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Abstract

Background and Objectives:While animal studies have implicated derangements

of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis

(AAH), the relevance of these findings to the development of human AAH remains

unclear. Using global, unbiased serum metabolomics analysis, we sought to

characterize alterations in metabolic pathways associated with severe AAH and

identify potential biomarkers for disease prognosis.

Methods: This prospective, case-control study design included 25 patients with

severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples

were collected within 24 hours of the index clinical encounter. Global, unbiased

metabolomics profiling was performed. Patients were followed for 180 days after

enrollment to determine survival.

Results: Levels of 234 biochemicals were altered in subjects with severe AAH.

Random-forest analysis, principal component analysis, and integrated hierarchical

clustering methods demonstrated that metabolomics profiles separated the two

cohorts with 100% accuracy. Severe AAH was associated with enhanced

triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and

upregulated omega oxidation. Low levels of multiple lysolipids and related

metabolites suggested decreased plasma membrane remodeling in severe AAH.

While most measured bile acids were increased in severe AAH, low deoxycholate

and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in

substrate utilization for energy homeostasis were identified in severe AAH,

including increased glucose consumption by the pentose phosphate pathway,

altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism.
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Finally, altered levels of small molecules related to glutathione metabolism and

antioxidant vitamin depletion were observed in patients with severe AAH.

Univariable logistic regression revealed 15 metabolites associated with 180-day

survival in severe AAH.

Conclusion: Severe AAH is characterized by a distinct metabolic phenotype

spanning multiple pathways. Metabolomics profiling revealed a panel of biomarkers

for disease prognosis, and future studies are planned to validate these findings in

larger cohorts of patients with severe AAH.

Introduction

Acute alcoholic hepatitis (AAH) is a systemic condition that affects 10–35% of

individuals with chronic ethanol use [1, 2]. AAH is characterized by the rapid

development of jaundice, hepatomegaly, and features of the systemic inflamma-

tory response syndrome (SIRS). Maddrey’s Discriminant Function (mDF) is the

most commonly used scoring system to assess severity of AAH [3, 4], and an mDF

.32 with or without hepatic encephalopathy is associated with up to 39% six-

month mortality [5].

Macrovesicular steatosis, or intrahepatic lipid accumulation, is a key histologic

feature of AAH [6]. Early studies of ethanol-fed rodents have suggested that

steatosis may be due to alterations in hepatic lipid metabolism, including

enhanced de novo lipogenesis, reduced hepatic very low density lipoprotein

(VLDL) secretion, and altered fatty acid oxidation (FAO) [7–11]. More recent

work, however, has implicated extrahepatic derangements in global energy

homeostasis such as dysregulated adipose tissue triglyceride hydrolysis and altered

substrate utilization [12].

While animal models have yielded valuable insights into the pathogenesis of

alcoholic steatosis, the relevance of these findings to the development of human

alcoholic hepatitis remain less clear. Therefore, the aim of our study was to

describe systemic metabolic phenotypes in acute alcoholic hepatitis. We

performed an unbiased serum metabolomics analysis in a prospectively-collected

cohort of patients hospitalized with severe AAH and in stable subjects with

alcoholic cirrhosis to 1) characterize alterations in metabolic pathways associated

with acute AAH, and 2) identify potential metabolic biomarkers for disease

severity and prognosis.

Materials and Methods

Study Population

This prospective, case-control study was approved by the Institutional Review

Board (IRB) at the University of Pittsburgh in 2010. Twenty-five adults
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hospitalized with severe AAH (i.e., mDF .32) were recruited at the University of

Pittsburgh Medical Center in Pittsburgh, Pennsylvania from October 2010 to

December 2012. Inclusion criteria included: total bilirubin level of >3 mg/dL,

aspartate aminotransferase (AST): alanine aminotransferase (ALT) activity .2

with both levels ,500 U/L, and the presence of either hepatomegaly or steatosis

by ultrasound or computed tomography (CT) imaging in an individual with

heavy, chronic ethanol use. Patients were excluded if other chronic liver diseases,

including alpha-one antitrypsin deficiency, autoimmune hepatitis, hereditary

hemochromatosis, Wilson’s disease, drug-induced liver injury, primary biliary

cirrhosis, primary sclerosing cholangitis or Budd-Chiari Syndrome were present.

Patients with chronic viral hepatitis, however, were included. Individuals who last

consumed ethanol more than 6 weeks prior to clinical presentation were excluded.

Informed consent was obtained from either the subject or an authorized

representative prior to participation. The clinical diagnosis of AAH was confirmed

by two attending hepatologists (JB, SM) experienced in the treatment of alcoholic

hepatitis.

As most patients with AAH exhibit histologic evidence of micronodular

cirrhosis [13, 14], a control group of 25 clinically stable subjects with alcoholic

cirrhosis was derived from the IRB-approved University of Pittsburgh Center for

Liver Diseases Research Registry. All registry participants previously consented to

inclusion in the registry and provided serum samples for research use. All patient

records were reviewed to confirm the absence of acute alcoholic hepatitis.

Clinical and Demographic Information

Clinical and demographic data (Table 1) were obtained at the time of enrollment.

In patients with severe AAH, Maddrey’s discriminant function (mDF) was

calculated using the following formula [4]:

MDF5[PT (sec) – control PT (sec)]64.6+total bilirubin (mg/dl)

The laboratory control PT is 12.5 seconds at our institution. The Model for End

Stage Liver Disease (MELD) score was determined from the following equation

[15]:

MELD5(0.9576log [creatinine (mg/dl)]+0.3786log [total bilirubin (mg/

dl)]+1.1206log (INR)+0.643)610

Patients who underwent two or more dialysis treatments with one week of

enrollment were assigned a creatinine value of 4.0 mg/dl when calculating MELD.

Survival was determined using the Social Security Death Index.

Metabolomics Analysis

Venous blood samples were collected from hospitalized patients with severe AAH

within 24 hours of admission. Serum was obtained by centrifugation and stored at

280 C̊ until testing. Global, unbiased metabolic profiling was performed as

previously described [16].
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Data Acquisition and Statistical Analysis

Samples were analyzed over a two day period. Missing values for a given

metabolite were replaced with the observed minimum detection value for that

metabolite, based on the assumption that missing values were below the detection

limit. Raw data counts for each sample were then normalized to the median value

for each biochemical of interest.

Statistical analysis was performed using R (http://cran.r-project.org) and Stata

version 11 (StataCorp, College Station, TX). Welch’s t tests were carried out on

log-transformed data to compare relative biochemical concentrations between

experimental groups. False discovery rate (FDR) was estimated using q values to

account for multiple comparisons.

Random forest (RF) analysis was performed on untransformed data as

previously described to differentiate severe AAH and alcoholic cirrhosis cohorts

[17]. Principal component analysis was utilized to determine variation between

Table 1. Clinical and Demographic Characteristics of Patients.

Characteristics AAH (N525) Cirrhosis (N525) P

Age, yrs 50 (45–56) 55 (46–57) NS

Male, n (%) 17 (68%) 18 (72%) NS

Ethnicity, n (%)

Caucasian 23 (92%) 24 (96%) NS

Black 2 (8%) 1 (4%) NS

Other Liver Disease, n (%) 1 (4%) 11 (44%) 0.008

Hepatitis C 1 (4%) 10 (40%) ,0.001

Hepatitis B 0 (0%) 1 (4%) NS

Other 0 (0%) 0 (0%) NS

BMI, kg/m2 26.2 (23.4–33.0) 27.6 (25.3–30.1) NS

Diabetes, n (%) 2 (8%) 3 (12%) NS

Discriminant Function 52.5 (38.2–68.8) N/A N/A

MELD 26 (24–32) 11 (9–14) ,0.001

Albumin, g/L 2.0 (1.7–2.5) 3.2 (2.9–4.1) ,0.001

Bilirubin, mg/dl 15.0 (10.9–19.3) 1.3 (1.0–2.1) ,0.001

AST, IU/L 145 (100–235) 26 (20–51) ,0.001

ALT, IU/L 46 (38–64) 43 (32–63) NS

INR 2.0 (1.8–2.5) 1.3 (1.2–1.5) ,0.001

Creatinine, mg/dl 1.0 (0.8–2.0) 0.8 (0.8–1.1) NS

WBC count, x103/ml 10.9 (7.5–14.5) 5.6 (4.2–6.8) ,0.001

Hemoglobin, g/dl 10.6 (10.0–11.8) 13.6 (12.7–14.9) ,0.001

Platelet count, x 103/ml 127 (83–182) 89 (67–140) NS

30-day survival, n (%) 18 (72%) 25 (100%) ,0.001

90-day survival, n (%) 16 (64%) 25 (100%) ,0.001

180 day survival, n (%) 14 (56%) 25 (100%) ,0.001

Baseline characteristics of patients. All values are expressed as medians and IQRs unless otherwise specified. Continuous variables were compared with
Mann-Whitney U test. Categorical variables were compared with Fisher’s exact test. N/A: not applicable; NS: not signifnicant (p.0.05).

doi:10.1371/journal.pone.0113860.t001
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experimental groups [18], and integrated hierarchical clustering analysis was used

to classify patient cohorts by groupings of metabolites [19]. To determine global

patterns of metabolic pathway alterations, mass spectroscopic data were mapped

in a targeted manner using the Metscape application within the Cytoscape

platform [20, 21].

Demographic and clinical variables were presented as absolute frequencies,

percentages, medians and interquartile ranges. The x2 test was used to compare

categorical variables between groups (or Fischer’s exact test when expected values

were #5), and the Mann Whitney U test was used for continuous variables. A

two-tailed p value#0.05 was considered statistically significant.

Results

Patient characteristics

Demographic and clinical features of the study population are presented in

Table 1. Twenty-five patients were included in each cohort. Age, gender, and

ethnicity were similar between groups. The prevalence of diabetes was similar, and

both populations were overweight by mean BMI. More patients with alcoholic

cirrhosis had viral hepatitis, but subjects with AAH exhibited increased MELD

scores, AST levels and WBC counts with decreased hemoglobin and albumin.

While all cirrhotic patients were alive after 6 months, only 56% of AAH patients

survived beyond 180 days.

Metabolomics Analysis: Overview and Classification of Patient

Cohorts

A total of 420 distinct, named metabolites were identified in the serum samples.

Changes in metabolite concentrations between cohorts were determined using the

ratio of their group means, and these are displayed in Table S1. Overall, 234

statistically significant biochemical changes spanning multiple metabolic pathways

were observed; 152 molecules were significantly increased in patients with severe

AAH, while 82 were decreased. In addition, 17 biochemicals exhibited trends

toward significant difference between groups (0.05,p,0.10).

Using RF analysis, we determined that the metabolomics data set classified

samples into their respective groups with 100% accuracy. To assess the relative

contribution of each variable, the mean decrease accuracy (MDA) metric was used

[17, 22]. The 30 most important metabolites for the classification scheme are

depicted in Figure 1. Next, principal component analysis (PCA) was carried out

to show that the two groups were distinguishable by their metabolic signatures (

Figure 2). Finally, unbiased integrated hierarchical clustering analysis demon-

strated that differences in measured metabolites were grouped by subject cohorts

(Figure S1). Together, PCA, RF analysis, and integrated hierarchical clustering

methods demonstrate that AAH is characterized by distinct a metabolic profile.
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Targeted mapping of small molecules onto biochemical networks was

performed to determine global patterns of metabolic alterations in AAH.

Metabolic perturbations spanned multiple domains, including energy homeostasis

pathways, bile acid handling, bacterial metabolism, nucleic acid turnover,

antioxidant systems, and others (Figure 3).

Lipid metabolism in severe AAH is characterized by enhanced

adipose tissue lipolysis and altered fatty acid oxidation

Pathways related to lipid metabolism were significantly altered in severe AAH

compared to alcoholic cirrhosis, and several biochemicals associated with lipid

metabolism were identified in the RF analysis.

Figure 1. Random forest analysis of the thirty most important metabolites distinguishing patients with severe acute AAH from stable, alcoholic
cirrhotic controls.

doi:10.1371/journal.pone.0113860.g001
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Elevations in several long chain free fatty acids (LCFAs), and in particular two

essential fatty acids (eicosopentaenoate EPA; 20:5n3, docosapentaenoate n3 DPA;

22:5n6) were observed in patients with severe AAH (Figure S2A). This was

accompanied by decreased monoacylglycerols with increased glycerol levels

(Figure S2B). Overall these findings suggest that severe AAH is characterized by

enhanced lipolysis (Figure 4A), and adipose tissue lipolysis may increase

intrahepatic fatty acid influx in severe AAH. Potential etiologies for lipolysis

upregulation include peripheral insulin resistance, enhanced sympathetic tone, or

elevated stress hormone activity.

Beta oxidation is a primary fatty acid utilization pathway in the liver, and

dysregulation of fatty acid beta oxidation has been described in both alcoholic and

nonalcoholic liver disease [11, 23]. Beta oxidation primarily occurs in

mitochondria; while short- (SCFA) and medium chain fatty acids (MCFA) can

freely cross mitochondrial membranes, LCFA require carnitine shuttle systems to

enter mitochondria. In patients with severe AAH, increased lipolysis was

accompanied by metabolic changes suggestive of altered fatty acid beta oxidation.

In the AAH cohort, significantly reduced levels of the SCFA valerate and also

several MCFA were observed in conjunction with elevated acetylcarnitine and

Figure 2. Principal component analysis (PCA) of metabolomics data reveals clustering of data into separate cohorts. Control: alcoholic cirrhosis;
hepatitis: severe AAH.

doi:10.1371/journal.pone.0113860.g002
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ketones (Figure S3A, C), indicating ongoing mitochondrial beta-oxidation. At the

same time, multiple LCFA moieties and acylcarnitines were also elevated in the

severe AAH cohort (Figure S3B), implying either 1) incomplete LCFA beta

oxidation due to insufficient mitochondrial oxidative capacity that is over-

whelmed by FA flux from adipose tissue or 2) defective carnitine shuttle activity (

Figure 4B).

Omega oxidation is a minor pathway of fatty acid metabolism that occurs in

peroxisomes and is primarily responsible for processing very long chain fatty acids

(VLCFAs) into dicarboxylic acids. Omega oxidation is upregulated when beta

Figure 3. Global network analysis of relative measured metabolites in patients with alcoholic cirrhosis and severe AAH. Red nodes depict
metabolites that are increased in severe AAH when compared to alcoholic cirrhosis; yellow nodes depict metabolites that are decreased in severe AAH
when compared to alcoholic cirrhosis.

doi:10.1371/journal.pone.0113860.g003
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oxidation pathways are insufficient for a given FA load [24]. In patients with

severe AAH, serum levels of six dicarboxylic acids were significantly increased

(Figure S4, Figure 5A), and three of these (tetradecanedioate, hexadecanedioate,

octadecanedioate) were also identified in the RF analysis as important

contributors for identification of severe AAH patients. These changes reflect

enhanced omega oxidation in severe AAH and support the notion of inadequate

beta-oxidative capacity for a FA disposal. Furthermore, dicarboxylic acids are

known peroxisome proliferator-activated receptor a (PPARa) ligands and may

regulate intrahepatic lipid partitioning in AAH [25].

Deceased phospholipid and lysolipid turnover may reflect

changes in plasma membrane remodeling in severe AAH

Phospholipids and lysolipids are the principal components of lipid bilayers in cell

membranes. Phospholipids are composed of a diacylglycerol group, phosphate

Figure 4. Schematic representations of altered triglyceride hydrolysis and mitochondrial fatty acid
beta-oxidation in severe AAH. (A) Triglyceride hydrolysis. (B). Mitochondrial fatty acid beta-oxidation.

doi:10.1371/journal.pone.0113860.g004
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head group and an organic molecule, while lysolipids resemble phospholipids

except for the replacement of diacylglycerol with monoacylglycerol.

Phospho(lyso)lipid degradation and synthesis contribute to plasma membrane

remodeling. Compared to cirrhotic patients, subjects with severe AAH exhibited

significant reductions in three major phospholipid metabolites – choline,

glycerophosphocholine (GPC) and glycerol-3-phosphate. Furthermore, the

majority of detected lysolipids were decreased (Figure 5B, Figure S5). Two

lysolipids – 1-linoleoylglycerophosphoethanolamine (1-linoleoyl-GPE) and 2-

linoleoylglycerophosphoethanolamine (2-linoleoyl-GPE) – along with GPC were

identified in the RF analysis as key metabolites for identification of severe AAH.

Finally, increased levels of other important membrane components including

cholesterol and sphingosine were observed (Table S1). Together, these findings

may reflect significant reductions in cell membrane remodeling in patients with

AAH.

Figure 5. Schematic representations of altered fatty acid omega-oxidation and lysolipid and
phospholipid turnover in severe AAH. (A) Fatty acid omega-oxidation. (B) Lysolipid and phospholipid
turnover.

doi:10.1371/journal.pone.0113860.g005
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Alterations in bile acid composition and xenobiotic metabolism

may indicate intestinal dysbiosis in severe AAH

Cholestasis with associated elevation of serum bile acids is commonly

encountered in alcoholic hepatitis, and accordingly, several secondary bile acids

were increased in this cohort (Figure 6A,D). Sulfation is a key mechanism for

increasing bile acid solubility for urinary excretion, and levels of three detected

sulfated bile acid were elevated as well (Figure 6B). Both taurocholenate sulfate

and deoxycholate were identified in the RF analysis, thus highlighting the

importance of cholestasis as a key metabolic feature of severe AAH.

Conversely, the bile acids deoxycholate and glycodeoxycholate, were decreased (

Figure 6C); as these bile acids are derived from intestinal bacterial metabolism,

this may suggest altered gut microbial composition in severe AAH. Furthermore,

several products of benzoate degradation were significantly reduced in patients

with severe AAH, and this finding was corroborated by evidence of altered gut

microbial benzoate metabolism (Figure 7, Figure 3). Together, these findings

provide evidence of intestinal dysbiosis in patients with severe AAH.

Severe AAH is characterized by changes in glucose utilization

and tricarboxylic acid (TCA) cycle activity

In the absence of hepatic dysfunction or fasting, glucose is preferentially

consumed to generate adenosine triphosphate (ATP) through glycolysis, the TCA

cycle, and oxidative phosphorylation. In severe AAH, reduced glucose utilization

was observed. Despite increased levels of serum lactate, elevations in glucose,

fructose, and several sugar alcohols suggest glucose shunting away from glycolysis

and towards the pentose phosphate pathway (PPP) (Figure S6A,B). In this

context, increased lactate levels may reflect impaired hepatic or renal clearance.

Furthermore, the PPP end product xylonate was identified in the RF analysis as a

key marker of severe AAH. As the PPP is critical for generation of NADPH to

neutralize reactive oxygen intermediates, elevations in PPP metabolites likely

reflect increased oxidative stress in patients with AAH (Figure 8A).

Severe AAH was associated with a 15-fold increase in glucuronate. Additionally,

glucuronate was identified as the most important molecule for AAH discrimi-

nation by RF analysis. As an important glucose derivative, glucuronate is

conjugated to xenobiotics, bile acids, and bilirubin via UDP-glucuronosyl

transferases (UGTs) to increase solubility and excretion. In particular,

glucuronidation is essential for the elimination of bilirubin. In the AAH cohort,

the median bilirubin level was significantly elevated at 15.0 mg/dl, suggesting that

elevated glucuronate levels were related to either impaired or overwhelmed

hepatic UGT capacity (Figure 8A).

Multiple intermediates of the TCA cycle, including malate, fumarate, succinate

(in the form of succinylcarnitine) and citrate were increased in patients with

severe AAH compared to cirrhotic controls (Figure 8B, Figure S6D); these

findings are consistent with altered mitochondrial ATP production. Several

potential TCA cycle substrates have been identified in this analysis, including

Serum Metabolomic Profiling in Severe Acute Alcoholic Hepatitis

PLOS ONE | DOI:10.1371/journal.pone.0113860 December 2, 2014 11 / 24



Serum Metabolomic Profiling in Severe Acute Alcoholic Hepatitis

PLOS ONE | DOI:10.1371/journal.pone.0113860 December 2, 2014 12 / 24



products of FA metabolism and protein catabolism. For example, as there is

evidence of ongoing FA beta-oxidation in severe AAH, acetylcarnitine end-

products may drive Krebs cycle activity through increased acetyl-CoA availability.

On the other hand, reduced glucose utilization via glycolysis may decrease

pyruvate availability for conversion to acetyl-CoA.

Changes in AA metabolite and peptide derivatives suggest

increased protein catabolism for energy production

Amino acids provide yet another substrate for energy production, and marked

changes in protein metabolism were noted in patients with severe AAH. In

particular, significant reductions in all three branched-chain amino acids

(BCAAs) were accompanied by increased levels of BCAA metabolites (Figure S7A,

B). In addition, levels of TCA cycle intermediates derived from BCAA were

increased in patients with severe AAH. As skeletal muscle is the primary site of

BCAA catabolism, these findings suggest increased utilization of BCAA by skeletal

muscle as an energy substrate.

Figure 6. Alterations in serum bile acid levels in patients with severe acute alcoholic hepatitis (hepatitis) and stable alcoholic cirrhosis (control).
(A) Secondary bile acids. (B) Sulfated bile acids. (C) Products of gut microbial bile acid metabolism. (D) Schematic representation of altered bile acid
turnover in severe AAH. * p,0.05, ** p,0.01, *** p,0.001.

doi:10.1371/journal.pone.0113860.g006

Figure 7. Alterations in serum levels of metabolites derived from intestinal microbial benzoate metabolism in patients with severe acute alcoholic
hepatitis (hepatitis) and stable alcoholic cirrhosis (control). * p,0.05, ** p,0.01, *** p,0.001.

doi:10.1371/journal.pone.0113860.g007
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Post-translational modification of amino acids occurs in the liver to enhance

AA excretion, and levels of several modified amino acids (by glycosylation,

acetylation, and formylation), were enhanced in the severe AAH cohort (Table 2).

Of note, N-acetyltryptophan levels were increased 421-fold in severe AAH

compared to cirrhotic controls, and N-acetyl-serine was identified in the RF

analysis as a key component of the metabolic signature of AAH. There was a trend

Figure 8. Schematic representations of altered serum metabolites involved in glucose utilization and TCA cycle activity in severe AAH. (A)
Glucose utilization pathways. (B) TCA cycle.

doi:10.1371/journal.pone.0113860.g008

Serum Metabolomic Profiling in Severe Acute Alcoholic Hepatitis

PLOS ONE | DOI:10.1371/journal.pone.0113860 December 2, 2014 14 / 24



towards increased urea levels with decreased arginine and citrulline levels in severe

AAH (Figure S7C), reflecting increased hepatic disposal of nitrogenous

compounds, including amino acids. Finally, several dipeptides (phenylalanyl-

tryptophan, leucylalanine, prolylhydroxyproline, phenylalanylphenylalanine, and

phenylalanylleucine) were detected in the RF analysis discriminating severe AAH

from alcoholic cirrhosis (Figure 1, Table 2). Together, these findings highlight

the importance of increased protein degradation and amino acid catabolism for

maintaining energy homeostasis in severe AAH.

Metabolic alterations in severe AAH indicate an oxidative

environment and increased inflammation

Altered levels of several biomolecules highlighted the contributions of oxidative

stress, antioxidant depletion and inflammation to metabolic phenotypes in severe

AAH. In addition to enhanced levels of pentose phosphate pathway metabolites,

serum symmetric dimethylarginine (SDMA), an important regulator of monocyte

endothelial ROI generation [26] was significantly increased in patients with severe

AAH versus cirrhotic controls. As SDMA undergoes renal excretion, serum levels

may reflect subclinical renal dysfunction in this cohort. Other oxidized

Table 2. Serum levels of protein degradation products.

Metabolite Fold Change (AAH vs. Cirrhosis) P Value Q Value

N-acetylglycine 1.74 ,0.001 ,0.001

N-acetylserine 2.66 ,0.001 ,0.001

N-acetylthreonine 1.99 0.0038 0.0033

N-acetyl-beta-alanine 1.49 ,0.001 ,0.001

N-acetylalanine 1.78 ,0.001 ,0.001

N6-acetyllysine 1.44 ,0.001 ,0.001

N-acetylphenylalanine 1.72 0.0033 0.0029

N-acetyltryptophan 421.50 0.0102 0.0072

N-acetylmethionine 1.62 0.0035 0.003

Aspartylphenylalanine 0.48 ,0.001 ,0.001

Prolylalanine 1.51 0.0036 0.0031

Leucyleucine 0.64 0.0166 0.0105

Pro-hydroxyproline 2.57 ,0.001 ,0.001

Phenylalanylphenylalanine 0.25 ,0.001 ,0.001

Valylarginine 0.43 ,0.001 ,0.001

Histidyltryptophan 0.40 ,0.001 ,0.001

Leucylalanine 0.31 ,0.001 ,0.001

Phenylalanylleucine 0.31 ,0.001 ,0.001

Phenylalanylserine 0.54 ,0.001 ,0.001

Phenylalanyltyptophan 0.24 ,0.001 ,0.001

Relative levels of serum protein degradation products, including acetylated amino acids, dipeptides, and urea cycle intermediates. Serum levels of each
metabolite were compared using paired Welch’s t tests, and q values were calculated to account for false discovery rates to correct for multiple comparisons.

doi:10.1371/journal.pone.0113860.t002
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metabolites, including biliverdin and erythronate were also greater in AAH

(Figure S8). Furthermore, three of six detected monohydroxylated fatty acids

were increased, as was 1,2-propanediol, a metabolite derived from methylglyoxal

detoxification [27]. Together, these findings reflect enhanced oxidative stress in

severe AAH.

Conversely, the metabolomics analysis revealed evidence of altered antioxidant

utilization in severe AAH. Glutathione is a key antioxidant synthesized both from

de novo and salvage pathways within in the liver. In patients with severe AAH,

levels of both alpha-ketobutyrate and alpha-hydroxybutyrate were significantly

increased, suggesting shunting of homocysteine to glutathione synthesis.

Interestingly, this was accompanied by increased methionine levels, which may

reflect decreased utilization of methionine for S-adenosyl methionine (SAMe)

generation. Finally, there was a trend towards higher levels of 5-oxoproline

Figure 9. Alterations in inflammation-associated metabolites in AAH. (A) Serum levels of tryptophan metabolites in patients with severe acute alcoholic
hepatitis (hepatitis) and stable alcoholic cirrhosis (control). (B) Schematic representation of altered indoleamine 2,3-dioxygenase activity in severe AAH. (C)
Serum levels of lipid-derived inflammatory mediators in patients with severe acute alcoholic hepatitis (hepatitis) and stable alcoholic cirrhosis (control). *
p,0.05, ** p,0.01, *** p,0.001. IDO, indoleamine 2,3-dioxygenase; TNF-a, tumor necrosis factor a; IFN-c, interferon-c.

doi:10.1371/journal.pone.0113860.g009
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(p50.066), a marker of glutathione degradation. In addition, significant

reductions in ascorbate (vitamin C) and gamma-CEHC (a product of gamma-

tocopherol metabolism) were observed, indicating either antioxidant depletion or

malnutrition (Figure S8).

In conjunction with increased oxidative stress and decreased antioxidant

capacity, altered levels of several biochemicals highlighted the profound

inflammation seen in acute AAH. Indoleamine 2,3-dioxygenase (IDO) is a highly-

inducible enzyme which is up-regulated by the inflammatory cytokines tumor

necrosis factor a (TNFa) and interferon-gamma (IFN-c) [28, 29]. Tryptophan

was preferentially shunted towards IDO metabolism and away from serotonin

synthesis, as the IDO product kynenurate was increased while serotonin levels

were decreased in patients with severe AAH (Figure 9A,B). Together, these

findings reflect increased TNF-a and IFN-c-mediated inflammation. In addition,

serum levels of cortisol as well as the proinflammatory molecules 12-HETE and

palmitoyl ethanolamide were significantly higher in patients with severe AAH (

Figure 9C). In total, these markers of oxidative stress and inflammation confirm

known associations between these pathways and the pathogenesis of AAH.

Table 3. Serum levels of significantly altered metabolites between AAH survivors and nonsurvivors.

Pathway Metabolite Fold Change* P Q

Glutamate Metabolism glutamine 0.72 0.0285 0.4415

Aromatic AA Metabolism 3-methoxytyrosine 1.39 0.042 0.4415

BCAA Metabolism 3-hydroxyisobutyrate 1.72 0.046 0.4415

SH-Containing AA Metabolism a-ketobutyrate 2.76 0.044 0.4415

2-hydroxybutyrate 1.82 0.04523 0.4415

S-methylcysteine 0.75 0.0226 0.4415

Dipeptide Metabolism valylarginine 0.45 0.0215 0.4415

Glucose Metabolism glucose 1.22 0.0454 0.4415

Pentose Phosphate Pathway threitol 2.04 0.0499 0.4415

Mannose Metabolism mannose 1.46 0.0358 0.4415

Branched FA Metabolism 17-methylstearate 1.49 0.0398 0.4415

Acyl Carnitine Metabolism hexanoylcarinitine 1.72 0.0433 0.4415

decanoylcarnitine 1.60 0.0336 0.4415

Lysolipid Metabolism 1-linoleoylglycerophosphoethanolamine 0.39 0.0182 0.4415

Sterol Metabolism b-sitosterol 1.79 0.0430 0.4415

Steroid Metabolism 21-hydroxypregnenolone disulfate 2.83 0.0049 0.4415

pregn-steroid monosulfate 2.88 0.0309 0.4415

4-androsten-3-beta,17-betadiol disulfate 1.89 0.0427 0.4415

Purine Metabolism N1-methyladenosine 1.20 0.0429 0.4415

Porphyrin Metabolism heme 1.88 0.0280 0.4415

Relative levels of serum metabolites between survivors and nonsurvivors with severe AAH. Serum levels of each metabolite were compared using paired
Welch’s t tests, and q values were calculated to account for false discovery rates to correct for multiple comparisons. AA, amino acid; BCAA, branched-chain
amino acid; FA, fatty acid. *Fold change Survivor vs. Non-survivor.

doi:10.1371/journal.pone.0113860.t003
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A panel of metabolic biomarkers identify long-term survivors with

severe AAH

As only 56% of patients with severe AAH survived to 180 days, we sought to

identify metabolic biomarkers associated with mortality. Treatments likely did not

explain differences in survival of patients with severe AAH, as similar proportions

of survivors and non-survivors received prednisolone (31.4% of survivors versus

42.6% of non- survivors, p5N.S.), pentoxifylline (64.5% versus 70.9%, p5N.S.),

both medications (5.7% versus 11.6%, p5N.S.) or neither medication. (4.7%

versus 9.8%, p5N.S.). Overall, levels of twenty named metabolites were

significantly different between survivors and non- survivors with severe AAH

(Table 3). Of these, four biochemicals were elevated in survivors, while 16 were

decreased. Multiple metabolites that were altered between severe AAH and

alcoholic cirrhosis also differed between survivors and nonsurvivors. In particular,

the biomolecule 3-hydroxybutyrate, which was identified in the RF analysis

distinguishing severe AAH from alcoholic cirrhosis, was also elevated in survivors

of severe AAH.

Next, we performed univariable exact logistic regression analysis to determine

predictors of 6-month survival in severe AAH. Of the twenty biomarkers studied,

15 were significantly associated with mortality in this cohort (Table 4).

Table 4. Metabolic predictors of 180-day survival in severe AAH by logistic regression analysis.

Metabolite Univariate O.R. 95% C.I. P

glutamine 23.994 1.215–1192.400 0.034

3-methoxytyrosine 0.084 0.005–0.825 0.032

3-hydroxyisobutyrate 0.400 0.114–0.987 0.045

a-ketobutyrate 0.339 0.095–0.862 0.018

2-hydroxybutyrate 0.510 0.229–0.968 0.038

S-methylcysteine 31.712 1.334–2131.335 0.028

valylarginine 30.848 1.705–1669.992 0.013

glucose 0.917 0.485–1.718 0.778

threitol 0.743 0.453–1.067 0.124

mannose 0.128 0.013–0.746 0.018

17-methylstearate 0.196 0.028–0.918 0.037

hexanoylcarinitine 0.530 0.218–1.037 0.066

decanoylcarnitine 0.297 0.047–1.006 0.052

1-linoleoylglycerophosphoethanolamine 15.767 1.129–737. 559 0.033

b-sitosterol 0.228 0.285–0.987 0.047

21-hydroxypregnenolone disulfate 0.206 0.028–0.802 0.009

pregn-steroid monosulfate 0.262 0.039–0.900 0.025

4-androsten-3-beta,17-betadiol disulfate 0.706 0.459–0.993 0.045

N1-methyladenosine 0.035 0.001–0.985 0.049

heme 0.680 0.349–1.148 0.174

Univariable logistic regression analysis for metabolic predictors of 180-day survival in severe AAH. AA, amino acid; BCAA, branched-chain amino acid; FA,
fatty acid; O.R., odds ratio; C.I., confidence interval.

doi:10.1371/journal.pone.0113860.t004
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Discussion

In this prospective case control study, we utilized unbiased serum metabolomics

to characterize alterations in pathways associated with severe AAH. Three

important observations were noted. First, we demonstrated that changes in serum

metabolites accurately discriminated AAH from alcoholic cirrhosis. Next, we

described differences in biochemical levels related to several metabolic pathways,

including lipid metabolism, bile acid homeostasis, protein utilization, glucose

disposal, oxidative stress, and inflammation. Finally, we identified a panel of

metabolic biomarkers that differed between survivors and nonsurvivors with

severe AAH for future analysis.

Random forest (RF) classification of serum metabolic profiles distinguished

severe AAH from alcoholic cirrhosis with 100% accuracy, thus indicating that

differences between the two groups were quite pronounced. RF analysis was also

used to identify the 30 most important biochemicals separating severe AAH from

alcoholic cirrhosis, and principal component analysis (PCA) demonstrated that

metabolic signatures of severe AAH varied greatly from those related to alcoholic

cirrhosis. Together, RF analysis and PCA provide compelling evidence that severe

AAH is characterized by a distinct metabolic phenotype spanning several

metabolic pathways.

Animal models of alcoholic liver disease have demonstrated dysfunctional

adipose and hepatic lipid metabolism, including adipose tissue hyperlipolysis,

defective hepatic lipid catabolism, and altered lipid trafficking [7–9, 12, 30].

Similar to these findings, patients with severe AAH in the current study exhibited

enhanced adipose tissue triglyceride lipolysis, relative impairment of hepatic fatty

acid beta oxidation, and enhanced fatty acid omega oxidation. In particular,

accumulation of incomplete LCFA degradation products suggests reduced

mitochondrial oxidative capacity for a large FA load. In addition to enhanced

adipose tissue lipolysis and dysfunctional fatty acid oxidation, changes in other

lipid-derived metabolites were also observed. Low serum levels of multiple

phospholipids, lysolipids, and associated degradation products suggest decreased

cell membrane remodeling in severe AAH [31, 32].

While levels of most serum bile acids were elevated in patients with severe AAH,

levels of two gut microbiota-derived moieties, deoxycholate and glycodeoxycho-

late, were decreased. Additionally, pronounced changes in enteric microbial

benzoate handling were identified in patients with severe AAH. Similar

phenomena have been described in metabolomics studies of intestinal microbial

alteration in inflammatory conditions such as obesity and inflammatory bowel

disease. Together, these findings highlight a role for intestinal dysbiosis in severe

AAH [33–35].

Metabolomics profiling also highlighted several changes in substrate utilization

for energy homeostasis. The accumulation of several sugar alcohols in patients

with severe AAH indicated glucose shunting towards the pentose phosphate

pathway, an important source of reduced nicotinamide adenine dinucleotide

(NADH) to neutralize oxidative stress. Observed elevations in serum lactate levels
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may be related to impaired hepatic clearance, as previous human and animal

studies have demonstrated decreased gluconeogenesis in the setting of alcohol

consumption [36]. Increased levels of multiple TCA cycle intermediates in

patients with severe AAH reflect decreased mitochondrial energy metabolism, and

high levels of multiple protein degradation products pointed to increased

utilization of amino acids as a primary energy substrate in this population.

The metabolic phenotype of AAH is characterized by oxidative stress resulting

in systemic inflammation [37, 38], and to this effect levels of several oxidized

metabolites were elevated in severe AAH. Pronounced depletion of antioxidants,

including vitamin C and the vitamin A metabolite gamma-CEHC was observed,

and multiple metabolites related to glutathione turnover were altered. These

changes were associated with increased kynenurate, decreased serotonin, and

decreased tryptophan levels, likely mediated by the highly-inducible enzyme IDO.

As IDO expression is up-regulated by TNFa and IFN-c [28, 29], these findings

underscore the role of systemic inflammation in severe AAH.

Finally, we compared metabolite levels in survivors and non-survivors with

severe AAH to determine potential biomarkers of disease severity and prognosis.

Twenty metabolites spanning multiple metabolic pathways were significantly

different between groups, and of these biomarkers, 15 were significantly associated

with 6-month survival by univariable logistic regression analysis. This difference

was not related to treatment effects, as exposure to corticosteroids and

pentoxifylline was similar between survivors and non-survivors. Together, these

metabolites represent a potential biomarker panel for disease prognosis and may

shed light on the pathogenesis of severe AAH.

A few limitations were noted. First, the serum metabolome represents the net

result of metabolic changes in several tissues; nonetheless, many of the

biomolecules identified in the current study were primarily derived from energy

homeostasis organs, including the liver, adipose tissue, and skeletal muscle.

Second, quantification of ethanol consumption was not obtained from most

patients, and many of the metabolic pathways studied are directly regulated by

ethanol. Even so, levels of ethyl glucuronide, a derivative of ethanol metabolism

commonly used to assess long-term abstinence [39, 40], were similar between

patients with severe AAH and alcoholic cirrhosis, and all patients with severe AAH

underwent blood collection within 24 hours of admission. Finally, small sample

sizes (n525 per group) may have increased the probability of type II error in

hypothesis testing. Despite the sample size, however, a distinct metabolic

phenotype for severe AAH was defined.

In conclusion, our findings define the rich metabolic signature of severe AAH

and identify potential metabolic biomarkers of disease prognosis. Future studies

are planned to validate these findings in larger cohorts of patients with severe

AAH.
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Supporting Information Legends

Figure S1. Unbiased hierarchical clustering analysis of measured metabolites

between subject cohorts.

doi:10.1371/journal.pone.0113860.s001 (TIF)

Figure S2. Serum levels of long chain free fatty acids (LCFA) and triglyceride

hydrolysis intermediates in patients with severe acute alcoholic hepatitis

(hepatitis) and stable alcoholic cirrhosis (control). (A) Long chain free fatty

acids. (B) Triglyceride hydrolysis intermediates. * p,0.05, ** p,0.01, ***

p,0.001.

doi:10.1371/journal.pone.0113860.s002 (TIF)

Figure S3. Serum levels of short-(SCFA) and medium-chain fatty acids

(MCFA), fatty acylcarnitines, and ketone bodies in patients with severe acute

alcoholic hepatitis (hepatitis) and stable alcoholic cirrhosis (control). (A)

Short- and medium-chain fatty acids. (B) Fatty acylcarnitines. (C) Ketone bodies.

* p,0.05, ** p,0.01, *** p,0.001.

doi:10.1371/journal.pone.0113860.s003 (TIF)

Figure S4. Serum levels of dicarboxylic acids in patients with severe acute

alcoholic hepatitis (hepatitis) and stable alcoholic cirrhosis (control). p,0.05,

** p,0.01, *** p,0.001.

doi:10.1371/journal.pone.0113860.s004 (TIF)

Figure S5. Serum levels of lysolipids and intermediates of lysolipid and

phospholipid metabolism in patients with severe acute alcoholic hepatitis

(hepatitis) and stable alcoholic cirrhosis (control). (A) Lysolipids. (B)

Intermediates of lysolipid and phospholipid metabolism. * p,0.05, ** p,0.01, ***

p,0.001.

doi:10.1371/journal.pone.0113860.s005 (TIF)

Figure S6. Serum levels of glucose utilization pathway and tricarboxylic acid

(TCA) cycle intermediates in patients with severe acute alcoholic hepatitis

(hepatitis) and stable alcoholic cirrhosis (control). (A) Glucose with associated

metabolic products. (B) Pentose phosphate pathway intermediates. (C)

Glucuronate and 2,3-butanediol. (D) Tricarboxylic acid (TCA) cycle intermedi-

ates. * p,0.05, ** p,0.01, *** p,0.001.

doi:10.1371/journal.pone.0113860.s006 (TIF)

Figure S7. Serum levels of branched-chain amino acids (BCAA), BCAA

degradation products, and urea cycle intermediates in patients with severe

acute alcoholic hepatitis (hepatitis) and stable alcoholic cirrhosis (control). (A)

Branched-chain amino acids. (B) BCAA degradation products. (C) Urea cycle

intermediates. * p,0.05, ** p,0.01, *** p,0.001.

doi:10.1371/journal.pone.0113860.s007 (TIF)

Figure S8. Serum levels of oxidized biomolecules, monohydroxy fatty acids,

intermediates of glutathione metabolism and antioxidants in patients with

severe acute alcoholic hepatitis (hepatitis) and stable alcoholic cirrhosis
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(control). (A) Oxidized biomolecules. (B) Monohydroxy fatty acids. (C)

Intermediates of glutathione metabolism. (D) Antioxidants. * p,0.05, ** p,0.01,

*** p,0.001.

doi:10.1371/journal.pone.0113860.s008 (TIF)

Table S1. Serum metabolite concentrations from patients with severe acute

alcoholic hepatitis (hepatitis) and stable alcoholic cirrhosis (control).

doi:10.1371/journal.pone.0113860.s009 (XLSX)
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