Skip to main content
. Author manuscript; available in PMC: 2015 Dec 1.
Published in final edited form as: Econ Theory (N Y). 2014 Jun 6;30(6):1272–1314. doi: 10.1017/S0266466614000176

Table 5.

(Nonparametric regression model) Empirical relative efficiency of the local least-absolute-deviation estimator (LAD), Kai, Li and Zou (2010)’s local CQR estimator, and the proposed OWQAE, relative to the benchmark local LS estimator. For CQR and OWQAE: τj = j/(k + 1), j = 1, …, k, k = 9, 19, 29.

(a): Model 7 in (64)

CQR, k = OWQAE, k =
Distribution of ε LS LAD 9 19 29 9 19 29
N(0,1) 1 0.73 0.99 1.00 0.99 0.96 0.95 0.95
Truncated N(0,1) on [−1, 1] 1 0.54 0.93 0.98 0.99 1.14 1.25 1.26
Truncated Cauchy on [−10, 10] 1 1.67 1.16 1.07 1.05 1.40 1.27 1.21
Truncated Cauchy on [−1, 1] 1 0.53 0.93 0.98 0.99 1.07 1.20 1.20
Student-t with 3 d.f.’s 1 1.44 1.39 1.21 1.16 1.42 1.28 1.19
Standard Laplace 1 1.26 1.11 1.06 1.05 1.16 1.10 1.06
Uniform on [−0.5, 0.5] 1 0.51 0.94 0.98 0.99 1.23 1.24 1.21
0.5N(−2,1)+0.5N(2,1) 1 0.31 0.92 0.97 0.99 1.57 1.60 1.62
0.95N(0,1)+0.05N(0,9) 1 0.88 1.13 1.08 1.06 1.05 0.98 0.95
(b): Model 8 in (65)

CQR, k = OWQAE, k =
Distribution of ε LS LAD 9 19 29 9 19 29
N(0,1) 1 0.66 0.96 0.98 0.98 0.94 0.95 0.95
Truncated N(0,1) on [−1, 1] 1 0.43 0.84 0.91 0.93 1.14 1.56 1.80
Truncated Cauchy on [−10, 10] 1 2.39 1.35 1.17 1.12 1.97 1.78 1.61
Truncated Cauchy on [−1, 1] 1 0.46 0.84 0.91 0.94 1.02 1.35 1.55
Student-t with 3 d.f.’s 1 1.73 1.75 1.52 1.41 1.72 1.51 1.44
Standard Laplace 1 1.48 1.18 1.11 1.09 1.31 1.24 1.16
Uniform on [−0.5, 0.5] 1 0.36 0.84 0.91 0.94 1.46 2.21 2.70
0.5N(−2,1)+0.5N(2,1) 1 0.20 0.88 0.95 0.97 2.12 2.18 2.17
0.95N(0,1)+0.05N(0,9) 1 0.86 1.18 1.15 1.12 1.10 1.02 0.95