Skip to main content
. Author manuscript; available in PMC: 2015 Dec 1.
Published in final edited form as: Econ Theory (N Y). 2014 Jun 6;30(6):1272–1314. doi: 10.1017/S0266466614000176

Table 1.

Theoretical ARE [see (51)] of β̂WQAE) compared to β̂LS, Zou and Yuan (2008)’s CQR estimator β̂CQR, and β̂ (τ), using 9 quantiles τj = j/10, j = 1, …, 9. Mixture 1: 0.5N(0,1)+0.5N(0,0.56); Mixture 2: 0.5N(−2,1)+0.5N(2,1). For Student-t1, t2, LS is not applicable. [Numbers ≥ 1 indicate better performance of β̂WQAE)].

ε β̂(τ) with τ =
distribution β̂LS β̂CQR τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9

Student-t1 NA 1.58 47.12 6.40 2.34 1.40 1.19 1.40 2.34 6.40 47.12
Student-t2 NA 1.12 9.01 2.85 1.65 1.27 1.17 1.27 1.65 2.85 9.01
N(0,1) 0.96 1.03 2.80 1.96 1.67 1.54 1.51 1.54 1.67 1.96 2.80
Mixture 1 10.17 2.43 91.95 32.64 3.26 1.80 1.55 1.80 3.26 32.64 91.95
Mixture 2 3.28 2.80 3.01 2.81 3.68 7.84 56.24 7.84 3.68 2.81 3.01
Laplace 2.00 1.32 9.00 4.00 2.33 1.50 1.00 1.50 2.33 4.00 9.00
Gamma(1) 9.00 3.67 1.00 2.25 3.86 6.00 9.00 13.50 21.00 36.00 81.00
Gamma(2) 2.44 1.73 1.12 1.49 1.91 2.42 3.10 4.08 5.65 8.68 17.34
Gamma(3) 1.71 1.41 1.26 1.42 1.64 1.94 2.35 2.94 3.88 5.68 10.75
Beta(1,1) 1.67 2.04 1.80 3.20 4.20 4.80 5.00 4.80 4.20 3.20 1.80
Beta(1,2) 2.35 2.33 1.05 2.11 3.16 4.22 5.27 6.33 7.38 8.44 9.49
Beta(1,3) 3.31 2.71 1.02 2.12 3.32 4.66 6.19 8.00 10.27 13.33 19.04