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Abstract

We develop a generally applicable framework for constructing efficient estimators of regression 

models via quantile regressions. The proposed method is based on optimally combining 

information over multiple quantiles and can be applied to a broad range of parametric and 

nonparametric settings. When combining information over a fixed number of quantiles, we derive 

an upper bound on the distance between the efficiency of the proposed estimator and the Fisher 

information. As the number of quantiles increases, this upper bound decreases and the asymptotic 

variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate 

conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-

efficient estimation. We illustrate the proposed method for several widely used regression models. 

Both asymptotic theory and Monte Carlo experiments show the superior performance over 

existing methods.
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1 Introduction

For regression estimations, the most widely used approach is the least squares (LS) method 

(for finite-dimensional models) or local LS method (in infinite-dimensional settings). If the 

data is normally distributed, the LS estimator has the likelihood interpretation and is the 

most efficient estimator. In the absence of Gaussianity, the LS estimation is usually less 

efficient than methods that exploit the distributional information, although may still be 

consistent under appropriate regularity conditions. Without these regularity conditions, the 

LS estimator may not even be consistent, for example, when the data have a heavy-tailed 
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distribution such as the Cauchy distribution. Monte Carlo evidence indicates that the LS 

estimator can be quite sensitive to certain outliers. In empirical analysis, many applications 

(such as finance and economics) involve data with heavy-tailed or skewed distributions, and 

the LS estimators may have poor performance in these cases. It is therefore important to 

develop robust and efficient estimation procedures for general innovation distributions.

If the underlying distribution were known, the Maximum Likelihood Estimator (MLE) could 

be constructed. Under regularity conditions, the MLE is asymptotic normal and 

asymptotically efficient in the sense that the limiting covariance matrix attains the Cramér-

Rao lower bound. In practice, the true density function is generally unknown and so the 

MLE is not feasible. Nevertheless, the MLE and the Craḿer-Rao bound serve as a standard 

against which we should measure our estimator.

For this reason, statisticians have devoted a great deal of research effort to the construction 

of estimation procedures that can extract distributional information from the data, and thus 

deliver more efficient estimators than the conventional LS method. For the location model Y 

= α + ε, where ε has a symmetric density, the adaptive likelihood or score function based 

estimators of α were constructed in Beran (1974) and Stone (1975). Bickel (1982) further 

extended the idea to slope estimation of classical linear models. For nonlinear models, 

adaptive likelihood based estimations are usually technically challenging.

We believe that the quantile regression technique [Koenker and Bassett (1978); Koenker 

(2005)] can provide a useful method in efficient statistical estimation. Intuitively, an 

estimation method that exploits the distributional information can potentially provide more 

efficient estimators. Since quantile regression provides a way of estimating the whole 

conditional distribution, appropriately using quantile regressions may improve estimation 

efficiency. Under regularity assumptions, the least-absolute-deviation (LAD) regression (i.e. 

quantile regression at median) can provide better estimators than the LS regression in the 

presence of heavy-tailed distributions. In addition, for certain distributions, a quantile 

regression at a non-median quantile may deliver a more efficient estimator than the LAD 

method. More importantly, additional efficiency gain can be achieved by combining 

information over multiple quantiles.

Although combining quantile regression over multiple quantiles can potentially improve 

estimation efficiency, this is often much easier to say than it is to do in a satisfactory way. 

To combine information from quantile regression, one may consider combining information 

over different quantiles via the criterion or loss function. For example, Zou and Yuan (2008) 

and Bradic, Fan and Wang (2011) proposed the composite quantile regression (CQR) for 

parameter estimation and variable selection in the classical linear regression models. For 

nonparametric regression models, Kai, Li and Zou (2010) proposed a local CQR estimation 

procedure, which is asymptotically equivalent to the local LS estimator as the number of 

quantiles increases. Alternatively, one may combine information based on estimators at 

different quantiles. Along this direction, Portnoy and Koenker (1989) studied asymptotically 

efficient estimation for the simple linear regression model. Although the proposed estimator 

is efficient asymptotically, it is not the best estimator with fixed quantiles. Also see 
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Chamberlain (1994), Xiao and Koenker (2009), and Chen, Linton and Jacho-Chavez (2011) 

for related work on combination of estimators.

In this paper we consider regression estimation by combining information across k quantiles 

τj = j/(k + 1), j = 1, …, k. We show that for a wide range of parametric and nonparametric 

regression models, more efficient estimators can be constructed via optimally combining 

quantile regressions. We argue that it is essential to combine quantile information 

appropriately to achieve efficiency gain. In particular, simple averaging multiple quantile 

regression estimators is asymptotically equivalent to the LS method. We show that, by 

optimally combining information across quantiles τ1, …, τk, the efficiency of the proposed 

optimal weighted quantile average estimator is at most Φk away from the Fisher information, 

where Φk is defined as (43). As the number of quantiles k → ∞, under appropriate regularity 

conditions, we have Φk → 0 and the estimator is asymptotically efficient. Interestingly, in 

the case of non-regular statistical estimation when these regularity conditions do not hold, 

the proposed estimators may lead to super-efficient estimation.

The proposed methodology provides a generally applicable framework for constructing 

more efficient estimators under a broad variety of settings. For finite-dimensional parametric 

estimations, the method can be applied to construct efficient estimators for parameters in 

both linear and nonlinear regression models with homoscedastic errors, and parameters in 

location-scale models with conditional heteroscedasticity. We show that, in the presence of 

conditional heteroscedasticity, some appropriate preliminary quantile regression is needed to 

improve the efficiency and to facilitate the quantile combination. Different restrictions (and 

thus optimal weights) are needed for estimation of the location parameters and scalar 

parameters. For nonparametric function estimations, the asymptotic bias of the proposed 

estimator is the same as that of the conventional nonparametric estimators (such as the local 

LS and the local LAD estimators) and meanwhile the inverse of the asymptotic variance is at 

most Φk away from the optimal Fisher information. Our extensive simulation studies show 

that the proposed method significantly outperforms the widely used LS, LAD, and the CQR 

method [Zou and Yuan (2008); Kai, Li and Zou (2010)] for both parametric and 

nonparametric models.

The rest of this paper is organized as follows: we provide a general discussion on the 

framework and assumptions for constructing efficient estimators based on quantile 

regressions in Section 2. Three leading cases of regressions are then investigated in Sections 

3–5. In particular, we study the parametric regression models with homoscedasticity in 

Section 3. In Section 4, we study the parametric models with heteroscedasticity. 

Nonparametric models are investigated in Section 5. We focus on methodology and our 

discussions in Sections 3–5 consider the case with finite k. The case with k increasing to 

infinity is discussed in Section 6. Simulation studies are contained in Section 8, and an 

application to financial data is given in Section 9 to highlight the proposed method. Proofs 

are given in the Appendix.

2 Model Setup, Assumptions, and TheWeighted Quantile Average Estimator

We consider regression models of the following form:
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(1)

where (X, Y, ε) is the triplet of covariate, response, and noise, with ε independent of X. Here 

m(·) and σ(·) are two functions that depend on unknown parameters θ, where θ may be of 

finite dimension (parametric case) or infinite dimension (nonparametric case).

Denote by Qε(τ) the τ-th quantile of ε for τ ∈ (0, 1). Then the τ-th conditional quantile of Y 

given X, denoted by QY (τ|X), is given by

(2)

As the inverse of the conditional distribution function, QY (τ|X) fully captures the 

distributional relationship between Y and X. Intuitively, different distributional information 

may be obtained from different quantiles, and an appropriate combination of multiple 

quantiles may be more informative about the distribution than the conditional mean in the 

LS methods.

Throughout this paper we consider combining information over k equally spaced quantiles τj 

= j/(k + 1), j = 1, …, k. The discussion of this paper focuses on the case where k is assumed 

to be a given finite number. We consider the case that k → ∞ increases with n in Section 

6.3.

We briefly introduce the idea of our proposed estimator. Let θ be a parameter of interest. 

From the conditional quantile in (2), we can usually identify some perturbed version of θ, 

denoted by θ(τ). Suppose there exists a class  of weights such that

(3)

Given data on (X, Y), we can use a quantile regression based on (2) to obtain some consistent 

estimate, denoted by θ̂(τ), of θ(τ). In light of (3), we propose the following estimate of θ:

(4)

We term θŴQAE(ω) by the weighted quantile average estimator (WQAE) of θ. Since 

θ̂WQAE(ω) is a consistent estimate of θ for each ω ∈ , we propose in this paper estimation 

of θ based on ω ∈  that minimizes the limiting variance of θ̂WQAE(ω) in parametric 

settings, or the asymptotic mean squared error in nonparametric settings. If ω is chosen in 

such a way, we call the corresponding estimator θ̂WQAE(ω*) the optimal WQAE (OWQAE).

The proposed estimation can be applied to a wide range of regression models. In this paper, 

we focus on the following three leading cases of regression (1):

Case 1: Parametric regression models with homoscedastic errors.

Case 2: Location-scale models with conditional heteroscedasticity in σ(·).
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Case 3: Nonparametric regressions.

We study each of these cases in the following three sections 3–5.

Suppose we have samples  from (1) with corresponding noises . To 

facilitate the study of asymptotic theory, we impose the following assumptions.

Assumption 1 (i) {(Xt, εt)}t∈ℤ is strictly stationary; for each t, εt is independent of {Xt, Xt−1, 

…; εt−1, εt−2, …}. (ii) {Xt}t∈ℤ is an ergodic process.

Assumption 2 Denote by fε(·) and Fε(·) the density and distribution functions of ε. fε is 

positive, twice differentiable, and bounded on {u : 0 < Fε(u) < 1}.

Assumption 1 provides a convenient framework for studying asymptotic theory. First, strong 

mixing condition implies the ergodicity, and thus Assumption 1(ii) is weaker than the 

widely used strong mixing conditions in time series analysis. Next, we illustrate two useful 

properties below.

(P1) Martingale structure. Let ℱt be the σ-algebra generated by {Xt+1, Xt, …; εt, εt−1, 

…}. By Assumption 1(i), εt is independent of ℱt−1. For any functions h1(·) and 

h2(·) such that [|h1(Xt)h2(εt)|] < ∞ and h2(εt)] = 0, we have h1(Xt)h2(εt)|

ℱt−1] = h1(Xt) h2(εt)] = 0. Therefore, {h1(Xt)h2(εt)}t∈ℤ are martingale 

differences with respect to the filtration {ℱt}t∈ℤ, and consequently 

 is a martingale.

(P2) Law of large numbers. By ergodic theorem [Theorem 3.5.7, Stout (1974)], for 

any function ℓ(·) such that |ℓ(Xt)|] < ∞, the ergodicity in Assumption 1(ii) 

implies

(5)

In subsequent sections we adopt the following notation. For a random vector Z, we use ‖Z‖ 

to signify the Euclidean norm of Z, and write Z ∈ ℒq, q > 0, if ‖Z‖q) < ∞.

3 Homoscadastic Parametric Regression Models

In this section we study the parametric regression model (case 1 in Section 2). 

Corresponding to the general representation (1), let σ(X) ≡ 1 and m(X) = α + m(X, β), where 

β ∈ ℝp is the vector of unknown parameters, and the intercept α is added to ensure the 

identifiability of β, we have

(6)

We are interested in the estimation of β.

By (2), we have the conditional quantile representation
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(7)

Given samples  from (6), let (α̂(τ), β̂(τ)) be an estimator of (α(τ), β) from a 

quantile regression based on (7):

(8)

where ρτ(z) = z(τ − 1z≤0) and 1 is the indicator function. Denote by ṁ(x, β) is the partial 

derivative vector of m(x, β) with respect to β. Define

Similar to the linear regression, Dn serves as the design matrix and Zt is the equivalent 

covariate corresponding to observation t for the quantile regression (8). A leading example 

is the classical linear regression model [see, e.g., Koenker (1984)], corresponding to m(X, β) 

= XT β. In this case, QY(τ|X) = [α + Qε(τ)] + XT β and ṁ(X, β) = X.

Assumption 3 The quantile regression estimator has the Bahadur representation

(9)

uniformly in τ ∈  ≔ [δ, 1 − δ] with some small constant δ > 0.

Assumption 3 is an asymptotic representation of the quantile regression estimator. Under 

regularity conditions on the regression function m(·), error density, and the parameter space, 

a Bahadur representation can be obtained over τ on a subset of [0,1]. See, e.g., Portnoy and 

Koenker (1989), Jurečková and Procházka (1994), and He and Shao (1996) for related 

study. Also see Section 4 for discussions on the conditional heteroscedastic parametric 

models.

Since β does not depend on τ, we can use β̂(τ) to estimate β with any choice of τ. By 

Theorem 1 below (also, see the definition of Σβ there),

(10)

For example, the case with τ = 0.5 corresponds to the median quantile regression or LAD 

estimation of β.

As discussed in Section 2, we want to combine information over the k quantiles τj = j/(k + 

1), j = 1, …, k, where k is assumed to be a given finite number such that τj ∈ . Since β̂(τ) 

is a consistent estimate of β, from (3)–(4), we consider the WQAE of β:
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(11)

Theorem 1 Suppose Assumptions 1–3 hold and ṁ (X, β) ∈ ℒ2 with . Then

(12)

with Σβ = ṁ(X, β)ṁ(X, β)T] − ṁ(X, β)] [ṁ(X, β)T] assumed to be non-singular, and

(13)

The proposed estimator, the OWQAE, of β is obtained by choosing ω to minimize the 

asymptotic variance of β̂
WQAE(ω).

Theorem 2 Under the assumptions of Theorem 1, the optimal weight is

(14)

With ω* in (14), the OWQAE of β has the following limiting distribution:

(15)

Remark 1: A quick way of combining quantile information is to take a simple average of the 

quantile regression estimators. This is easy to implement and has been used in the literature 

[see, e.g., Kai, Li and Zou (2010) for nonparametric estimation] as a method of combining 

quantile information. If we use ω = [1/k, …, 1/k]T in (11), the resulting unweighted estimator 

has the asymptotic normality in Theorem 1 with S(ω) replaced by

(16)

Clearly, Rk ≥ S(ω*). See Section 6.2 for more discussions on the property of Rk.

We compute ω* for some examples below using k = 9 quantiles 0.1, 0.2, …, 0.9.

Example 1. Let ε be Student-t distributed. For t1 (Cauchy distribution), the optimal weight 

ω* = {−0.03,−0.04,0.08,0.29,0.40,0.29,0.08,−0.04,−0.03}, quantiles τ = 0.4, 0.5, 0.6 

contribute almost all information whereas quantiles τ = 0.1, 0.2, 0.8, 0.9 have negative 

weights, so the unweighted quantile average estimator would not perform well. However, 

for N(0,1), ω* = {0.13,0.11,0.11,0.10,0.10,0.10,0.11,0.11,0.13} are close to the uniform 
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weights, and thus the OWQAE, the unweighted quantile average estimator, and the LS 

estimator have comparable performance.

Example 2. Let ε have normal mixture distributions. For Mixture 1: 0.5N(0,1)+0.5N(0,0.56) 

(different variances), ω* = {−0.002,−0.102,0.183,0.277,0.287,0.277,0.183,−0.102,−0.002}, 

quantiles 0.3, …, 0.7 contain substantial information whereas quantiles 0.2 and 0.8 have 

negative weight. For Mixture 2: 0.5N(−2,1)+0.5N(2,1) (different means), ω* = 

{0.185,0.156,0.153,0.078,−0.144,0.078,0.153,0.156,0.185}, quantiles τ = 0.1, 0.2, 0.3, 0.7, 

0.8, 0.9 are comparable while the median performs the worst.

Example 3. Let ε be Gamma random variable with parameter d > 0. For d = 1 (exponential 

distribution), , and  for i = 3, …, 9. Quantiles 0.1 and 0.2 

contain almost all information.

As shown in Examples 1–3 above, different quantiles may carry substantially different 

amount of information, and inappropriately utilizing such information may result in a 

significant loss of efficiency. The latter phenomenon provides strong evidence in favor of 

our proposed optimally weighted quantile based estimators.

In practice, the optimal weight ω* in (14), which depends on the sparsity or quantile-density 

function fε(Qε(τ)), needs to be estimated. We make the following assumption on the 

estimate, denoted by b f̂ε(Qε̂(τ)), of fε(Qε(τ)).

Assumption 4 supτ∈  |fε̂(Q̂
ε(τ)) − fε(Qε(τ))| = op(1) for  in Assumption 3.

Plugging the consistent estimate f̂ε(Q̂
ε(τ)) of fε(Qε(τ)) into the matrix H in (14), we can 

obtain the following consistent estimate of the optimal weight ω*:

(17)

Theorem 3 below asserts that, β̂
WQAE(ω̂*) with the estimated weight ω̂* achieves the same 

efficiency of β̂
WQAE(ω*).

Theorem 3 Under the assumptions of Theorem 1 and Assumption 4, we have

(18)

4 The Location-Scale Models

Another class of widely used regression models is the location-scale models (case 2 in 

Section 2) that allows for conditional heteroscedasticity. There is a large literature in 

econometrics and statistics studying the location-scale models. Koenker and Zhao (1994) 

studied L estimation of a location-scale model in the following form:

(19)
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under the condition . Zhao (2001) studied asymptotically efficient median regression 

using the k-nearest neighbors method. In this section we study the location-scale models via 

optimal quantile combination.

In the model (19), the positive constraint  is somewhat restrictive to allow for flexible 

applications. For example, it is violated for normally distributed covariates X. For this 

reason, many researchers consider an alternative form of σt which can be expressed as a 

linear function of absolute values of the regressors and other variables:

(20)

where Ut is a vector of absolute values of the regressors and other covariates [see, e.g., 

Koenker and Zhao (1996) for studies on related models]. For example, let 

, one may consider a location-scale model with 

, where , γ = (γ0, γ1, ⋯, γp), γ0 > 

0, γ1 ≥ 0, ⋯, γp ≥ 0.

In this section we consider the location-scale regression model (20).1 We are interested in 

the estimation of β and γ. By (2), we have the conditional quantile representation

(21)

Given a sample of size n, we may estimate (β, γ(τ)) using a quantile regression similar to 

(8). However, in the presence of conditional heteroscedasticity, it is more efficient to use a 

weighted quantile regression with the weights reflecting the conditional heteroscedasticity. 

In addition, the weighted quantile regression estimates have nice properties that helps 

combining quantile information.

Thus, following the idea of Koenker and Zhao (1994), we consider the weighted quantile 

regression:

(22)

where  and γ̃ is a consistent estimate of γ.

Assumption 5 (i) {(Xt, Ut, εt)}t∈ℤ is strictly stationary; for each t, εt is independent of {(Xt, 

Ut), (Xt−1,Ut−1), …; εt−1, εt−2, …}. (ii) {(Xt, Ut)}t∈ℤ is an ergodic process.

Assumption 6 (i) ‖Xt‖ + ‖Ut‖ ≤ c1 and  for some constants c1, c2 > 0. (ii) γ̃ − γ = 

op(n−1/4). (iii) Let (X, U) be distributed as (Xt, Ut). Define the matrices

1Note that different forms of the location-scale model can be studied similarly to our analysis in this section, and optimally weighted 
quantile averaging estimators can be constructed (but the construction of optimal weights will be different, depending on the specific 
form of the regression model).
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and

The matrices M1, M3, Mβ and Mγ are non-singular.

Assumption 5 is a modification of Assumption 1 by allowing for more covariates (Xt, Ut). In 

Assumption 6, (i) is imposed simply for technical convenience and can be replaced by some 

finite moment conditions, (ii) requires that γ̃ must be reasonably close to γ, and (iii) is used 

to avoid some singular design matrix.

Theorem 4 Suppose Assumptions 2, 5, and 6 hold. Then we have

(23)

with

We now construct estimators of β and γ by optimally combining information over quantiles 

τ1, …, τk.

First, we consider estimation of β. As in Section 3, we consider the WQAE β̂
WQAE(ω) given 

by (11). Using the Bahadur representation (23) from Theorem 4, the same argument in 

Theorem 1 yields

with S(ω) given in Theorem 1. Therefore, the optimal weight can be constructed in a similar 

way as described by Theorem 2, and ω* is given by (14). The OWQAE has the following 

limiting distribution

with Ωk given in (15). If we use the estimated optimal weight ω̂* in (17), under the 

additional Assumption 4, the conclusion in Theorem 3 also holds here.
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Next, we consider estimation of the scale parameter γ via quantile combination. As will be 

clear from later analysis, the construction of WQAE and choice of optimal weights related to 

the scale parameter will be different from those of β. For this reason, we denote the weights 

used in γ estimation by π = [π1, …, πk]T. From (21)–(22), γ̂(τ) is an estimation of γ(τ) = 

γQε(τ). Then, for any π satisfying . Therefore, we 

propose the following WQAE of γ:

(24)

Theorem 5 Under the assumptions in Theorem 4, we have the asymptotic normality:

where S(π) = πTHπ with H defined in (13). Furthermore, the optimal weight is

(25)

With π* in (25), the OWQAE of γ has the following limiting distribution:

(26)

Therefore, the optimal weights for the OWQAE of β and γ are different, and their 

corresponding OWQAEs have different efficiency. This is due to the structure of the 

conditional quantile representation (21): β does not depend on the quantile τ whereas γ relies 

on τ through the coefficient Qε(τ).

Similar to the case of β, the conclusion in Theorem 3 also holds for γ̂
WQAE(π̂*) when we use 

estimated optimal weight π̂* by plugging in consistent estimates of (q, H) into (25).

To implement the weighted quantile regression (22), we need to find a consistent estimate γ̃ 

of γ. We propose the following procedure:

i. For each quantile τ = τ1, …, τk, fit the unweighted quantile regression

(27)

By the same argument in Theorem 4, (β̃(τ), γ ˜(τ)) = (β, γ(τ)) + Op(n−1/2).

ii. Let
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(28)

Then . Note that, in (22), it suffices for γ̃ to 

estimate γ up to a multiplication factor. Thus, γ̃ in (28) satisfies Assumption 6(ii).

Finally, we point out an identifiability issue of the optimal weight π* in (25). Since Qε(τ) is 

identifiable up to a scale factor, if we multiply Qε(τ) by a constant c, π* and hence 

γ̂WQAE(π*) in (24) will be multiplied by a factor 1/c. This is due to the non-identifiability of 

the parameter γ in (20). To ensure identifiability, we may impose some constraint on ε; see 

Section 7 for more discussions on estimating π*.

5 Nonparametric Regressions

In this section we study the nonparametric regression (case 3 in Section 2). We assume that 

both m(·) and σ(·) in (1) are nonparametric functions, and we are interested in the estimation 

of m(·). Although our theory is also applicable for multivariate case, to avoid the issue of 

“curse of dimensionality”, we consider the univariate case X ∈ ℝ.

Recall the conditional quantile QY (τ|X) in (2). Without further assumptions, we cannot 

identify m(X) from QY(τ|X) at a single quantile. To ensure identifiability, we assume that ε 

has a symmetric density, which is satisfied for many commonly used distributions, such as 

normal distribution, Student-t distribution, Cauchy distribution, uniform distribution on a 

symmetric interval, Laplace distribution, symmetric stable distribution, many normal 

mixture distributions, and their truncated versions on symmetric intervals.

Consider weights ω1, …, ωk satisfying the constraints

(29)

Under the symmetric density assumption above, Qε(τ) + Qε(1 − τ) = 0. Therefore, with 

quantiles τj = j/(k + 1) and using (2) and (29), we have

(30)

This identity suggests estimation of m(·) by plugging in consistent estimation of QY (τj|X).

Given samples , we can estimate QY(τ|x) by the local linear quantile regression 

[Yu and Jones (1998)]:

(31)

for a kernel function K(·) and bandwidth h. From (30), we propose the WQAE of m(x):
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(32)

Assumption 7 (i) fε is symmetric, positive, and twice continuously differentiable on its 

support; the density function pX(·) > 0 of X is differentiable, m(·) is three times 

differentiable, and σ(·) > 0 is differentiable, in the neighborhood of x. (ii) nh → ∞ and nh9 

→ 0. (iii) K(·) integrates to one, is symmetric, and has bounded support. Write

Theorem 6 Suppose Assumptions 1 and 7 hold. Let S(ω) be defined in (13). Then

(33)

Furthermore, ω* in (14) minimizes S(ω) subject to the constraints (29), and

(34)

where Ωk is defined in (15).

For comparison, we briefly review some alternative nonparametric estimation methods. The 

widely used local linear LS regression estimator, denoted by m̂LS(x), is obtained by 

replacing the quantile loss ρτ(·) in (31) with the square loss. If εt) = 0 and var(εt) < ∞, 

under some regularity conditions [Fan and Gijbels (1996)],

(35)

When εt’s are Gaussian, the local LS estimation corresponds to the local likelihood criterion. 

In the absence of Gaussianity, asymptotic results of mL̂S(x) generally still hold but this 

estimator is less efficient in terms of mean-squared error than estimators that exploit the 

distributional information. For heavy-tailed data, local quantile regression is a robust 

estimation method; see, e.g., Yu and Jones (1998). The local median regression estimator, 

denoted by m̂LAD(x), corresponds to τ = 0.5 in (31). By Theorem 6,

(36)

Recently, Kai, Li and Zou (2010) proposed a local composite quantile regression (CQR) 

estimator which takes a simple average of multiple quantile estimations. The local CQR 

estimator, denoted by m̂CQR(x), has the asymptotic normality
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(37)

where Rk is defined in (16). Intuitively, m̂LS(x) uses information from the local sample 

average, m̂LAD(x) uses information from the local sample median, m̂CQR(x) uses information 

from multiple quantiles with uniform weight, and the proposed OWQAE m̂WQAE(x|ω*) 

combines information from multiple quantiles optimally.

If the error density fε were known, we could replace the quantile loss ρτ(·) in (31) by the log 

likelihood log fε(Yt−a−b(Xt−x)) and obtain a likelihood-based estimator, denoted by 

m̂MLE(x), see, e.g., Fan, Farman and Gijbels (1998). Under appropriate conditions,

(38)

where ℐ(fε) is the Fisher information of fε. Under some regularity conditions, the local 

likelihood estimator is the most efficient estimator. In practice, fε is unknown and m̂MLE(x) 

is infeasible. In Section 6.2, it is shown that Ωk → ℐ(fε), and therefore the optimal WQAE 

m̂WQAE(x|ω*) achieves the same asymptotic efficiency of the infeasible estimator m̂MLE(x).

We now compare the efficiency of m̂WQAE(x|ω*) to m̂LS(x), m̂LAD(x), and m̂CQR(x). From 

(34)–(37), all four estimators have the asymptotic normality with different s2:

Define the asymptotic mean-squared error (AMSE) as AMSE{m̂(x)|h} = [m″(x)μKh2/2]2 + 

φKσ2(x)s2/[nhpX(x)]. Minimizing the AMSE, we obtain the optimal bandwidth:

(39)

and the associated optimal AMSE evaluated at the optimal bandwidth h*

(40)

In Section 6.4, we tabulate s2 for different distributions.

Theorem 7 studies m ̂WQAE(x|ω*) when we use the estimated optimal weight ω̂* in (17).

Theorem 7 Under the assumptions of Theorem 1 and Assumption 4, when we use the 

estimated weight ω̂* in (17), m̂WQAE(x|ω̂*) has the same asymptotic normality as m̂WQAE(x|

ω*).
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The discussion of the selection of the bandwidth h is deferred to Section 8.4.

6 Efficiency Comparison

6.1 The k-quantile optimal efficiency Ωk and Λk

The parameters in Sections 3–5 can be classified into two types: location-type and scale-type 

parameters. For β in (6) and (20) and the nonparametric function m(·) in Section 5, these 

parameters do not directly interact with the error ε, and we call them location-type 

parameters. For γ in (20), it is directly related to ε, and we call it a scale-type parameter.

Our discussion in the previous sections considers combination of information over a fixed 

number of quantiles. From the results in Sections 3–5, for the location-type parameters 

mentioned above, their OWQAE has the asymptotic variance proportional to  with Ωk 

defined in (15); for the scale-type parameter γ in (20), the OWQAE has the asymptotic 

variance proportional to  with Λk defined in (26). Since the efficiency of an estimator is 

inversely proportional to its variance, we call Ωk and Λk the k-quantile optimal efficiency of 

the location-type and the scale-type parameters, respectively. The larger Ωk and Λk, the 

better performance of the corresponding estimators.

It is well-known that, under appropriate conditions, the variance of any unbiased parameter 

estimator has the Cramér-Rao lower bound: the inverse of the Fisher information of the 

underlying distribution. To illustrate the Fisher information for the location-type and scale-

type parameters, consider the simple location-scale model Y = β + γε with location 

parameter β and scale parameter γ. Note that Y has the density fY(y; β, γ) = fε((y − β)/γ)/γ. 

Under the specification (β, γ) = (0, 1), we can show that, the Fisher information for the 

location parameter β is

(41)

and the Fisher information for the scale parameter γ is

(42)

We assume ℐ(fε) < ∞ and (fε) < ∞. The Fisher information ℐ(fε) and (fε) serve as a 

natural standard when we measure the efficiency of our estimators in the case of regular 

estimation.

Theorem 8 Suppose Assumption 2 holds. Let Δ = 1/(k + 1).

i. For Ωk in (15), we have |Ωk − ℐ(fε)| ≤ Φk, where g(t) = fε(Qε(t)), and

(43)
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ii. For Λk in (26), we have |Λk − (fε)| ≤ Ψk, where h(t) = Qε(t)fε(Qε(t)), and

(44)

Theorem 8 indicates that, by optimally combining k quantiles τ1, …, τk, the k-quantile 

optimal efficiency Ωk (resp. Λk) for the OWQAE of the location-type (resp. scale-type) 

parameters is at most Φk (resp. Ψk) away from the corresponding Fisher information ℐ(fε) 

(resp. (fε)). This result holds for any fixed k.

6.2 Asymptotic behavior of Ωk and Λk

In all previous sections, k is assumed to be a given finite number. In the following few 

sections, we discuss the behavior of the proposed estimators as k increases with n. In this 

section, we consider the asymptotic behavior of Ωk and Λk as k → ∞. For regular 

estimation, it is shown that Ωk and Λk approach the corresponding Cramér-Rao efficiency 

bound. In Section 6.3, we discuss the OWQAE as k → ∞ and when we use the true optimal 

weight or the estimated optimal weight. In Section 6.4, we discuss the asymptotic relative 

efficiency of OWQAE compared to some existing methods. Finally, Section 6.5 briefly 

considers some non-regular estimation.

The Cramér-Rao efficiency analysis is based on the basic assumption of finite Fisher 

information ℐ(fε) < ∞ and (fε) < ∞. From (41) and (42), this implies that 

 and  as τ → 0, where g(τ) 

and h(·) are defined in Theorem 8. Thus, by Theorem 8, we have the following result.

Theorem 9 Suppose Assumption 2 holds. Let g(·) and h(·) be defined in Theorem 8.

i. If

(45)

then, for Φk in (43), limk→∞ Φk = 0, and

ii. If (45) holds with g(·) replaced by h(·), then, for Ψk in (44), limk→∞ Ψk = 0, and

The condition (45) is conventionally imposed in the study of efficient estimations. Basically, 

it requires that the error density decay sufficiently fast at the boundary (the corresponding 

estimation is sometimes called as regular estimation), otherwise one may estimate the 

parameters at a faster rate; see, e.g., Akahira and Takeuchi (1995) for a discussion of this 
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issue, also see Section 6.5 below for discussions on related issues. By Theorem 9, as k → 

∞, the k-quantile optimal efficiency Ωk and Λk attain the corresponding Fisher information.

From Theorem 9, Ωk and Λk have different limit as k → ∞. As discussed in Section 4, this is 

due to the extra dependence of γQε(τ) on Qε(τ) in the scale-type parameter.

Proposition 1 below presents an alternative sufficient condition for (45).

Proposition 1 Suppose fε has support on ℝ and Assumption 2 holds. Then (45) holds if

(46)

Write x ∝ y if x/y is bounded away from 0 and ∞. If fε(u) ∝ |u|−a as |u| → ∞ for some a > 1, 

then 1 − Fε(u) ∝ |u|1−a as u → ∞ and Fε(u) ∝ |u|1−a as u → −∞. Thus, by Proposition 1, we 

have the following result.

Corollary 1 Suppose that there exist a > 1 and b > 0 such that fε(u) ∝ |u|−a and ∂2[log fε(u)]/

∂u2 ∝ |u|−b as |u| → ∞. Then (45) is satisfied if b + 3(a − 1)/2 > 1.

Many commonly used distributions with support on ℝ satisfy (45). (i) For standard normal 

density fε, ∂2logfε(u)/∂u2 = −1 and 1 − Fε(u) = [1 + o(1)]fε(u)/u as u → ∞, we can verify 

(46). (ii) For Laplace distribution with density fε(u) = 0.5 exp(−|u|), u ∈ ℝ, ∂2[log fε(u)]/∂u2 

= 0 for u ≠ 0, so (46) can be easily verified. (iii) For logistic distribution, g(τ) = c(τ − τ2) for 

some constant c > 0, so (45) holds. (iv) For Student-t distribution with d > 0 degrees of 

freedom, Corollary 1 holds with a = d + 1 and b = 2. (v) For normal mixture 

, we can verify (46).

Recall that the unweighted quantile average estimators have asymptotic variance 

proportional to Rk defined in (16). The following results show that such a simple averaging 

estimator is asymptotically equivalent to the LS estimator as k → ∞. This result indicates 

that if we use a simple average over quantiles, even as we use more and more quantiles, 

there is no efficiency gain of combining quantile information. Thus, proper weighting over 

different quantiles is crucial.

Theorem 10 (i) ; as k → ∞, the equality holds if and only if ε is normally 

distributed. (ii) If var(ε) < ∞, then limk→∞ Rk = var(ε).

6.3 Behavior of the OWQAE as k → ∞

In Sections 3–5, the asymptotic normalities of the OWQAE are established for k quantiles 

with a fixed k. In this section we consider the case that k increases with n. To keep the 

length, we consider only β̂
WQAE(ω*) for the parametric regression case in Section 3.

Since the uniform Bahadur representation holds on a subinterval of [0,1], we modify 

Assumption 3 so that the Bahadur representation holds uniformly over expanding 

subintervals of [0,1] when the the number of quantiles increases with n.
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Assumption 8 The asymptotic Bahadur representation (9) holds over τ ∈ n = [δn, 1 − δn] 

with δn = (log n)−ε for some ε > 0. Let the number of quantiles .

First, we consider the OWQAE with the theoretical optimal weight ω* in (14).

Corollary 2 Consider β̂
WQAE(ω) in (11) and ω* in (14). Suppose Assumptions 1, 2, and 8 

and (45) hold. Further assume ṁ(Xt, β) ∈ ℒq for some q > 2. Then

Thus, if we use more and more quantiles as n → ∞, the efficiency of the OWQAE with the 

theoretical optimal weight ω* approaches the Fisher information. The same conclusion also 

holds for the estimators in Sections 4–5 provided that, as in Assumption 8, appropriate 

Bahadur representations hold uniformly on n.

We next briefly discuss limiting behavior of the OWQAE with estimated weight when kn is 

chosen as in Assumption 8. Again, we discuss the bahavior of the parametric model in 

Section 3. As kn → ∞, the asymptotic analysis of the proposed estimator is complicated and 

depends on the behavior of quantile regression estimators and quantile-density estimators at 

the extreme.

Let  be the OWQAE with the optimal weight ω* in (14), and let 

 be the OWQAE with estimated weight ω̂* [see, e.g., (17)]. 

Then, using  and , we have

(47)

From Corollary 2, in order to prove

(48)

it suffices to prove

(49)

we need additional regularity conditions regarding the behavior of density fε(Qε(τ)) when τ 

approaches the boundary, and conditions on the density estimators.

Assumption 9 Let kn and n be chosen as in Assumption 8. There exists some constant η > 

0 such that infτ∈ n fε(Qε(τ)) ≥ c(log n)−η and , where ε 

is the constant in Assumption 8.
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Under Assumption 8 and the condition  in Assumption 

9, by (71) in the proof of Theorem 1, we have

(50)

where

Assume without loss of generality that ṁ(Xt, β) is scalar-valued. By property (P1) in Section 

2, the summands of Nj are martingale differences. By the condition ṁ(Xt, β) ∈ ℒ2 and the 

orthogonality of martingale differences,  uniformly in j. Thus,

and thus . Recall kn in Assumption 8. Under Assumption 9,

Thus, (49) follows from (50), and we conclude that (48) holds.

6.4 Comparison of asymptotic relative efficiency

We now compare the efficiency of the proposed OWQAE to some existing methods.

First, we consider the parametric case in Section 3. Theorem 2 gives 

. For parameter estimations, the most widely used 

method is the ordinary LS estimator, denoted by β̂
LS, which minimizes the squared errors. 

Assuming var(ε) < ∞ and other appropriate conditions, we have the asymptotic normality 

. For the quantile regression based estimator β̂(τ) with a 

single quantile τ, the asymptotic normality in (10) holds. All the three estimators 

β̂
WQAE(ω*), β̂

LS, and β̂(τ) have asymptotic normality of the form: 

, where s2 = var(ε) (assuming finite) for β̂
LS, 

 for β̂(τ), and s2 = S(ω*) for β̂
WQAE(ω*). For comparison, we use 

β̂
WQAE(ω*) as the benchmark and define its asymptotic relative efficiency (ARE) to β̂

LS and 

β̂(τ) as
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(51)

A value of ARE ≥ 1 indicates better performance of β̂
WQAE(ω*). Clearly, ARE(β̂(τj)) ≥ 1, j 

= 1, …, k. Under the conditions in Theorem 9, limk→∞ S(ω*) = 1/ℐ(fε) ≤ var(ε) (the Cramér-

Rao inequality) so that limk→∞ ARE(β̂
LS) ≥ 1. Intuitively, both β̂

LS and β̂(τ) use only partial 

information: sample average and sample τ-th quantile, respectively. By contrast, β̂
WQAE(ω*) 

combines strength across quantiles and thus can be more efficient.

Using k = 9 quantiles, Table 1 tabulates ARE(β̂
LS) and ARE(β̂(τ)), τ = 0.1, …, 0.9, for some 

commonly used distributions. For all non-normal distributions considered, βŴQAE(ω*) 

significantly outperforms β̂
LS and β̂(τ). For N(0,1), β̂

WQAE(ω*) and β̂
LS are comparable, and 

both are about 50% more efficient than β̂(0.5). For Student-t with one (t1) or two (t2) degrees 

of freedom, LS is not applicable due to infinite variance; β̂
WQAE(ω*) is about 20% more 

efficient than β̂(0.5) and even substantially more efficient than β̂(τ) for other choices of τ. 

Thus, potentially much improved efficiency and robustness can be achieved by using the 

proposed estimator βŴQAE(ω*). For linear models, Zou and Yuan (2008) studied composite 

quantile regression (CQR) method, and we include the efficiency of their method for 

comparison purpose. Clearly, the OWQAE is significantly more efficient than the CQR.

We briefly mention efficiency comparison of the nonparametric estimator m̂WQAE(x|ω*) 

relative to the local LS, local LAD, and Kai, Li and Zou (2010)’s local CQR estimators in 

Section 5. By (40),

The nonparametric relative efficiency = (The parametric relative efficiency)4/5.

Thus, the same efficiency comparison result (up to an exponent 4/5) in Table 1 also holds 

for the nonparametric estimator m̂WQAE(x|ω*) in Section 5.

6.5 Asymptotic super-efficiency

By Corollary 2, under (45), β̂
WQAE(ω*) is an asymptotically efficient estimator of β, with 

limiting covariance matrix approaching the Fisher information bound. The corresponding 

conditions (45) are not mathematical trivialities but are real restricting conditions to obtain 

the efficiency results. In the case when those “usual” regularity conditions do not hold, the 

previously discussed efficiency result may not hold, and we may obtain different results 

from the likelihood-based estimation. For example, we may have a different rate of 

convergence, and in general, asymptotically efficient estimators do not exist. These 

“unusual” cases are sometimes called “non-regular” statistical estimation. In this section, we 

briefly discuss the case of non-regular estimation. In this case, Theorem 11 below shows 

that, by using quantile regression with optimal weighting, super-efficient estimators may be 

obtained in the sense that the efficiency is larger than the Fisher information ℐ(fε).

Theorem 11 Recall Ωk in (15). Let g(τ) be defined in Theorem 8. Assume

(52)
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i. If 0 < c < ∞ and , then limk→∞ Ωk = c + ℐ(fε).

ii. If c = ∞, then limk→∞ Ωk = ∞.

Condition (45) covers the regular case c = 0 in (52). Theorem 11 indicates that, for the non-

regular case c > 0 in (52), under appropriate conditions, for large k, the variance of the 

(standardized) optimally weighted quantile regression based estimator β̂
WQAE(ω*) is smaller 

than the Cramér-Rao bound. In particular, if c = ∞, as the number of quantiles k increases, 

the asymptotic variance approaches zero. In this sense, the estimator βŴQAE(ω*) is 

asymptotically super-efficient.

Corollary 3 below concerns a special case of super-efficiency when the density fε is positive 

at the boundary.

Corollary 3 Denote the support of fε by , then limk→∞ Ωk = ∞ in any of the following 

three cases: (i)  = [D1, D2] with fε(D1) + fε(D2) > 0; (ii)  = [D1, ∞) with fε(D1) > 0; or 

(iii)  = (−∞, D2] with fε(D2) > 0.

For the truncated version of the distributions in Section 6.2, we have limk→∞ Ωk = ∞. For 

example, for the truncated normal on [−1, 1], Corollary 3 (i) applies. For uniform 

distribution on [0, 1], we can show Ωk = 2k + 2 → ∞.

Similar results can also be established for Λk. We omit the details.

7 Estimation of the Optimal Weight

To construct the proposed OWQAE βŴQAE(ω*) in Sections 3–5, we need to obtain 

estimations of the optimal weight ω* in (14) and π* in (25). It suffices to estimate Qε(τ) and 

fε(Qε(τ)). We can accomplish this through a two-step procedure: first, use a preliminary 

estimator to obtain residuals; second, estimate Qε(τ) and fε(Qε(τ)) based on the residuals. 

Here we illustrate the idea using the models in Sections 3–5.

(Case 1: Parametric model in Section 3.) Since fε (Qε (τ)) remains the same if we change ε 

to c + ε for any c, α in (6) can be absorbed into ε. We propose the procedure:

i. Use the uniform weight ω = [1/k, …, 1/k]T to obtain the preliminary estimator β̂, 

and compute the “residuals” (a combination of both α and ε) as ε̂
t = Yt − m(Xt, β̂).

ii. To estimate fε(u), use the nonparametric density estimate 

, where, we follow Silverman (1986) to choose 

the rule-of-thumb bandwidth b:

Here, “sd” and “IQR” are the sample standard deviation and sample interquartile.

iii. Estimate fε(Qε(τ)) by f̂ε(Q̂
ε(τ)), where Qε̂(τ) is the sample τ-th quantile of ε̂

1, …, ε̂
n.
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iv. Plug f̂ε(Q̂
ε(τ)) into (14) to obtain the estimated optimal weight ω̂*.

(Case 2: Location-scale model in Section 4.) To ensure identifiability, we assume without 

loss of generality that , otherwise we can consider the reparametrized 

model Y = XT β + (UT γ*)ε* with γ* = cγ, ε* = ε/c, and . Note that this 

assumption bears no effect on the optimal weight ω* since fε(Qε(τ)) is invariant under the 

transformation cε for any c > 0. For each quantile τ = τ1, …, τk, we fit the quantile 

regression (27) to obtain (β̃(τ), γ̃(τ)). Define the preliminary estimator

(53)

Then (β̃, γ̃) consistently estimates (β, γ). We use the procedure to compute ω* and π*:

i. Use β̃ and γ̃ in (53) to compute the errors , t = 1, …, n. To 

better mimic the constraint , consider the transformed errors

where Q̃
ε(τ) is the sample τ-quantile of ε̃

1, …, ε̃
n.

ii. Use the same steps (ii)–(iii) in case 1 above to obtain estimates f̂ε(Q̂
ε(τ)) and Q̂

ε(τ).

iii. Use (14) to compute ω̂* and use (25) to compute π̂*.

(Case 3: Nonparametric regression model in Section 5.) As in case 2 above, ω* is 

invariant under the transformation cε, c > 0. Assume without loss of generality that |ε| has 

median one. Then the conditional median of |Y − m(X)| given X is σ(X), and we can apply 

local median quantile regression to estimate σ(·). We propose the procedure:

i. Use (32) with the uniform weight to obtain the preliminary estimator m̂(·).

ii. Compute Yt − m̂ (Xt) and estimate σ(·) by local linear median quantile regression:

(54)

For the bandwidth ℓ, following Yu and Jones (1998), we use ℓ = ℓLS(π/2)1/5, where 

ℓLS is the plug-in bandwidth [Ruppert, Sheather and Wand (1995)] for local linear 

LS regression based on the data (Xi, |Yi − m̂(Xi)|2), i = 1, …, n.

iii. Compute the errors εt̂ = [Yt − m̂(Xt)]/σ̂(Xt) and obtain the estimator f̂ε(Q̂
ε(τ)) as in 

the parametric regression case 1 above.

iv. Use (14) to obtain ω̂
1, …, ω̂

k and symmetrize them: , j = 1, …, 

k.
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8 Monte Carlo Studies

We conduct Monte Carlo studies to investigate the sampling performance of the proposed 

procedures in a variety of regression models. In all settings below, we use 1000 realizations 

to evaluate the performance of various methods.

8.1 Linear models with homoscedastic errors

For linear models, we compare six estimation methods. OLS: ordinary LS estimator; LAD: 

the median quantile estimator with τ = 0.5 in (8); QAU, QAO, QAE: the WQAE in (11) 

with the uniform weights, theoretical optimal weight ω* in (14), and estimated optimal 

weight ω̂* (cf. Section 7), respectively; CQR: Zou and Yuan (2008)’s CQR estimator. For 

QAU, QAO, QAE, and CQR, we use k = 9 quantiles 0.1, 0.2, …, 0.9. With 1000 

realizations, we use QAE as the benchmark to which the other five methods are compared 

based on the empirical relative efficiency:

(55)

where “Method” stands for OLS, LAD, QAU, QAO, CQR, and β̂(j) is the estimator of β in 

the j-th realization. A value of RE ≥ 1 indicates better performance of QAE.

We consider both independent data and time series data:

(56)

(57)

Model 2 is a variant of the threshold autoregressive model with a linear component Yt−1. For 

the innovation εt, we consider 12 distributions: Normal distribution N(0,1), Student-t 

distribution with one (t1) and two (t2) degrees of freedom, the two normal mixture 

distributions in Example 2, Laplace distribution, Beta distributions Beta(1,1), Beta(1,2), 

Beta(1,3), and Gamma distributions Gamma(1), Gamma(2), Gamma(3).

The results are summarized in Table 2(a) for Model 1 with sample sizes n = 100, 300, and in 

Table 2(b) for Model 2 with n = 300. For N(0,1), Student-t2, and Laplace distributions, QAE 

and CQR are comparable; for all other distributions, QAE significantly outperforms CQR. 

Also, QAE outperforms OLS for all non-normal distributions whereas they are comparable 

for N(0,1). For n = 300, the superior performance of QAE is even more remarkable, which 

agrees with our asymptotic theory. For almost all cases considered, QAE substantially 

outperforms the LAD estimator and the relative efficiency can be as high as almost 2000%. 

It is worth pointing out that, for Beta and Gamma distributions, the relative efficiencies are 

much higher than the other distributions considered, owing to the super-efficiency 

phenomenon in Section 6.5. We also note that QAE with estimated optimal weight has 

comparable performance to QAO with theoretical optimal weight. We conclude that the 

proposed OWQAE offers a more efficient alternative to existing methods.
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8.2 Nonlinear models with homoscedastic errors

We consider two nonlinear models (one independent data and the other time series data):

(58)

(59)

Model 4 is Engle (1982)’s ARCH model. Again, we consider the 12 distributions in Section 

8.1 for εt. Table 3 summarizes the empirical relative efficiency [cf. (55)] of the proposed 

OWQAE compared to the other methods OLS, LAD, QAU, and QAO (see Section 8.1). The 

proposed OWQAE is significantly superior to the OLS, LAD and QAU, and comparable to 

the QAO with theoretical optimal weight.

8.3 Location-scale models with conditional heteroscedasticity

Consider two location-scale models (one independent data and the other time series data):

(60)

(61)

Model 6 is the ARCH model in Koenker and Zhao (1996), and it is different from Engle’s 

ARCH model where the conditional heteroscedasticity takes the form in (59). Due to the 

conditional heteroscedasticity, it is slightly more difficult to estimate the parameters. We use 

Model 5 to illustrate five estimation methods.

i. (LS method) If εt has zero mean and unit variance, the Gaussian-likelihood based 

estimation method is to minimize the loss function

(62)

This is essentially an LS type estimation and the Gaussianity is not necessary for 

the consistency. In general, if εt has variance σ2, then this LS method produces 

consistent estimators of β and σ(γ0, γ1).

ii. (LAD method) First, apply (27) with τ = 0.5 to obtain the LAD estimator β̂
LAD of 

β. Second, apply median quantile regression based on absolute residuals:

(63)

This LAD regression produces estimators of Q|ε|(0.5)(γ0, γ1), where Q|ε|(0.5) is the 

median quantile of |εt|.

iii. (OWQAE with theoretical optimal weights). As in Section 8.1, we denote this 

method by QAO.
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iv. (OWQAE with estimated optimal weights). As in Section 8.1, we denote this 

method by QAE. As discussed in Section 7, under the constraint , 

QAE produces consistent estimators of (β, γ0, γ1). Without the latter constraint, 

QAE produces consistent estimators of β and .

v. (OWQAE based on the unweighted quantile regression (27)). This method works 

the same as the OWQAE above and the only difference is to use β̃(τ) and γ̃(τ) in 

(27) to form the OWQAE. Denote this method by QAEU. Again, QAEU produces 

estimators of β and . We include this method to evaluate the 

performance of the OWQAE based on the unweighted quantile regression (27).

As discussed above, the five estimation methods produce consistent estimators of β and λ(γ0, 

γ1) for some constant λ depending on the distribution of εt. To make sensible comparison, 

we divide the corresponding estimators by λ to obtain consistent estimators of (γ0, γ1). 

Furthermore, to ensure the consistency of the LS method, we consider the properly centered 

εt for the 12 distributions in Section 8.1. That is, if εt has finite mean, then we center it so 

that εt) = 0.

The results are summarized in Table 4(a) for Model 5 and in Table 4(b) for Model 6. In both 

models, sample size n = 300. We make three observations. First, the OWQAE delivers much 

superior overall performance than OLS and LAD. Second, in all cases considered, the 

OWQAE using heteroscedasticity-weighted quantile regression (22) clearly outperforms the 

OWQAE using unweighted quantile regression (27). Third, the OWQAE with estimated 

weights is comparable to the QAO with theoretical optimal weights.

8.4 Nonparametric regression models

In our data analysis, we use the standard Gaussian kernel for K(·). We now address the 

bandwidth selection issue. By (39), the optimal bandwidth h* is proportional to (s2)1/5. 

Denote by  and  the bandwidth for the least squares estimator and the proposed 

OWQAE. Then , where S(ω*) is defined in (13). In practice, 

to select , we can use the plug-in bandwidth selector in Ruppert, Sheather and Wand 

(1995), implemented using the command dpill in the R package KernSmooth. We then 

select  by plugging in estimates of S(ω*) and var(ε) using the two-step procedure in 

Section 7, but for the purpose of comparison we shall use their true values in our simulation 

studies. Similarly, we can choose the optimal bandwidths for the other two estimators. Kai, 

Li and Zou (2010) adopted the same strategy. For the preliminary estimator m̂(·) in step (i) 

of Section 7, we use the plug-in bandwidth selector .

We compare the empirical performance of the four methods (LS, LAD, CQR, OWQAE) in 

Section 5. With 1000 realizations, we use the least squares estimator m̂LS as the benchmark 

to which the other three methods are compared based on the relative efficiency:
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where m̂j is the estimator in the j-th realization, and [ℓ1, ℓ2] is the interval over which m is 

estimated. A value of RE ≥ 1 indicates that m̂ outperforms the LS estimator. To facilitate 

computation, the integral is approximated using 20 grid points.

Consider n = 200 samples from the model

(64)

The same model was also used in Kai, Li and Zou (2010) with the normal design X ~ N(0,1). 

Here we use the uniform design to avoid some computational issues. For ε, we consider nine 

symmetric distributions: N(0,1), truncated normal on [−1, 1], truncated Cauchy on [−10, 10], 

truncated Cauchy on [−1, 1], Student-t with 3 (t3) degrees of freedom, Standard Laplace 

distribution, uniform distribution on [−0.5, 0.5], and two normal mixture distributions: 

0.5N(2,1)+0.5N(−2,1) and 0.95N(0,1)+0.05N(0,9). The first normal mixture can be used to 

model a two-cluster population, whereas the second normal mixture can be viewed as a 

noise contamination model. Let [ℓ1, ℓ2] = [−1.5, 1.5].

The relative efficiencies of the four methods, with m̂LS(x) as the benchmark, are summarized 

in Table 5(a). Overall, OWQAE either significantly outperforms or is comparable to the 

other three methods. For example, for N(0,1) and 0.95N(0,1)+0.05N(0,9), OWQAE is 

comparable to LS; for other distributions, OWQAE has about 20% efficiency gain over LS 

for most distributions and more than 60% efficiency gain for 0.5N(2,1)+0.5N(−2,1). When 

compared with CQR, OWQAE outperforms CQR for all but the four distributions: N(0,1), 

Student-t3, Laplace distribution, and 0.95N(0,1)+0.05N(0,9), for which they are comparable. 

While OWQAE underperforms LAD for truncated Cauchy on [−10, 10], it has substantial 

efficiency gains for N(0,1), truncated N(0,1) on [−1, 1], truncated Cauchy on [−1, 1], 

uniform on [−0.5, 0.5], and 0.5N(2,1)+0.5 N(−2,1).

The empirical performance of the proposed method in Table 5(a) is not as impressive as its 

theoretical performance in (40). For example, for truncated N(0,1) on [−1, 1], the theoretical 

AREs according to (40) are 1, 0.48, 0.86, 0.93, 0.95, 1.13, 1.69, 2.17, compared to 1, 0.54, 

0.93, 0.98, 0.99, 1.14, 1.25, 1.26 in Table 5(a). To explain this phenomenon, the plot (not 

included here) of the function m(x) = sin(2x) + 2 exp(−16x2) exhibits large curvature and 

sharp changes on [−0.5, 0.5], and thus a large estimation bias could easily offset the 

asymptotic efficiency improvements, especially for a moderate sample size. To appreciate 

this, use the same X and ε in (64), and consider model

(65)

Then the bias term h2μKm″(x) = 0 vanishes and the variance plays a dominating role. For all 

four estimation methods, we use the same bandwidth: the plug-in bandwidth selector for 

local linear regression. We summarize the relative efficiencies in Table 5(b). The overall 
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pattern of the empirical relative efficiencies is consistent with that of the theoretical ones in 

(40), and the proposed OWQAE significantly outperforms other methods for almost all 

distributions considered. Also, using more quantiles (k = 29) significantly improves the 

performance of OWQAE for truncated N(0,1) on [−1, 1], truncated Cauchy on [−1, 1] and 

uniform on [−0.5, 0.5]. The latter property is not shared by the CQR method.

In summary, for most non-normal distributions considered, the proposed method can have 

substantial efficiency improvements over other methods, and the empirical performance is 

consistent with our asymptotic theory.

9 An Empirical Application

To highlight the proposed approach, we consider a simple application of this method to the 

widely studied cross-section of stock returns. The Capital Asset Pricing Model [CAPM, see 

Sharpe (1964) and Black (1972)] has long served as the backbone of both theoretical and 

empirical finance. It is generally agreed that investors demand a higher expected return for 

investment in riskier securities. Over the past three decades a number of studies have 

empirically examined the performance of the CAPM in the cross-section of returns, and it is 

also well documented that the rate of return to holding common stocks is to some extend 

predictable over time. A large number of papers have studied the appropriateness of CAPM 

model in explaining how investors assess the risk and how they determine what risk 

premium to demand, and several alternative models have also been proposed in the 

literature. However, empirical evidence is ambiguous. The support for other asset-pricing 

models is no better. In addition, the theory behind the CAPM has an intuitive appeal that 

other models lack. For these (and other) reasons, in spite of the controversy in empirical 

studies, the CAPM is still widely used in fiancial applications and still the preferred model 

used in MBA and other managerial finance courses.

The focus of this section is not on the choice of alternative models. In this section, we 

consider applications of the methods that we discussed in the previous sections on the 

traditional widely used CAPM cross-sectional regression (similar to those of Fama-MacBeth 

which can be used to study the predictability of returns). The cross-sectional regression 

equation at time t is

(66)

where λ0 is the intercept term, λ1 is the slope coefficient, and βim,t−1 is the conditional beta 

of the excess return for asset i in month t. The dating convention indicates that the 

conditional beta is formed using only information available at time t − 1. This regression 

model provides a decomposition of each excess return over each period into two 

components: the first component, λ1βim,t−1, represents the part of return of asset i that is 

related to the cross-sectional structure of risk, as measured by the betas. The remaining 

component of the return is uncorrelated to the measures of risk. Thus, the asset pricing 

model implies that the predictability of returns should be related to the risk.

We consider a population of stocks traded on the New York Stock Exchange (NYSE) from 

January 2009 to December 2010. We study monthly stock returns. These data are available 

Zhao and Xiao Page 27

Econ Theory. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



from CRSP (the Center for Research in Security Prices) as well as many other data 

resources. Following the literature of many empirical studies, the stocks are considered if 

their returns in the current month and also the previous 60 month are available, and we 

exclude firms with negative book-to-market equity (using information from Compustat). 

The cross-sectional regression model (66) is usually estimated by the least squares method 

in practice. On the other hand, cumulated empirical evidence in finance indicates that stock 

returns are not normally distributed. In fact, it is well-known that the distributions of returns 

are heavy-tailed. Therefore it is important to consider estimation procedures which have 

good properties in the absence of Gaussianity.

We estimate the cross-sectional regression model (66) using four methods: the traditional 

OLS regression, the LAD estimation, a simple equally-weighted quantile averaging 

estimation (denoted by QAU), and the optimally weighted quantile averaging estimation 

(denoted by OWQAE). We use k = 9 quantiles 0.1, 0.2, …, 0.9, for quantile combination. 

For the purpose of comparison, we evaluate the performance of these estimators based on 

their out-of-sample prediction. In particular, we estimate the cross-sectional regression 

model (66) based on cross-sectional data at each month of 2009, and then use the estimated 

coefficients λ̂
0 and λ1̂ to construct forecast of return at the corresponding month of 2010. We 

compare both the mean squared prediction error (MSE) and the mean absolute deviation 

(MAD) of the predictions. In particular, we calculate the mean squared prediction error and 

the mean absolute prediction error by

for each month, and then average these mean squared prediction errors and mean absolute 

prediction errors respectively over all months. Table A1 below sumarizes the results.

Model (66) is the basic regression model that characterizes the risk premiums. We next 

consider an extension of model (66) which adds conditional heteroscedastic effect of 

capitalization (the “size” effect). We consider an analogue of (20),

(67)

where σi,t = γCapi,t and Capi,t is the market capitalization. Again, we estimate the cross-

sectional regression model (67) using the four estimation methods mentioned before. More 

specifically, the two-stage Weighted Least Squares (WLS), the two-stage Weighted Least 

Absolute Deviation (WLAD), the QAU and OWQAE based on quantiles 0.1, 0.2, …, 0.9. 

Table A2 below reports the mean squared prediction errors (MSE) and the mean absolute 

prediction errors (MAD) that are calculated in a similar way as Table A1.

The empirical results from Tables A1–A2 indicate that least squares method-based 

estimation is less efficient than other methods. In particular, the proposed OWQAE 

estimator performs relatively better than other methods.
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10 Further Discussions

We propose a general method of combining quantile regression information to improve 

efficiency of regression estimators. The proposed method is simple and more efficient 

regression estimators can be constructed based on a relatively small number of quantiles.

The proposed method has a wide range of applicability and can be potentially applied to 

many other models. We briefly discuss a few directions of interesting applications of our 

approach, without giving full details.

The first direction is efficient estimation for the varying-coefficient model:

(68)

where α(·) is the functional intercept and β(·) is the p-dimensional column vector of 

functional coefficients. Then the conditional τ-th quantile of Y given (X, U) is

A useful application is the varying-coefficient longitudinal model when we have 

longitudinal measurements from multiple subjects. Wang, Zhu and Zhou (2009) studied 

quantile regression for a partially linear varying-coefficient longitudinal model. In their 

work, the coefficients depend on the quantile, and they estimated the coefficients for each 

quantile without combining information across quantiles. We will explore further in a future 

paper.

A second direction is volatility estimation in time series. In financial econometrics, volatility 

plays an important role in asset pricing and risk management. Here we briefly discuss 

volatility estimation for both parametric and nonparametric ARCH models.

(Nonparametric volatility) Consider nonparametric ARCH(1): Xt = σ(Xt−1)εt. Let Qε2(τ) be 

the τ-th quantile of , and  the conditional τ-th quantile of  given Xt−1. Then 

 and  for all τ. 

Given estimates  of , we can construct efficient estimators of 

σ2(x)/σ2(0) by combining , j = 1, …, k.

(Parametric volatility) Consider parametric ARCH(p) model:

Let ℐt−1 be the information up to time t − 1. Denote by Qε2(τ) the τ-th quantile of , and by 

 the conditional τ-th quantile of  given ℐt−1. Then
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Therefore, we can apply quantile regression with quantile τ to obtain consistent estimates 

β̂
j(τ) of βj(τ). Note that βj(τ)/β0(τ) = βj/β0 for all τ. Therefore,

We can construct efficient estimators of  by combining quantiles τ1, …, τk.

Similar ideas also apply to generalized ARCH models. Since substantial work is needed 

here, we will explore further in a separate project.

Appendix: Proofs

Proof of Theorem 1. By the ergodicity in Assumption 1(ii) and (5),

(69)

Recall the definition of Σβ in Theorem 1. Then we can easily verified that

(70)

By Assumption 3 and (69)–(70),

(71)

Therefore,

(72)

where

(73)
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By the Cramér-Wold device, it suffices to consider the case that ṁ(Xt, β) is scalar-valued. 

Let ℱt be the σ-algebra generated by {Xt+1, Xt, …; εt, εt−1, …}. By property (P1) in Section 

2, {{ṁ(Xt, β) − ṁ(X, β)]}dt}t∈ℤ form martingale differences with respect to {ℱt}t∈ℤ. 

Using cov{τ − 1εt≤Qε(τ), τ′ − 1εt≤Qε(τ′)} = min(τ, τ′) − ττ′, we have  with S(ω) 

defined in (13). Since εt is independent of ℱt−1, by (5),

(74)

Since k is fixed, by Assumption 2, dt is bounded. Thus, the assumption ṁ(Xt, β) ∈ ℒ2 

ensures the Lindeberg condition. The result then follows from the martingale CLT.

Proof of Theorem 2. The optimal weight follows from the Lagrange multiplier method. The 

asymptotic normality follows from Theorem 1 and .

Proof of Theorem 3. Recall dt in (72)–(73). Since k is fixed, by Slutsky’s theorem, it is easy 

to see that  has the same asymptotic distribution if we 

replace ωj therein by any ω̃
j such that ωj̃ = ωj + op(1). Thus, the result follows.

Proof of Theorem 4. Define the vectors

Then

Since θ̂(τ) minimizes the criterion function in (22), the reparametrized parameter 

 minimizes the loss function

Suppose we can establish the quadratic approximation

(75)

where

(76)
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Then the convexity lemma in Pollard (1991) gives δ̂ = δ ^* + op(1), where

The desired result then follows by using block matrix inverse of .

It remains to prove (75). In view of L(δ), define

It suffices to prove L̃(δ) = L*(δ) + op(1) and L(δ) = L̃(δ) + op(1).

First, we prove L̃(δ) = L*(δ) + op(1). Using ρτ (cz) = cρτ (z) for c > 0, we can rewrite

Applying Knight (1998)’s identity

(77)

we can obtain

(78)

where t is the σ-algebra generated by {(Xt+1,Ut+1), (Xt,Ut), …; εt, εt−1, …}, and

By Assumption 5, εt is independent of t−1. Thus,

(79)

By Assumption 6(i), there exists some constant c such that

(80)
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Thus, from (79) and Taylor’s expansion Fε(s + Qε(τ)) − Fε(Qε(τ)) = sfε(Qε(τ)) + o(s),

(81)

where the convergence follows from the ergodicity and (5). Since {ξt − ξt| t−1)}t∈ℤ are 

martingale differences with respect to { t−1}t∈ℤ, by their orthogonality,

(82)

From (80), we have , which combined with (82) gives 

. Thus, by (78) and (81), we have L̃(δ) = L*(δ) + op(1).

Next, we prove the approximation L(δ) = L̃(δ) + op(1). Let

Then it is easy to see that

(83)

By the same argument leading to the quadratic approximation L̃(δ) = L*(δ)+op(1) above, we 

can show that each element of  has a quadratic approximation of the 

order Op(1). Thus, N1 = Op(‖γ̃ − γ‖) = op(1). For N2, by Assumption 6(i)–(ii), 

 and , which give N2 = op(1). Thus, we 

conclude that L(δ) = L̃(δ) + op(1), completing the proof.

Proof of Theorem 5. The asymptotic normally follows from the Bahadur representation in 

Theorem 4 and the same martingale CLT argument in Theorem 1. The optimal weight 

follows from the Lagrange multiplier method.

Proof of Theorem 6. Write Kt = K{(Xt − x)/h}. For IID data, Kai, Li and Zou (2010) have 

shown the following asymptotic representation:

Examining their argument and using properties (P1) and (P2) in Section 2, we see that the 

asymptotic representation also holds under Assumption 1. Therefore, by (30),
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where dt is defined in (73). The desired asymptotic normality then follows from the same 

martingale CLT argument in Theorem 1.

It is easy to see that, under the symmetric density assumption, the optimal weight ω* in (14) 

automatically satisfies the symmetric weight constraint in (29).

Proof of Theorem 7. This follows from the same argument of Theorem 3.

Proof of Theorem 8. Recall τj = j/(k + 1). Define k × k matrices Γ and P:

(84)

Here “diag” stands for the diagonal matrix. By direct matrix multiplications, we can verify

(85)

with 2(k + 1) on the diagonal, −(k + 1) on the super-/sub-diagonals, and 0 elsewhere.

i. Recall g(τ) = fε(Qε(τ)) and Δ = 1/(k + 1). By H = P−1ΓP−1 and (85),

(86)

where

We can rewrite Wk as

For t, s ∈ [τj−1, τj], we have , 

uniformly. Thus, by the Cauchy-Schwarz inequality,
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Applying the above inequality, we can obtain

The result then follows from (86) and the identity  in (41).

ii. Using H = P−1ΓP−1, we can write Λk = qT H−1q = (Pq)TΓ−1(Pq). Note that Pq = 

[h(τ1), …, h(τk)]T with h(t) = Qε(t)fε(Qε(t)). Using (85) and the argument in (i) 

above, we can easily obtain the desired result.

Proof of Proposition 1. Let u = Qε(τ) so that τ = Fε(u). Since fε has support ℝ, u → −∞ as 

τ → 0. Recall g(τ) = fε(Qε(τ)). By the chain rule, we can show g′′(τ) = [∂2 log fε(u)/

∂u2]/fε(u). Then one can easily show that (46) is equivalent to

(87)

For example, limτ→0 g2(τ)/τ = 0 if and only if , and limτ→0 g2(1 − 

τ)/τ = 0 if and only if . It remains to show (87) implies (45).

Let ε > 0 be any given number. By (87), there exists  such that 

and  for all . Fix . By Assumption 2, there exists c < ∞ 

such that |g′′(τ)| < c for . Let .

Then . For τ < τ*, applying , we have

completing the proof.

Proof of Theorem 10. (i) For S(ω) in (13), Rk = S((1/k, …, 1/k)T). By the uniqueness of the 

minimizer ω* of S(ω) [see (14)],  with equality if and only if ω* = (1/k, …, 1/k)T. 

Let g(τ) = fε(Qε(τ)), and for convenience write g(τ0) = g(τk+1) = 0. For  in 

(14), by H−1 = PΓ−1P and (85), we can show
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(88)

where Ωk is defined in (15). Note that, for j = ⌊(k + 1)τ⌋ with τ ∈ (0, 1), limk→∞(k + 

1)2[2g(τj) − g(τj−1) − g(τj+1)]g(τj) = −g′′(τ)g(τ). Thus, as k → ∞,  for all j implies g′

′(τ)g(τ) = −c, τ ∈ (0, 1), for some c > 0. Define the transformation u = Qε(τ). By the chain 

rule, we can show that g′′(τ)g(τ) = −c is equivalent to  or 

{log fε(u)}′′ = −c. Thus, fε(u) must be a normal density.

(ii) See the proof in Kai, Li and Zou (2010).

Proof of Corollary 2. As in the proof of Theorem 1, we use martingale CLT and consider 

scalar-valued ṁ(Xt, β). Similar to dt in (73), with the optimal weight ω*, define

By Theorem 9, S(ω*) = 1/Ωkn → 1/ℐ(fε). Thus, the convergence of the conditional variances 

follows from the argument in (74). It remains to verify the Lindeberg condition.

By Assumption 2, g(τ) = fε(Qε(τ)) is bounded on τ ∈ (0, 1). Thus, from (88),

for some constant c1. For any given c2 > 0,

(89)

Note that, for any random variable U ∈l ℒq, q > 2, and constant c > 0,

(90)

Applying (90) to (89) and using kn = O[(log n)ε], we have the Lindeberg condition.

Proof of Theorem 11. (i) It follows from (86) and the proof of Theorem 8. (ii) From 

limτ→0[g2(τ) + g2(1 − τ)]/τ = ∞ and (86), 1/S(ω*) ≥ (k + 1)[g2(τ1) + g2(τk)] → ∞.
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Table A1

OLS LAD QAU OWQAE

MAD 51.39 46.94 48.35 44.78

MSE 10.50 8.89 9.45 7.95

Numbers in this table are multiplied by 500 for convenience.
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Table A2

WLS WLAD QAU OWQAE

MAD 51.01 46.80 48.30 44.09

MSE 10.40 8.86 9.41 7.90

Numbers in this table are multiplied by 500 for convenience.
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