combining information over quantiles

Ty very Tk

First, we consider estimation of 3. As in Section 3, we consider the WQAE B\;VQAE((D) given
by (11). Using the Bahadur representation (23) from Theorem 4, the same argument in
Theorem 1 yields

VB gus (@) — 81 = N (0, M S(w)),

with S(w) given in Theorem 1. Therefore, the optimal weight can be constructed in a similar
way as described by Theorem 2, and * is given by (14). The OWQAE has the following
limiting distribution

\/E[ﬁ\VQAE(w*) _ /3] = ]\](07 ]\[ﬁ*lﬂgl)’

with Qi given in (15). If we use the estimated optimal weight ®* in (17), under the
additional Assumption 4, the conclusion in Theorem 3 also holds here.
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Next, we consider estimation of the scale parameter v via quantile combination. As will be
clear from later analysis, the construction of WQAE and choice of optimal weights related to
the scale parameter will be different from those of 3. For this reason, we denote the weights
used in y estimation by 7 = [ry, ..., m]T. From (21)—(22), y&) is an estimation of y(<) =

k k
vQ¢(t). Then, for any = satisfying ijleQe(Tj):l, Zj:ﬂﬂ(Tj):’Y. Therefore, we
propose the following WQAE of v:

k k
Awans (M= T3 (7)), wherey mQ-(mj)=1. (21)
j=1 j=1

Theorem 5 Under the assumptions in Theorem 4, we have the asymptotic normality:

VA woan(™ =11 = N(0, M1 5(r)),

where S(r) = n"Hr with H defined in (13). Furthermore, the optimal weight is
-1

. q T
= argmin S(m)=———, whereq=[ Q=(71),. .., Q=(7%)] " . (25)
T1Qe(T1)+ 47 Qe (T1)=1 q"H"q

With * in (25), the OWQAE of vy has the following limiting distribution:

ﬁ[*}WQAE(W*) — 4] = N(0, J\I,Y_IA,ZI), whereAk:qTH_Iq. (26)

Therefore, the optimal weights for the OWQAE of § and vy are different, and their
corresponding OWQAESs have different efficiency. This is due to the structure of the
conditional quantile representation (21):  does not depend on the quantile © whereas vy relies
on t through the coefficient Q.(t).

Similar to the case of 3, the conclusion in Theorem 3 also holds for y\;VQAE(ﬂ;) when we use
estimated optimal weight 7 by plugging in consistent estimates of (¢, H) into (25).

To implement the weighted quantile regression (22), we need to find a consistent estimate
of v. We propose the following procedure:

i. Foreach quantile t =1y, ..., T, fit the unweighted quantile regression

(B(T),W(T))=ar(grr§inzpr{i’t - Xo-Ulr}. @
br) =1

By the same argument in Theorem 4, (3(v), y (v)) = (B, v(v)) + Op(n"12).
ii. Let
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k
=Y 1A (29)
i=

Then 7= 'YZ Q=) +0,(n %), Note that, in (22), it suffices for y to
estimate vy up to a multiplication factor. Thus, y in (28) satisfies Assumption 6(ii).

Finally, we point out an identifiability issue of the optimal weight ©* in (25). Since Qg(<) is
identifiable up to a scale factor, if we multiply Q.(t) by a constant ¢, 7 and hence
y\;VQAE(ﬂ*) in (24) will be multiplied by a factor 1/c. This is due to the non-identifiability of
the parameter v in (20). To ensure identifiability, we may impose some constraint on ¢; see
Section 7 for more discussions on estimating 7.

5 Nonparametric Regressions

In this section we study the nonparametric regression (case 3 in Section 2). We assume that
both m(:) and o(-) in (1) are nonparametric functions, and we are interested in the estimation
of m(:). Although our theory is also applicable for multivariate case, to avoid the issue of
“curse of dimensionality”, we consider the univariate case X € R.

Recall the conditional quantile Qy (t|X) in (2). Without further assumptions, we cannot
identify m(X) from Qy(t|X) at a single quantile. To ensure identifiability, we assume that &
has a symmetric density, which is satisfied for many commonly used distributions, such as
normal distribution, Student-t distribution, Cauchy distribution, uniform distribution on a
symmetric interval, Laplace distribution, symmetric stable distribution, many normal
mixture distributions, and their truncated versions on symmetric intervals.

Consider weights oy, ..., ok satisfying the constraints

k

ijzlandw_j:wk+1_]-,j:1, ke (29)
j=1

Under the symmetric density assumption above, Q(t) + Q.(1 — 1) = 0. Therefore, with
quantiles 7j = j/(k + 1) and using (2) and (29), we have

k

ZL‘JJQY( Z m(X)+0(X)Q-(r. j)]_m(X) (30)

This identity suggests estimation of m(-) by plugging in consistent estimation of Qy (v;|X).

Given samples {(X;,Y;)};" ;, we can estimate Qy(t/x) by the local linear quantile regression
[Yu and Jones (1998)]:

A A " X, —
(QY (T|:c),b) :argmianT{Yt —a—b(X; —2)}K ( th I) » (31)

(a;b) t=1

for a kernel function K(-) and bandwidth h. From (30), we propose the WQAE of m(x):
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k A
mVVQAE (x‘w) :ijQy (Tj |$) - (32
Jj=1

Assumption 7 (i) f; is symmetric, positive, and twice continuously differentiable on its
support; the density function px(:) > 0 of X is differentiable, m(:) is three times
differentiable, and o(-) > 0 is differentiable, in the neighborhood of x. (ii) nh — oo and nh®
— 0. (iii) K(") integrates to one, is symmetric, and has bounded support. Write

,LLK:/ UQK(u)du,goK:/ K?(u)du,
R R

Theorem 6 Suppose Assumptions 1 and 7 hold. Let S(w) be defined in (13). Then

Vnh {ﬁlWQAE(x|w) —m(z) — %m”(m)pkh2} =N (0, Ms@)) .33

px ()

Furthermore, o* in (14) minimizes S(w) subject to the constraints (29), and

02 xr
Vith (i alo) = m(z) = g @k | = N (o, *9;;—(92))9,;1) ;e

where Q is defined in (15).

For comparison, we briefly review some alternative nonparametric estimation methods. The
widely used local linear LS regression estimator, denoted by m; s(x), is obtained by
replacing the quantile loss p(:) in (31) with the square loss. If [Es;) = 0 and var(ey) < oo,
under some regularity conditions [Fan and Gijbels (1996)],

\/E{rhm(x) —m(z) — %m”(m)pKhQ} =N (0, %(;j)var(eo . (35)

px(z

When &;’s are Gaussian, the local LS estimation corresponds to the local likelihood criterion.
In the absence of Gaussianity, asymptotic results of m;'s(x) generally still hold but this
estimator is less efficient in terms of mean-squared error than estimators that exploit the
distributional information. For heavy-tailed data, local quantile regression is a robust
estimation method; see, e.g., Yu and Jones (1998). The local median regression estimator,
denoted by m;_ap(X), corresponds to T= 0.5 in (31). By Theorem 6,

A 1y, (fQKUQ(‘T)
\/E{mmn(z) —m(z) — §m (x),uKhz} = N (0, W4f§(0)) - (36)

Recently, Kai, Li and Zou (2010) proposed a local composite quantile regression (CQR)

estimator which takes a simple average of multiple quantile estimations. The local CQR
estimator, denoted by mcor(x), has the asymptotic normality
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2
ViR {1 (2) = (@) = 2 @)puch? = N (o, MR) . @

where Ry is defined in (16). Intuitively, m 's(x) uses information from the local sample
average, m_ap(x) uses information from the local sample median, mcor(x) uses information
from multiple quantiles with uniform weight, and the proposed OWQAE myoag(X/®*)
combines information from multiple quantiles optimally.

If the error density f. were known, we could replace the quantile loss p.(:) in (31) by the log
likelihood log f.(Yi—a—b(X{—x)) and obtain a likelihood-based estimator, denoted by
mmLe(X), see, e.g., Fan, Farman and Gijbels (1998). Under appropriate conditions,

px(z)

0'2 x
Vith {1 (2) = mla) = G @l } = N (o, “’K—“ﬂfal) -

where A(f,) is the Fisher information of f.. Under some regularity conditions, the local
likelihood estimator is the most efficient estimator. In practice, f,, is unknown and my g(x)
is infeasible. In Section 6.2, it is shown that O — .#(f,), and therefore the optimal WQAE
mwoae(X|o*) achieves the same asymptotic efficiency of the infeasible estimator my_g(x).

We now compare the efficiency of mygag(X|o*) to m_s(x), m_ap(x), and mcgr(x). From
(34)—(37), all four estimators have the asymptotic normality with different s:

M{m(x) —m(z) — %m"(m),uKhz} =N <0, Mf) .

px ()

Define the asymptotic mean-squared error (AMSE) as AMSE{m(x)|h} = [m”(x)uxh?/2]? +
ok02(x)s%/[nhpx(x)]. Minimizing the AMSE, we obtain the optimal bandwidth:

9 1/5
B —argminAMSE{(z) [} ={pu, m"(2)} /7] £xT @ LT g1/ 2915 g,
h npx (:B)

and the associated optimal AMSE evaluated at the optimal bandwidth h*

o2(z) " 5 5
AMSE{m(z)|h*}:§{me”(r)}2/5{fl[(p—((x))} ()" o (). o)

In Section 6.4, we tabulate s? for different distributions.
Theorem 7 studies myqag(X|o*) when we use the estimated optimal weight ®* in an.

Theorem 7 Under the assumptions of Theorem 1 and Assumption 4, when we use the
estimated weight o* in (17), mygag(X|o*) has the same asymptotic normality as myoag(X|
®*).

Econ Theory. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Zhao and Xiao

Page 15

The discussion of the selection of the bandwidth h is deferred to Section 8.4.

6 Efficiency Comparison

6.1 The k-quantile optimal efficiency Qg and Ay

The parameters in Sections 3-5 can be classified into two types: location-type and scale-type
parameters. For f in (6) and (20) and the nonparametric function m(:) in Section 5, these
parameters do not directly interact with the error €, and we call them location-type
parameters. For vy in (20), it is directly related to €, and we call it a scale-type parameter.

Our discussion in the previous sections considers combination of information over a fixed
number of quantiles. From the results in Sections 3-5, for the location-type parameters

mentioned above, their OWQAE has the asymptotic variance proportional to Q;l with Q
defined in (15); for the scale-type parameter v in (20), the OWQAE has the asymptotic

variance proportional to A,;l with Ay defined in (26). Since the efficiency of an estimator is
inversely proportional to its variance, we call €, and Ay the k-quantile optimal efficiency of
the location-type and the scale-type parameters, respectively. The larger Q and Ay, the
better performance of the corresponding estimators.

It is well-known that, under appropriate conditions, the variance of any unbiased parameter
estimator has the Cramér-Rao lower bound: the inverse of the Fisher information of the
underlying distribution. To illustrate the Fisher information for the location-type and scale-
type parameters, consider the simple location-scale model Y = 3 + ye with location
parameter 3 and scale parameter . Note that Y has the density fy(y; B, v) = f((y — B)/Y)/y.
Under the specification (B, y) = (0, 1), we can show that, the Fisher information for the
location parameter j3 is

y(fa)sz%duz/;{LE(;")TE(T)) }2d7’, (41)

and the Fisher information for the scale parameter v is

w)4ufi(u ? 1 (7)) Fo(Q-(T 2
/(fg):'/RWdu:. /0 {8[@ ( );(Q ( ))]} i @

We assume Af.) < oo and #(f,) < co. The Fisher information .#(f.) and 7 (f.) serve as a
natural standard when we measure the efficiency of our estimators in the case of regular
estimation.
Theorem 8 Suppose Assumption 2 holds. Let A =1/(k + 1).

i. For§in (15), we have |y — Af,)| < By, where g(t) = f.(Q(t)), and

_PA)g1 - A) A2 1o
o A 2 JA

2 A 2 2
o '@ d+ [ {1gOF+g (-0 Y. @)
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i For Ay in (26), we have |Ay — 7 (f.)| < Ty, where h(t) = Q.(t)f.(Q.(t)), and

RE(A)+h3(1 — A)+A_2 1-

\IJ:
k A 2 J A

P [ @O - P ar.

Theorem 8 indicates that, by optimally combining k quantiles 11, ..., T, the k-quantile
optimal efficiency Q (resp. Ag) for the OWQAE of the location-type (resp. scale-type)
parameters is at most @ (resp. ) away from the corresponding Fisher information 4(f.)

(resp. Z(f.)). This result holds for any fixed k.

6.2 Asymptotic behavior of Qg and Ak

In all previous sections, k is assumed to be a given finite number. In the following few
sections, we discuss the behavior of the proposed estimators as k increases with n. In this
section, we consider the asymptotic behavior of € and Ay as k — oo. For regular
estimation, it is shown that O, and Ay approach the corresponding Cramér-Rao efficiency
bound. In Section 6.3, we discuss the OWQAE as k — oo and when we use the true optimal
weight or the estimated optimal weight. In Section 6.4, we discuss the asymptotic relative
efficiency of OWQAE compared to some existing methods. Finally, Section 6.5 briefly
considers some non-regular estimation.

The Cramér-Rao efficiency analysis is based on the basic assumption of finite Fisher
information .A(f,) < co and #(f.) < co. From (41) and (42), this implies that

[e{ld OP+[g'(1 — t)])*}dt — 0and [7{[A()]*+[R'(1 — t)]*}dt — 0as T — O, where g()
and h(:) are defined in Theorem 8. Thus, by Theorem 8, we have the following result.

Theorem 9 Suppose Assumption 2 holds. Let g(-) and h(-) be defined in Theorem 8.
i If
g (1) +g* (1 —7) o (17 2
lim =———————==0andlim 7 / [¢" (1)) dt=0, (45)
T— T T T
then, for @y in (43), limy_,, =0, and

khm Qk:j(fe)

ii. If (45) holds with g(:) replaced by h(-), then, for ¥y in (44), limy_,,, ¥x =0, and
kli—{I;oAk:/ (fe).
The condition (45) is conventionally imposed in the study of efficient estimations. Basically,
it requires that the error density decay sufficiently fast at the boundary (the corresponding

estimation is sometimes called as regular estimation), otherwise one may estimate the
parameters at a faster rate; see, e.g., Akahira and Takeuchi (1995) for a discussion of this
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issue, also see Section 6.5 below for discussions on related issues. By Theorem 9, as k —
oo, the k-quantile optimal efficiency Q and Ay attain the corresponding Fisher information.

From Theorem 9, O and Ay have different limit as k — oo. As discussed in Section 4, this is
due to the extra dependence of yQ(t) on Q.(t) in the scale-type parameter.

Proposition 1 below presents an alternative sufficient condition for (45).

Proposition 1 Suppose f; has support on R and Assumption 2 holds. Then (45) holds if

- { f2(u)
u—-+oo min{l — F.(u), Fs(u)}

0, u)| | min{l — U u)}3/?
oot n‘ =R, w) }:0, "

Write x oc y if x/y is bounded away from 0 and oo. If f(u) o |u|~@ as |u| — oo for some a > 1,
then 1 — Fx(u) o< Jull@as u — oo and F,(u) o |u|*™@ as u — —oo. Thus, by Proposition 1, we
have the following result.

Corollary 1 Suppose that there exist a > 1 and b > 0 such that f.(u) o |u[~@ and d2[log f.(u)]/
du? o< |u|™ as |u] — co. Then (45) is satisfied if b + 3(a — 1)/2 > 1.

Many commonly used distributions with support on R satisfy (45). (i) For standard normal
density f., 32logfs(u)/ou? = -1 and 1 — F.(u) = [1 + o(1)]f(u)/u as u — oo, we can verify
(46). (ii) For Laplace distribution with density f.(u) = 0.5 exp(-|u]), u € R, 8[log f.(u)]/du?
=0 for u #0, so (46) can be easily verified. (iii) For logistic distribution, g(t) = ¢(v - ©2) for
some constant ¢ > 0, so (45) holds. (iv) For Student-t distribution with d > 0 degrees of
freedom, Corollary 1 holds with a=d + 1 and b = 2. (v) For normal mixture

ON (11, 03)+(1 — O)N(p2, 03)p1, po € R,0%,02>0,0 € [0, 1], we can verify (46).

Recall that the unweighted quantile average estimators have asymptotic variance
proportional to Ry defined in (16). The following results show that such a simple averaging
estimator is asymptotically equivalent to the LS estimator as k — oco. This result indicates
that if we use a simple average over quantiles, even as we use more and more quantiles,
there is no efficiency gain of combining quantile information. Thus, proper weighting over
different quantiles is crucial.

Theorem 10 (i) Ry, > Q,;l; as k — oo, the equality holds if and only if € is normally
distributed. (ii) If var(e) < oo, then limy_,,, R = var(e).

6.3 Behavior of the OWQAE as k — oo

In Sections 3-5, the asymptotic normalities of the OWQAE are established for k quantiles
with a fixed k. In this section we consider the case that k increases with n. To keep the
length, we consider only Byoag(w*) for the parametric regression case in Section 3.

Since the uniform Bahadur representation holds on a subinterval of [0,1], we modify
Assumption 3 so that the Bahadur representation holds uniformly over expanding
subintervals of [0,1] when the the number of quantiles increases with n.
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Assumption 8 The asymptotic Bahadur representation (9) holds over t € .7, = [8p, 1 — &p]

with 8, = (log n) ¢ for some € > 0. Let the number of quantiles ¥=kn= PJ J -1
First, we consider the OWQAE with the theoretical optimal weight o* in (14).

Corollary 2 Consider B\;\/QAE((D) in (11) and w* in (14). Suppose Assumptions 1, 2, and 8
and (45) hold. Further assume m(Xt, ) € Z4 for some q > 2. Then

n1/2[/é\)vQAE(w*) - ﬂ] = N(O’ Eglj(fg)il)'

Thus, if we use more and more quantiles as n — oo, the efficiency of the OWQAE with the
theoretical optimal weight o> approaches the Fisher information. The same conclusion also
holds for the estimators in Sections 4-5 provided that, as in Assumption 8, appropriate
Bahadur representations hold uniformly on .7,

We next briefly discuss limiting behavior of the OWQAE with estimated weight when kj, is
chosen as in Assumption 8. Again, we discuss the bahavior of the parametric model in
Section 3. As k, — oo, the asymptotic analysis of the proposed estimator is complicated and
depends on the behavior of quantile regression estimators and quantile-density estimators at
the extreme.

A * kn 5
Let Fwaar (@ ):Z i ""j/B(TJ) be the OWQAE with the optimal weight o* in (14), and let
Bons@)=_." = \@78(75) be the OWQAE with estimated weight w* [see, e.q., (17)].

Then, using ijlezl and ijl‘b;zl, we have
A kn A
VB s (@) = B1=3_ (&5 — ) VAL B(T) — B+ VAl By pn (@) = Bl @)
j=1
From Corollary 2, in order to prove

VB yons (@) = 81 = N(O,Z5 7 (£)7), @9

it suffices to prove
Z(w — W) V/nlB(7)) = Al=0p(1)-  (ag)

we need additional regularity conditions regarding the behavior of density f.(Q¢(t)) when <t
approaches the boundary, and conditions on the density estimators.

Assumption 9 Let k, and .7, be chosen as in Assumption 8. There exists some constant n >

)-ne/2)]

koo * *
0 such that infc 7, f:(Q¢(t)) = c(log n) ™ and Zj:1|wj — wj|=0p[(logn , where ¢

is the constant in Assumption 8.
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ko ax * — e/2
Under Assumption 8 and the condition Zj:1|wj — wi|=0p[ (logn) =T/ Assumption
9, by (71) in the proof of Theorem 1, we have

kn kn (_:) wr
Zw _w])\/— ( ) ]: Z +Op(1 ng( j N+Op(1) (50)

where

1 . ;
Nj== D (X ) = B AHT — g )

Assume without loss of generality that m(X;, ) is scalar-valued. By property (P1) in Section
2, the summands of N;j are martingale differences. By the condition m(Xt, ) € 92 and the

orthogonality of martingale differences, E(NJZ):O(l) uniformly in j. Thus,

kn
B( max N )< ZE

and thus max1 <<, | N;|=0,( v/ k). Recall ky in Assumption 8. Under Assumption 9,

kn @3
Z

maX1<J<kn|N| Z‘A* . )
T infrez, fo(Qc(T

Thus, (49) follows from (50), and we conclude that (48) holds.

6.4 Comparison of asymptotic relative efficiency

We now compare the efficiency of the proposed OWQAE to some existing methods.

First, we consider the parametric case in Section 3. Theorem 2 gives

\/ﬁ[ﬁ’wQAE (w*) = B] = N(0,%;"S(w*)). For parameter estimations, the most widely used
method is the ordinary LS estimator, denoted by B, s, which minimizes the squared errors.
Assuming var(g) < co and other appropriate conditions, we have the asymptotic normality

\/E(BIS - 3) = N(0, Zglvar( ). For the quantile regression based estimator B(r) with a
smgle quantlle T, the asymptotlc normality in (10) holds. All the three estimators
BWQAE(co*) BLS, and B(r) have asymptotic normality of the form;

V(B — 8) = N(0,55"s?), where s2 = var(g) (assuming finite) for BLs:

s —T(1 — 1)/ f2(Q<(r)) for [3(1) and s = S(w*) for BWQAE(OD*) For comparison, we use
BWQAE(w*) as the benchmark and define its asymptotic relative efficiency (ARE) to BLS and

B(t) as
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T(1—7)
f2(Qe(7))S(w*)

var(e)
S

ARE(S, )= and ARE(5(7))= (51)

A value of ARE = 1 indicates better performance of B\;\/QAE((D*) Clearly, ARE(B&,-)) >1,j
=1, ..., k. Under the conditions in Theorem 9, limy_,,, S(w*) = 1//(f ) < var(s) (the Cramér-
Rao mequallty) so that limy_, oo ARE(BLS) > 1. Intuitively, both BLS and B(r) use only partial
information: sample average and sample t-th quantile, respectively. By contrast, BWQAE(CO*)
combines strength across quantiles and thus can be more efficient.

Using k = 9 quantiles, Table 1 tabulates ARE(BLS) and ARE(B(‘E)) t=0.1,...,0.9, for some
commonly used dlstrlbutlons For aII non-normal dlstrlbutlons con5|dered BWQAE((D*)
significantly outperforms BLS and B(x) For N(0,1), BWQAE(CO*) and BLS are comparable, and
both are about 50% more efficient than B(O 5). For Student-t with one (t;) or two (tp) degrees
of freedom, LS is not applicable due to infinite variance; B\;\/QAE((D*) is about 20% more
efficient than B(O.S) and even substantially more efficient than B&) for other choices of <.
Thus, potentially much improved efficiency and robustness can be achieved by using the
proposed estimator B\;VQAE(OJ*). For linear models, Zou and Yuan (2008) studied composite
quantile regression (CQR) method, and we include the efficiency of their method for
comparison purpose. Clearly, the OWQAE is significantly more efficient than the CQR.

We briefly mention efficiency comparison of the nonparametric estimator mygag(X|®*)
relative to the local LS, local LAD, and Kai, Li and Zou (2010)’s local CQR estimators in
Section 5. By (40),

The nonparametric relative efficiency = (The parametric relative efficiency)*.

Thus, the same efficiency comparison result (up to an exponent 4/5) in Table 1 also holds
for the nonparametric estimator myoag(x|/®*) in Section 5.

6.5 Asymptotic super-efficiency

By Corollary 2, under (45), B\;VQAE((D*) is an asymptotically efficient estimator of {3, with
limiting covariance matrix approaching the Fisher information bound. The corresponding
conditions (45) are not mathematical trivialities but are real restricting conditions to obtain
the efficiency results. In the case when those “usual” regularity conditions do not hold, the
previously discussed efficiency result may not hold, and we may obtain different results
from the likelihood-based estimation. For example, we may have a different rate of
convergence, and in general, asymptotically efficient estimators do not exist. These
“unusual” cases are sometimes called “non-regular” statistical estimation. In this section, we
briefly discuss the case of non-regular estimation. In this case, Theorem 11 below shows
that, by using quantile regression with optimal weighting, super-efficient estimators may be
obtained in the sense that the efficiency is larger than the Fisher information .(f,).

Theorem 11 Recall Q in (15). Let g(t) be defined in Theorem 8. Assume

2 201 _
lim IO+ A-7)_ . s
T— T
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L Jf0<c<ooand lim, o2 [277[g" (¢))*dt=0, then lim_o O = + S(fe).
ii. Ifc=o0,then limy_ ., Q= oco.

Condition (45) covers the regular case ¢ = 0 in (52). Theorem 11 indicates that, for the non-
regular case ¢ > 0 in (52), under appropriate conditions, for large k, the variance of the
(standardized) optimally weighted quantile regression based estimator B\;\/QAE((D*) is smaller
than the Cramér-Rao bound. In particular, if ¢ = co, as the number of quantiles k increases,
the asymptotic variance approaches zero. In this sense, the estimator B\;VQAE(CU*) is
asymptotically super-efficient.

Corollary 3 below concerns a special case of super-efficiency when the density f; is positive
at the boundary.

Corollary 3 Denote the support of f; by Z, then limy_,, € = oo in any of the following
three cases: (i) Z = [Dq, Do] with f.(Dy) + f.(Dy) > 0; (ii) 2 = [Dy, oo) with f;(D1) > 0; or
(iii) 2 = (o0, Dy] with f¢(D,) > 0.

For the truncated version of the distributions in Section 6.2, we have limy_,, € = co. For
example, for the truncated normal on [-1, 1], Corollary 3 (i) applies. For uniform
distribution on [0, 1], we can show y = 2k + 2 — co.

Similar results can also be established for Ax. We omit the details.

7 Estimation of the Optimal Weight

To construct the proposed OWQAE B\;VQAE((D*) in Sections 3-5, we need to obtain
estimations of the optimal weight o* in (14) and 7* in (25). It suffices to estimate Q.(<t) and
f-(Q¢(t)). We can accomplish this through a two-step procedure: first, use a preliminary
estimator to obtain residuals; second, estimate Q.(t) and f;(Q¢(t)) based on the residuals.
Here we illustrate the idea using the models in Sections 3-5.

(Case 1: Parametric model in Section 3.) Since f; (Q; (t)) remains the same if we change
to ¢ + ¢ for any ¢, a in (6) can be absorbed into €. We propose the procedure:

i.  Use the uniform weight o = [1/k, ..., 1/k]" to obtain the preliminary estimator B,A
and compute the “residuals” (a combination of both o and €) as &; = Yy — m(X, B).

ii. To estimate f.(u), use the nonparametric density estimate

fe(U)Z(”b)_lzjle{(u — é)/b}, where, we follow Silverman (1986) to choose
the rule-of-thumb bandwidth b:

IQR(Z1,. .., 2,
b=0.9n"Y/%smin {sd(él, ), M} .

1.34

Here, “sd” and “IQR” are the sample standard deviation and sample interquartile.

iii. Estimate f¢(Qg(v)) by fSZQng)), where Qng) is the sample t-th quantile of s{, s B
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iv. Plug fSEQng)) into (14) to obtain the estimated optimal weight o*,

(Case 2: Location-scale model in Section 4.) To ensure identifiability, we assume without
k
loss of generality that ijl |Qe(7; )\:1, otherwise we can consider the reparametrized

model Y = XT B + (UT y*)e* with y* = cy, e* = &/c, and C:Zle\Qs(Tj)l. Note that this
assumption bears no effect on the optimal weight w* since f.(Q(t)) is invariant under the
transformation ce for any ¢ > 0. For each quantile © = 71, ..., T, we fit the quantile
regression (27) to obtain (B(r), y(r)). Define the preliminary estimator

-1
T k4
J

k k
B(rj)andi=»_|3(7j)|. (s3)
=1

j=1
Then (B,~ y)NconsistentIy estimates (B, v). We use the procedure to compute o* and 1*:
I Use pand v in (53) to compute the errors &=(Y; — XIB)/(UF5),t=1,...,n.To
k
better mimic the constraint ijl |Qe(Tj)\:1, consider the transformed errors

R &

|,t:1,...,n,

TS 0.

where Qefr) is the sample t-quantile of si, s Ene
ii. Use the same steps (ii)—(iii) in case 1 above to obtain estimates fSEQSEm)) and ngm).
iii. Use (14) to compute o* and use (25) to compute ™,

(Case 3: Nonparametric regression model in Section 5.) As in case 2 above, ®* is
invariant under the transformation ce, ¢ > 0. Assume without loss of generality that || has
median one. Then the conditional median of |Y — m(X)| given X is o(X), and we can apply
local median quantile regression to estimate o(-). We propose the procedure:

i.  Use (32) with the uniform weight to obtain the preliminary estimator m(?).

ii. Compute Y;—m (X;) and estimate o(-) by local linear median quantile regression:

A " X, —
(0(@), B)=argmin o [¥i — (Xp)| - o = (X, — )} K ( o I) s
a, t=1 ’

For the bandwidth ¢, following Yu and Jones (1998), we use ¢ = ¢, g(n/2)}/>, where
¢ g is the plug-in bandwidth [Ruppert, Sheather and Wand (1995)] for local linear
LS regression based on the data (X;, [Y; - m(X;))[9),i=1, ..., n.

iii. Compute the errors 8{ =[Yi- m(Xt)]/o(Xt) and obtain the estimator fSEQSZr)) asin
the parametric regression case 1 above.

V. Use (14) to obtain coi, co;and symmetrize them: &j=(&;+0r11-5)/2, =1, ...,
k.
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8 Monte Carlo Studies

We conduct Monte Carlo studies to investigate the sampling performance of the proposed
procedures in a variety of regression models. In all settings below, we use 1000 realizations
to evaluate the performance of various methods.

8.1 Linear models with homoscedastic errors

For linear models, we compare six estimation methods. OLS: ordinary LS estimator; LAD:
the median quantile estimator with t = 0.5 in (8); QAU, QAO, QAE: the WQAE in (11)
with the uniform weights, theoretical optimal weight o> in (14), and estimated optimal
weight o* (cf. Section 7), respectively; CQR: Zou and Yuan (2008)’s CQR estimator. For
QAU, QAO, QAE, and CQR, we use k = 9 quantiles 0.1, 0.2, ..., 0.9. With 1000
realizations, we use QAE as the benchmark to which the other five methods are compared
based on the empirical relative efficiency:

MSE(Method) 1 X 2

andMSE=——>"[3(j) — 8", (s5)

RE(Method)=—/er GAR) 1000

Jj=1

where “Method” stands for OLS, LAD, QAU, QAO, CQR, and BG) is the estimator of § in
the j-th realization. A value of RE > 1 indicates better performance of QAE.

We consider both independent data and time series data:

Modell:Y;=a+X; 8+, Xe~N(0,1), (o, 8)=(0,1), (56)

Model2:Y;=a+61Yi_1+82|Yi—2|+0.2¢, (o, 51, 82)=(0,0.3,0.5). (57

Model 2 is a variant of the threshold autoregressive model with a linear component Y_;. For
the innovation &;, we consider 12 distributions: Normal distribution N(0,1), Student-t
distribution with one (t;) and two (t,) degrees of freedom, the two normal mixture
distributions in Example 2, Laplace distribution, Beta distributions Beta(1,1), Beta(1,2),
Beta(1,3), and Gamma distributions Gamma(1), Gamma(2), Gamma(3).

The results are summarized in Table 2(a) for Model 1 with sample sizes n = 100, 300, and in
Table 2(b) for Model 2 with n = 300. For N(0,1), Student-t,, and Laplace distributions, QAE
and CQR are comparable; for all other distributions, QAE significantly outperforms CQR.
Also, QAE outperforms OLS for all non-normal distributions whereas they are comparable
for N(0,1). For n = 300, the superior performance of QAE is even more remarkable, which
agrees with our asymptotic theory. For almost all cases considered, QAE substantially
outperforms the LAD estimator and the relative efficiency can be as high as almost 2000%.
It is worth pointing out that, for Beta and Gamma distributions, the relative efficiencies are
much higher than the other distributions considered, owing to the super-efficiency
phenomenon in Section 6.5. We also note that QAE with estimated optimal weight has
comparable performance to QAO with theoretical optimal weight. We conclude that the
proposed OWQAE offers a more efficient alternative to existing methods.
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8.2 Nonlinear models with homoscedastic errors

We consider two nonlinear models (one independent data and the other time series data):

Model3:Y;=a+exp(8X:)+0.5¢, X;~N(0,1), (o, 8)=(0,0.6), (58)

Modeld:Yi=ar+ /05451 Y2 +52Y,% 5 +0.2¢¢, (@, 1, 52)=(0,0.3,0.5).  (59)

Model 4 is Engle (1982)’s ARCH model. Again, we consider the 12 distributions in Section
8.1 for & Table 3 summarizes the empirical relative efficiency [cf. (55)] of the proposed
OWQAE compared to the other methods OLS, LAD, QAU, and QAO (see Section 8.1). The
proposed OWQAE is significantly superior to the OLS, LAD and QAU, and comparable to
the QAO with theoretical optimal weight.

8.3 Location-scale models with conditional heteroscedasticity

Consider two location-scale models (one independent data and the other time series data):

Model5:Yi=8X+(yo+71|X¢|)er, Xe~N(0, 1), (8,70, 71)=(0.6,0.5,1.0), (60)

Model6:Y;=0Y;_1+(y0+m

Yi-1l)et, (8,70,71)=(0.4,0.5,0.5). (61)

Model 6 is the ARCH model in Koenker and Zhao (1996), and it is different from Engle’s
ARCH model where the conditional heteroscedasticity takes the form in (59). Due to the
conditional heteroscedasticity, it is slightly more difficult to estimate the parameters. We use
Model 5 to illustrate five estimation methods.

i. (LS method) If & has zero mean and unit variance, the Gaussian-likelihood based
estimation method is to minimize the loss function

" (Y —bXy)? ) }
—————+log[(ro+r1| X+ . (62
;_1{(?"0+7"1Xt|)2 gl(ro+r1|Xe))T o+ (62)

This is essentially an LS type estimation and the Gaussianity is not necessary for
the consistency. In general, if & has variance o2, then this LS method produces
consistent estimators of § and o(yg, y1)-

ii. (LAD method) First, apply (27) with T = 0.5 to obtain the LAD estimator BLAD of
B. Second, apply median quantile regression based on absolute residuals:

n

Zpo.s <|Yt - ﬁLADXt\ —To— 7’1|Xt‘> - (63)
=1

This LAD regression produces estimators of Q|¢/(0.5)(vo, Y1), Where Qj(0.5) is the
median quantile of |

iii. (OWQAE with theoretical optimal weights). As in Section 8.1, we denote this
method by QAO.
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iv. (OWQAE with estimated optimal weights). As in Section 8.1, we denote this

method by QAE. As discussed in Section 7, under the constraint Z \Qs Tj |*
QAE produces consistent estimators of (B, vo, y1). Without the Iatter constraint,

k
QAE produces consistent estimators of f and D _;_, 1@=(73)|(v0: 1),

v. (OWQAE based on the unweighted quantile regression (27)). This method works
the same as the OWQAE above and the only difference is to use B(m) and y(r) in
(27) to form the OWQAE. Denote this method by QAEU. Again, QAEU produces

k
estimators of B and ijl\Qe(Tj)K%, 71). We include this method to evaluate the
performance of the OWQAE based on the unweighted quantile regression (27).

As discussed above, the five estimation methods produce consistent estimators of § and (v,
v1) for some constant A depending on the distribution of &;. To make sensible comparison,
we divide the corresponding estimators by A to obtain consistent estimators of (vg, v1).
Furthermore, to ensure the consistency of the LS method, we consider the properly centered
gt for the 12 distributions in Section 8.1. That is, if & has finite mean, then we center it so
that [Ee;) = 0.

The results are summarized in Table 4(a) for Model 5 and in Table 4(b) for Model 6. In both
models, sample size n = 300. We make three observations. First, the OWQAE delivers much
superior overall performance than OLS and LAD. Second, in all cases considered, the
OWQAE using heteroscedasticity-weighted quantile regression (22) clearly outperforms the
OWQAE using unweighted quantile regression (27). Third, the OWQAE with estimated
weights is comparable to the QAO with theoretical optimal weights.

8.4 Nonparametric regression models

In our data analysis, we use the standard Gaussian kernel for K(-). We now address the
bandwidth selection issue. By (39), the optimal bandwidth h* is proportional to (s2)1/>.

Denote by A and hZWQ A the bandwidth for the least squares estimator and the proposed
OWQAE. Then Ag e an ="1s [S(w*)/var(e)]"/®, where S(e*) is defined in (13). In practice,

to select 7, we can use the plug-in bandwidth selector in Ruppert, Sheather and Wand
(1995), implemented using the command dpi | | in the R package Ker nSnoot h. We then

select hZWQ A DY plugging in estimates of S(w*) and var(e) using the two-step procedure in
Section 7, but for the purpose of comparison we shall use their true values in our simulation
studies. Similarly, we can choose the optimal bandwidths for the other two estimators. Kai,
Li and Zou (2010) adopted the same strategy. For the preliminary estimator m(") in step (i)

of Section 7, we use the plug-in bandwidth selector £ .

We compare the empirical performance of the four methods (LS, LAD, CQR, OWQAE) in
Section 5. With 1000 realizations, we use the least squares estimator m|s as the benchmark
to which the other three methods are compared based on the relative efficiency:
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MISE(7, &) 1000

A A 1 = A
RE(m):Wand MISE(m)—m;/&[mj(m) — m(I)}Qdfﬂ,

where mj is the estimator in the j-th realization, and [¢4, £5] is the interval over which m is
estimated. A value of RE > 1 indicates that m outperforms the LS estimator. To facilitate
computation, the integral is approximated using 20 grid points.

Consider n = 200 samples from the model
Model7:Y =sin(2X )4 2exp(—16 X ?)4-0.5¢, X ~ Unif[— 1.6, 1.6]. (64)

The same model was also used in Kai, Li and Zou (2010) with the normal design X ~ N(0,1).
Here we use the uniform design to avoid some computational issues. For €, we consider nine
symmetric distributions: N(0,1), truncated normal on [-1, 1], truncated Cauchy on [-10, 10],
truncated Cauchy on [-1, 1], Student-t with 3 (t3) degrees of freedom, Standard Laplace
distribution, uniform distribution on [-0.5, 0.5], and two normal mixture distributions:
0.5N(2,1)+0.5N(-2,1) and 0.95N(0,1)+0.05N(0,9). The first normal mixture can be used to
model a two-cluster population, whereas the second normal mixture can be viewed as a
noise contamination model. Let [¢4, ¢,] = [-1.5, 1.5].

The relative efficiencies of the four methods, with ms(x) as the benchmark, are summarized
in Table 5(a). Overall, OWQAE either significantly outperforms or is comparable to the
other three methods. For example, for N(0,1) and 0.95N(0,1)+0.05N(0,9), OWQAE is
comparable to LS; for other distributions, OWQAE has about 20% efficiency gain over LS
for most distributions and more than 60% efficiency gain for 0.5N(2,1)+0.5N(-2,1). When
compared with CQR, OWQAE outperforms CQR for all but the four distributions: N(0,1),
Student-t3, Laplace distribution, and 0.95N(0,1)+0.05N(0,9), for which they are comparable.
While OWQAE underperforms LAD for truncated Cauchy on [-10, 10], it has substantial
efficiency gains for N(0,1), truncated N(0,1) on [-1, 1], truncated Cauchy on [-1, 1],
uniform on [-0.5, 0.5], and 0.5N(2,1)+0.5 N(-2,1).

The empirical performance of the proposed method in Table 5(a) is not as impressive as its
theoretical performance in (40). For example, for truncated N(0,1) on [-1, 1], the theoretical
AREs according to (40) are 1, 0.48, 0.86, 0.93, 0.95, 1.13, 1.69, 2.17, compared to 1, 0.54,
0.93,0.98, 0.99, 1.14, 1.25, 1.26 in Table 5(a). To explain this phenomenon, the plot (not
included here) of the function m(x) = sin(2x) + 2 exp(-16x2) exhibits large curvature and
sharp changes on [-0.5, 0.5], and thus a large estimation bias could easily offset the
asymptotic efficiency improvements, especially for a moderate sample size. To appreciate
this, use the same X and ¢ in (64), and consider model

Model8:Y=1.8X+0.5¢. (65)

Then the bias term h2uxm”(x) = 0 vanishes and the variance plays a dominating role. For all
four estimation methods, we use the same bandwidth: the plug-in bandwidth selector for
local linear regression. We summarize the relative efficiencies in Table 5(b). The overall
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pattern of the empirical relative efficiencies is consistent with that of the theoretical ones in
(40), and the proposed OWQAE significantly outperforms other methods for almost all
distributions considered. Also, using more quantiles (k = 29) significantly improves the
performance of OWQAE for truncated N(0,1) on [-1, 1], truncated Cauchy on [-1, 1] and
uniform on [-0.5, 0.5]. The latter property is not shared by the CQR method.

In summary, for most non-normal distributions considered, the proposed method can have
substantial efficiency improvements over other methods, and the empirical performance is
consistent with our asymptotic theory.

9 An Empirical Application

To highlight the proposed approach, we consider a simple application of this method to the
widely studied cross-section of stock returns. The Capital Asset Pricing Model [CAPM, see
Sharpe (1964) and Black (1972)] has long served as the backbone of both theoretical and
empirical finance. It is generally agreed that investors demand a higher expected return for
investment in riskier securities. Over the past three decades a number of studies have
empirically examined the performance of the CAPM in the cross-section of returns, and it is
also well documented that the rate of return to holding common stocks is to some extend
predictable over time. A large number of papers have studied the appropriateness of CAPM
model in explaining how investors assess the risk and how they determine what risk
premium to demand, and several alternative models have also been proposed in the
literature. However, empirical evidence is ambiguous. The support for other asset-pricing
models is no better. In addition, the theory behind the CAPM has an intuitive appeal that
other models lack. For these (and other) reasons, in spite of the controversy in empirical
studies, the CAPM is still widely used in fiancial applications and still the preferred model
used in MBA and other managerial finance courses.

The focus of this section is not on the choice of alternative models. In this section, we
consider applications of the methods that we discussed in the previous sections on the
traditional widely used CAPM cross-sectional regression (similar to those of Fama-MacBeth
which can be used to study the predictability of returns). The cross-sectional regression
equation at time tis

R 1=Xo+A1Bimi—11€it, (66)

where g is the intercept term, A4 is the slope coefficient, and Biy t-1 is the conditional beta
of the excess return for asset i in month t. The dating convention indicates that the
conditional beta is formed using only information available at time t — 1. This regression
model provides a decomposition of each excess return over each period into two
components: the first component, A1Bim -1, represents the part of return of asset i that is
related to the cross-sectional structure of risk, as measured by the betas. The remaining
component of the return is uncorrelated to the measures of risk. Thus, the asset pricing
model implies that the predictability of returns should be related to the risk.

We consider a population of stocks traded on the New York Stock Exchange (NYSE) from
January 2009 to December 2010. We study monthly stock returns. These data are available
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from CRSP (the Center for Research in Security Prices) as well as many other data
resources. Following the literature of many empirical studies, the stocks are considered if
their returns in the current month and also the previous 60 month are available, and we
exclude firms with negative book-to-market equity (using information from Compustat).
The cross-sectional regression model (66) is usually estimated by the least squares method
in practice. On the other hand, cumulated empirical evidence in finance indicates that stock
returns are not normally distributed. In fact, it is well-known that the distributions of returns
are heavy-tailed. Therefore it is important to consider estimation procedures which have
good properties in the absence of Gaussianity.

We estimate the cross-sectional regression model (66) using four methods: the traditional
OLS regression, the LAD estimation, a simple equally-weighted quantile averaging
estimation (denoted by QAU), and the optimally weighted quantile averaging estimation
(denoted by OWQAE). We use k =9 quantiles 0.1, 0.2, ..., 0.9, for quantile combination.
For the purpose of comparison, we evaluate the performance of these estimators based on
their out-of-sample prediction. In particular, we estimate the cross-sectional regression
model (66) based on cross-sectional data at each month of 2009, and then use the estimated
coefficients )»6 and )\I to construct forecast of return at the corresponding month of 2010. We
compare both the mean squared prediction error (MSE) and the mean absolute deviation
(MAD) of the predictions. In particular, we calculate the mean squared prediction error and
the mean absolute prediction error by

MSE:Z (Ri,tJrl - éi,t+1)2a MAD:Z\Ri,tH — Rl

for each month, and then average these mean squared prediction errors and mean absolute
prediction errors respectively over all months. Table Al below sumarizes the results.

Model (66) is the basic regression model that characterizes the risk premiums. We next
consider an extension of model (66) which adds conditional heteroscedastic effect of
capitalization (the “size” effect). We consider an analogue of (20),

R 1=Xo+A1Bim,t—11+0i1€its  (67)

where o+ = yCap;j s and Cap;  is the market capitalization. Again, we estimate the cross-
sectional regression model (67) using the four estimation methods mentioned before. More
specifically, the two-stage Weighted Least Squares (WLS), the two-stage Weighted Least
Absolute Deviation (WLAD), the QAU and OWQAE based on quantiles 0.1, 0.2, ..., 0.9.
Table A2 below reports the mean squared prediction errors (MSE) and the mean absolute
prediction errors (MAD) that are calculated in a similar way as Table Al.

The empirical results from Tables A1-A2 indicate that least squares method-based
estimation is less efficient than other methods. In particular, the proposed OWQAE
estimator performs relatively better than other methods.
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10 Further Discussions

We propose a general method of combining quantile regression information to improve
efficiency of regression estimators. The proposed method is simple and more efficient
regression estimators can be constructed based on a relatively small number of quantiles.

The proposed method has a wide range of applicability and can be potentially applied to
many other models. We briefly discuss a few directions of interesting applications of our
approach, without giving full details.

The first direction is efficient estimation for the varying-coefficient model:
Y=a(U)+X"3(U)+s, (68)

where a(:) is the functional intercept and B(-) is the p-dimensional column vector of
functional coefficients. Then the conditional t-th quantile of Y given (X, U) is

Q, (7|X, U)=a, (U)+ X 3(U)witha, (U)=a(U)+Q.(7).

A useful application is the varying-coefficient longitudinal model when we have
longitudinal measurements from multiple subjects. Wang, Zhu and Zhou (2009) studied
quantile regression for a partially linear varying-coefficient longitudinal model. In their
work, the coefficients depend on the quantile, and they estimated the coefficients for each
quantile without combining information across quantiles. We will explore further in a future

paper.

A second direction is volatility estimation in time series. In financial econometrics, volatility
plays an important role in asset pricing and risk management. Here we briefly discuss
volatility estimation for both parametric and nonparametric ARCH models.

(Nonparametric volatility) Consider nonparametric ARCH(1): X; = o(X¢-1)&t. Let Qg2(t) be
the t-th quantile of <2, and ngm_l (7) the conditional t-th quantile of x?2 given Xi1. Then

Qo (N=@Q2(M ang Uy, . (/R (D=0 @* O or all .
Given estimates ngp(H:m (7) of ngmfl:m (T), we can construct efficient estimators of
02(x)/02(0) by combining ng‘xt_lzz (Tj)/QAXf\Xt_]:o () j=1,..k

(Parametric volatility) Consider parametric ARCH(p) model:

Xy=0y5ando; =Po+1 X7 1+ +Bp X7, 50>0,B1,..., 8, > 0.

Let %1 be the information up to time t — 1. Denote by Q:2(t) the t-th quantile of 2, and by

thz‘yH (7) the conditional t-th quantile of X? given %-1. Then
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p
Qaps (T):ﬁO(T)JrZﬁj(T)Xf_jandﬁj(T):ﬁngz (7),5=0,...,p.
i1t—1 =

Therefore, we can apply quantile regression with quantile ¢ to obtain consistent estimates
Bj(v) of Bj(x). Note that Bj(t)/Bo(t) = Bj/Bo for all v. Therefore,

éo (7)"‘2?:1/3]' (T)XtQ—j ~ Bo +Z§:1 ﬁthQ—j
30(7') Bo

=a?/Bo, for allr € (0,1).

We can construct efficient estimators of +7 / 5, by combining quantiles Ty, ..., .

Similar ideas also apply to generalized ARCH models. Since substantial work is needed
here, we will explore further in a separate project.

Proofs

Proof of Theorem 1. By the ergodicity in Assumption 1(ii) and (5),

DI'D,

n

1 E[riv(X, 5)"]
E[m(X,5)] Elm(X,B)ri(X,5)"]

] :=X,in probability. (69)

Recall the definition of g in Theorem 1. Then we can easily verified that

14+E[(X, B)T|S5 EBlm(X, 8)]  —E[n(X,8)]55"

ri= .
~55'E[(X, §)] 55! } 0

By Assumption 3 and (69)—(70),

. S5 40,(1) &
ﬁ(7)=ﬁ+%;{m(&,ﬁ)—E[m(X’ﬁ)]}[T—IEKQS(T)HOp(n1/2)- <71)
Therefore,

—1 o n
| Xt p(l)Z{m(Xt,ﬂ)—E[M(X,ﬂ)]}dt‘f‘op(l)a (72)

k
il wiB(ry) = B =——=—
P2 | &

where

S L B S
dt_Zf(Qs(Tj))[TJ L ca.opl @3
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By the Cramér-Wold device, it suffices to consider the case that m(Xs, B) is scalar-valued.
Let % be the o-algebra generated by {Xt+1, Xt, ---; €, €t-1, --. }- By property (P1) in Section
2, {{m(X;, B) — Erm(X, B)]}di}tez form martingale differences with respect to {Z}iez.

Using cov{t = 1¢<Qq(1): ¥ ~ Let=Qe(v)} = Min(x, v) — v, we have E(d7)=S(w) with S(w)
defined in (13). Since &; is independent of %-_1, by (5),

5B | ({rn (X1, 5) — Eln(X, ﬁ)]}dtf\%,l} :@Z{mxt,m—mmx, B — TaS(w). (a)

Since k is fixed, by Assumption 2, d; is bounded. Thus, the assumption (X, B) € %2
ensures the Lindeberg condition. The result then follows from the martingale CLT.

Proof of Theorem 2. The optimal weight follows from the Lagrange multiplier method. The

asymptotic normality follows from Theorem 1 and S(wsx)=1/(ef H 1e;).

Proof of Theorem 3. Recall d; in (72)—(73). Since k is fixed, by Slutsky’s theorem, it is easy

to see that Z:L:l{m(Xt, f) — Blr(X, B)]}d; has the same asymptotic distribution if we
replace wj therein by any oj such that wj = wj + 0p(1). Thus, the result follows.

Proof of Theorem 4. Define the vectors

J— Xt — b T)= /6 A'r: =\/n|v—0(T
x,t_[UJ,a_M,eu [W],e() [ 6= a6 —6()].

(7)
(1)

Then

Y, — X{b— Ul r=Uy]er — Q=(7)] = V] 6/ V/n.

Since 6(1) minimizes the criterion function in (22), the reparametrized parameter

d=1/n[6(7) — 6(7)] minimizes the loss function
"1
L&)=Y g |- (Ve = Q0] = Vo) v} = pr {UT e = Qe
t=1
Suppose we can establish the quadratic approximation

L(8)=L"(6)+0,(1), (75)

where

. 12 VIS f(Q-(7)) VovL
L*(&)=— TEZ[T - 15t<QS(T)} UttT'y+ 5 5TE (UT;)2 5. (76)
0
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Then the convexity lemma in Pollard (1991) gives §=8n* + 0p(1), where

VoVl

-1
1 &KV
— St -1 :
(UOW]} VROt

=1

o |
) :arg(rgnlnL (5)_f5(Q€(T)) {E

The desired result then follows by using block matrix inverse of {]E[VOVOT/(U(SW)Q}}_1

It remains to prove (75). In view of L(6), define

LO=3 g7 o= {UF Ao = Qo(m)]) = ViTo/ v} — pr {UT 3l — Q(7)]}]

It suffices to prove L(S) =L*(5) + op(2) and L(3) = L(S) +0p(1).

First, we prove L(S) =L*(8) + op(1). Using p; (cz) = cp; (2) for ¢ > 0, we can rewrite

. i Vs
L(5):Z [Pr {Et —Qe(7) — W} — priet — Qe(T)}} .

Applying Knight (1998)’s identity
prlu =) = pr(w)= = v(r = Luco)t | (Lusa = Luco)ds, @7

We can obtain

T n n

- 1 & VAo
L(6)=— %;[T - 1st<QE<7)]ﬁ‘FZE(&\%leZ[& —E(&|9%-1)], (9

t=1 t=1

where %; is the o-algebra generated by {(Xt+1,Ut+1), Xt,Uy), -..; &, €t-1, --- }, and

vls
§t= ad H
J o

1 <Qe(r)s lsthw)]dS'

By Assumption 5, &; is independent of %;_1. Thus,

vIs

E(&|% 1)= /” [F(s+Qe(r)) — Fx(Qe(r)))ds. (T

By Assumption 6(i), there exists some constant ¢ such that

<c (80)
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Thus, from (79) and Taylor’s expansion F.(s + Qg(t)) — F¢(Q¢(7)) = sf-(Q:(1)) + 0(s),

- fs(Qe( )) A% Je(Qe(7)) VoV . -
;E(fﬂgp 1)= T[ ;W d+o(l) — 5 oTE (UOT'yO)2] d,in probability, (1)

where the convergence follows from the ergodicity and (5). Since {&; — [E&{%-1) }tez are
martingale differences with respect to {%;-1}icz, by their orthogonality,

n 2 n
B ({Z[it - E(€t|%f1)]} ) =Y "E{[& — E(&[%-1)]"} <E[(Vn&)’] @)
t=1 t=1

From (80), we have | vnéo| < cl_ . . which combined with (82) gives

thl[& — E(&|%-1)]=0p(1). Thus, by (78) and (81), we have L(5) = L*(8) + 0p(1).

Next, we prove the approximation L(8) = L(S) +0p(1). Let

n=pr {UtT'V[Et - Q:(T)] - V"s/ \/ﬁ} — pr {UtTv[Et - QE(T)]} ~

Then it is easy to see that

2
U ~
Znt t PY) - N1+N2~ (83)

U,
— L(5) Z
=1 UtT’Y) =1 UtT’Y)UT’NY

By the same argument leading to the quadratic approximation L(S) = L*(8)+0p(1) above, we

can show that each element ofi::zlmUtT/(UtTV)2 has a quadratic approximation of the
order Op(1). Thus, N1 = Op(lly = vll) = op(1). For Ny, by Assumption 6(i)—(ii),

UL~ — Ul 3=0,(n™*) and || < [ViT6|/ v/n=0(n""/?), which give N = op(1). Thus, we
conclude that L(8) = L(8) + op(1), completing the proof.

Proof of Theorem 5. The asymptotic normally follows from the Bahadur representation in
Theorem 4 and the same martingale CLT argument in Theorem 1. The optimal weight
follows from the Lagrange multiplier method.

Proof of Theorem 6. Write K; = K{(X; — x)/h}. For 11D data, Kai, Li and Zou (2010) have
shown the following asymptotic representation:

A 1, 5 o(z 1 & 1
Qy (T|93)—QY(T|$)=§W (z)pych +]W()QE(T))%;[T—1H<QE<T>]KW% (ﬁ) :

Examining their argument and using properties (P1) and (P2) in Section 2, we see that the
asymptotic representation also holds under Assumption 1. Therefore, by (30),
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o 1, 2 o(z) - < 1 )
= - h+—————) d; K, —
m\’VQAE(‘T|w) m(l‘)—|—2m (m)/‘I’K +nhpx( )Z t18t+0p m s

t=1
where d; is defined in (73). The desired asymptotic normality then follows from the same
martingale CLT argument in Theorem 1.

It is easy to see that, under the symmetric density assumption, the optimal weight o* in (14)
automatically satisfies the symmetric weight constraint in (29).

Proof of Theorem 7. This follows from the same argument of Theorem 3.
Proof of Theorem 8. Recall 7j = j/(k + 1). Define k x k matrices T" and P:

I'=[min(7j, 7j:) — 7;7;] 1<) i<k P=diag{f-(Q=(11)), -+, f(Q=(Tk))- (84)

Here “diag” stands for the diagonal matrix. By direct matrix multiplications, we can verify

2 -1 0 0o ...
’V 1 2 -1 0 -I
I '=(k+1) , (89)
... 0 -1 2 -1
Lo o ... -1 2|

with 2(k + 1) on the diagonal, —(k + 1) on the super-/sub-diagonals, and 0 elsewhere.

i. Recall g(t) = f.(Q(v)) and A = 1/(k + 1). By H = P~1rP~1 and (85),

k
Qk=efPF‘1Pek=(k+1){92(71)+92<Tk)+2[9(77)—9(77-—1)]2}=(k+1) [9 (11)+9°(7, +” +/1 - ()%dt, (s
j=2
where
k 1-A
Wi=(b+D)lo(m) ~ a(r-))” = [ [0 e

We can rewrite Wy as

2 -
<k+1)2{[/ ] dt} ~=me) [ g }: iy

[g (t)— s)] dtds.

j—1

Fort, s € [1j-1, ], we have |9/ (t) — ¢'(s)|=/5g" (v)dv| < [7_1|g" (v)|dv,
uniformly. Thus, by the Cauchy-Schwarz inequality,
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2

g'@ldo| <af" o) .

max () — g/ ()" < [/

t,s€[Tj—1,75] Tio1

Applying the above inequality, we can obtain

k‘—'—l k 2 / / 2 A2 1= " 2
Wl < _E ’ — max t) — < — t)|"dt.
| k‘ =y : Z(TJ J 1) tyse[Tjith]‘g() g (5)| =7 |9 ()‘

The result then follows from (86) and the identity [[¢'(r)]*dr=.7(f.) in (41).

ii. Using H=P~1TP~1 we can write A= q" H™1q = (Pq)'T"1(Pq). Note that Pq =
[h(zy), ..., h(m)]T with h(t) = Q.(t)f.(Q.(t)). Using (85) and the argument in (i)
above, we can easily obtain the desired result.

Proof of Proposition 1. Let u = Q.(t) so that © = F.(u). Since f, has support R, u — —co as
Tt — 0. Recall g(t) = f.(Q,(t)). By the chain rule, we can show g”(t) = [02 log f(u)/
du?]/f.(u). Then one can easily show that (46) is equivalent to

lim

T—0

2 T 2 — :
{Mmg"vwg"(l - mff/?} =0. @

For example, lim,_,o g(v)/v = 0 if and only if lim,,_, o f2(u)/F.(u)=0, and lim;_,o g(1 -
/t=0ifand only if lim,_ . f2(u)/[1 — F.(u)]=0. It remains to show (87) implies (45).

Let & > 0 be any given number. By (87), there exists 0<r;"<1,/2 such that|9" (t)| < Vet 32
and 9" (1 — )< Vet gorall ¢ ¢ (0, 7). Fix 7. By Assumption 2, there exists ¢ < oo

such that |g”(t)| < ¢ for 7 € [, 1 — 72} Let #*=min{r}, vE[c(1 — 270)] Y2}
1—7 X d—7F 1—1
Then 7*2¢(1 — 27 ) <e. For © < v, applying [5T=)T "t LTS' we have

1—7 9 0 . 1-75 o : € €
o B B I ) e P e

*
T TO T

completing the proof.
Proof of Theorem 10. (i) For S(») in (13), Rk = S((1/K, ..., 1/k)T). By the uniqueness of the

minimizer o* of S(w) [see (14)], R, > Q; ' with equality if and only if o* = (1/k, ..., 1/k)T.

Let g(v) = f-(Q¢(v)), and for convenience write g(tg) = g(tk+1) = 0. For w*=(wj,...,wi)’ in
(14), by H™1 = Pr~1P and (85), we can show
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i FAD[29(75) = 9(7j-1) — 9(7j1)]9(7;)
J Qp ’

(88)

where Q is defined in (15). Note that, for j = | (k + 1)t with T € (0, 1), limy_ o (k +

1)2[Zg(rj) - 9(7j-1) — 9(vj+0)19() = -9”(v)g(v). Thus, as k — oo, wj=1/k for all j implies g’
(v)g(t) = —¢, © € (0, 1), for some ¢ > 0. Define the transformation u = Q.(t). By the chain

rule, we can show that g”(t)g(v) = —c is equivalent to [ £ (u) f.(u) — f.(u)?]/f2(u)= — coOr
{log f.(u)}’ = —c. Thus, f;(u) must be a normal density.

(ii) See the proof in Kai, Li and Zou (2010).

Proof of Corollary 2. As in the proof of Theorem 1, we use martingale CLT and consider
scalar-valued m (X4, ). Similar to d; in (73), with the optimal weight o*, define

Zfs(Qe(Tj)) B 15t<Q5(7‘j)]'

By Theorem 9, S(w*) = 1/Q,, — 1LA(f;). Thus, the convergence of the conditional variances
follows from the argument in (74). It remains to verify the Lindeberg condition.

By Assumption 2, g(t) = f(Q()) is bounded on t < (0, 1). Thus, from (88),

fep+-1 8

|di| <

(15) — 9(1j-1) — g(1j41)| < 1k,

mog=1

for some constant cq. For any given ¢, > 0,

n

. . %\ 2 274 . . 2
nZE [({m(Xt"B) —E[m(X, ﬂ)]}dt) 1Hr'n(Xz,B%E[r'n(X,ﬂ)])df\Zcfz x/ﬁ} < clk”E ({m(Xt’ﬁ) —]E[m(X,,B)]} 1\r,n(x,ﬂ>7z[m<x,ﬁ)]\ECQﬁ/(ul

t=1

Note that, for any random variable U €l 44, q > 2, and constant ¢ > 0,

> vl E(lUTT)
E<U 1\U\>() = E (cq_gl\U\zc < CQT (90)

Applying (90) to (89) and using k, = O[(log n)¢], we have the Lindeberg condition.

Proof of Theorem 11. (i) It follows from (86) and the proof of Theorem 8. (ii) From
lim:—0[g%(v) + 9%(1 - ©)/t = 0o and (86), 1/S(w*) 2 (k + 1)[g%(v1) + 9%(w)] — oo
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Zhao and Xiao

Table A1

OLS LAD QAU OWQAE

MAD 51.39 46.94 4835 44.78

MSE 1050 889 945 7.95

Numbers in this table are multiplied by 500 for convenience.
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Table A2

WLS WLAD QAU OWOQAE

MAD 51.01 46.80 48.30 44.09

MSE  10.40 8.86 9.41 7.90

Numbers in this table are multiplied by 500 for convenience.
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