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BOLD Subjective Value Signals Exhibit Robust Range
Adaptation
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Many theories of decision making assume that choice options are assessed along a common subjective value (SV) scale. The neural
correlates of SV are widespread and reliable, despite the wide variation in the range of values over which decisions are made (e.g., between
goods worth a few dollars, in some cases, or hundreds of dollars, in others). According to adaptive coding theories (Barlow, 1961), an
efficient value signal should exhibit range adaptation, such that neural activity maintains a fixed dynamic range, and the slope of the value
response varies inversely with the range of values within the local context. Although monkey data have demonstrated range adaptation in
single-unit correlates of value (Padoa-Schioppa, 2009; Kobayashi et al., 2010), whether BOLD value signals exhibit similar range adapta-
tion is unknown. To test for this possibility, we presented human participants with choices between a fixed immediate and variable
delayed payment options. Across two conditions, the delayed options’ SVs spanned either a narrow or wide range. SV-tracking activity
emerged in the posterior cingulate, ventral striatum, anterior cingulate, and ventromedial prefrontal cortex. Throughout this network,
we observed evidence consistent with the predictions of range adaptation: the SV response slope increased in the narrow versus wide
range, with statistically significant slope changes confirmed for the posterior cingulate and ventral striatum. No regions exhibited a
reliably increased BOLD activity range in the wide versus narrow condition. Our observations of range adaptation present implications
for the interpretation of BOLD SV responses that are measured across different contexts or individuals.
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Introduction
Many theories of decision making assume that choice options are
assessed along a common subjective value (SV) scale (Kable and
Glimcher, 2009). In line with this assumption, neural evidence
has shown that value modulates activity across several cortical
and subcortical regions. In monkeys, value modulates single-unit
spike rates in the orbitofrontal cortex (OFC), anterior cingulate
cortex (ACC), and the striatum (for review, see Rushworth et al.,
2011; Bissonette et al., 2014). In humans, value modulates BOLD
signals in the likely anatomical homologues of these regions, and
also in the ventromedial prefrontal cortex (VMPFC) and poste-
rior cingulate cortex (PCC; Levy and Glimcher, 2012; Bartra et
al., 2013; Clithero and Rangel, 2014).

Both monkey and human studies report an approximately
linear relationship between value and neural activity (Padoa-
Schioppa and Assad, 2006; Kable and Glimcher, 2007). This re-
lationship is maintained across highly variable scales of value. In
fMRI tasks, values may span a few cents (Valentin et al., 2007) or

hundreds of dollars (Kable and Glimcher, 2007). Real-world set-
tings exhibit even greater variability in the possible range of
values.

How can a potentially infinite range of values be encoded
within a finite range of neural activity? The efficient coding hy-
pothesis states that the neural code should adapt to the present
context, so that a neuron exploits its entire dynamic range within
that context (Barlow, 1961; Wark et al., 2007). In the case of
value, efficient coding implies that the neural code should adapt
to fluctuations in the decision context, such that the range of
possible spike rates precisely spans the anticipated range of val-
ues. Therefore, optimal range adaptation implies that the slope of
the value response function should decrease in direct proportion
to increases in value range (Padoa-Schioppa, 2009).

A limited number of monkey electrophysiological studies
have investigated whether single-unit value signals exhibit range
adaptation. These studies found the expected inverse relationship
between value range and neural sensitivity in the OFC and ACC
(Padoa-Schioppa, 2009; Kobayashi et al., 2010; Cai and Padoa-
Schioppa, 2012), although nonadapting subpopulations of OFC
neurons have also been reported (Kobayashi et al., 2010).

Whether human BOLD value correlates exhibit similar range
adaptation is unknown. Although a recent fMRI study demon-
strated adaptive coding of reward prediction errors (Park et al.,
2012), no imaging studies have investigated range adaptation in
the value signals evoked during decision making. fMRI evidence
of range adaptation would confirm an additional dimension of
correspondence between single-unit and BOLD value signals,
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and would indicate that possible changes in the range of values
could figure importantly into the interpretation of changes in
BOLD value sensitivity observed across different decision
settings.

Here, we examine the range sensitivity of BOLD value signals
in an intertemporal choice paradigm (Kable and Glimcher,
2007). Analyses compared the value signals evoked by delayed
payment options that spanned either a narrow or wide value
range. Throughout the valuation circuitry, we observed trends
consistent with adaptive coding, and statistically significant range
adaptation emerged in the ventral striatum (vStr) and PCC.

Materials and Methods
Healthy, right-handed young adults (18 –30 years old) were recruited
from the University of Pennsylvania and surrounding community. All
participants provided written informed consent, and study procedures
were approved by the Institutional Review Board of the University of
Pennsylvania. Thirty-nine participants (13 males, 26 females) completed
an initial prescan behavioral screening session. Eligible individuals (n �
27; see Screening session for eligibility criteria) were invited to participate
in a subsequent fMRI session. Seven of these participants are not in-
cluded in our reported dataset, due to either excessive in-scanner head
movement (n � 2; see FMRI data preprocessing), fMRI task behavior
that did not meet study criteria (n � 3; see Scan session), sleeping in the
scanner (n � 1), or cancellation of the scheduled fMRI session (n � 1).
The final dataset includes 20 participants (9 males, 11 females; mean
age � SD, 22.1 � 2.69 years; range, 19 –28 years). All analyses of fMRI
BOLD data (see fMRI data analysis) and fMRI session behavioral data
(see Behavioral analyses) were restricted to this reduced dataset.

Protocol overview
We examined the range sensitivity of value signals in the context of
intertemporal decision making. Participants completed three intertem-
poral choice tasks over the course of one screening and one fMRI session.
During the screening session, two tasks (1) allowed estimation of each
individual’s discount rate, (2) provided prescan exposure to a shifting
range of delayed option SVs, and (3) confirmed choice stability in the
presence of this shift. The fMRI task used a similar range manipulation as
was used for the screening session. For the 20 reported participants, the
intersession delay varied from 2 to 14 d (mean � SD, 6.65 � 3.91 d).

Screening session
At the outset, participants were instructed regarding the general nature of
the screening tasks, the incentive scheme, and the methods of payment
(see descriptions below). All participants completed the first screening
task, with presentation of the second screening task contingent upon the
behavior observed during the first. Both the screening and fMRI tasks
were presented using E-Prime 2.0 software (Psychology Software Tools).

Screening Task #1 (stable range). During the first screening task, each
trial began with the display of a central fixation dot (500 ms), which was
subsequently flanked by a pair of immediate and delayed payment op-
tions (e.g., “$40 now” vs “$62 in 15 days”; position of the immediate
option randomized across trials). The participant could choose the left or
right option by pressing the 1 or 0 key, respectively, within a response
time (RT) limit of 6 s. A valid response triggered the feedback display
(500 ms), which consisted of a single checkmark indicating the side of the
chosen option. Following a missed trial (expired RT limit), feedback
consisted of a centrally presented question mark. The feedback display
was followed by a blank intertrial interval (ITI) screen of variable dura-
tion (6 s minus recorded RT). The adaptive ITI was intended to discour-
age participants from responding rapidly in an attempt to complete the
task quickly. Before starting the task, participants answered a series of
comprehension questions and completed three practice trials.

The screening task presented 57 unique option pairs. For each pair,
one of three possible immediate amounts ($35, $40, $45) was coupled
with a variable delayed amount (range, $44 –$97) and delay (range,
1–359 d). Amounts and delays were selected so that each option pair
approximated a point of indifference for a specific discount rate, with

these rates evenly sampled across the range of study-eligible discount
rates.

Discount rates were estimated through optimization routines imple-
mented in Matlab (Mathworks). Temporal discounting was modeled
according to the hyperbolic function, SV � A/(1 � kD), where SV de-
notes an option’s estimated SV, A and D represent the option amount
and delay, and k represents the individual’s estimated discount rate (Ma-
zur, 1987). Choices were predicted with the logistic function, p(delayed) �
1/(1 � �e (now � SV)), where SV denotes the delayed option’s SV, “now”
represents the immediate offer, � models the slope of the logistic curve,
and p(delayed) returns the probability of delayed option choice. The opti-
mization process converged upon the pair of k and � values associated
with the maximum log likelihood of observing the actual choices that the
participant made. Since discount rates are not normally distributed, the
estimated k values were log transformed before submission to statistical
analysis.

An estimated log(k) value in the range of �2.7 to �0.9 (k of 0.002–
0.136) was required for a participant to proceed to the second screening
task. This requirement was necessary to ensure the practicality of pre-
senting a wide SV range to all participants, since the wide range was
designed to include delayed options with very high SVs (leading to im-
practically large delayed amounts for high discounters) and with very low
SVs (leading to impractically long delays for low discounters). Eight
participants’ discount rates fell outside of the required range. These par-
ticipants were dismissed and provided with both a $10 base compensa-
tion payment and an added incentive payment.

The incentive payment corresponded to the option chosen on a single
trial, which was randomly selected through a series of participant-
executed dice rolls. If a missed trial was selected, then the participant
received no incentive payment. As in previous studies (Kable and Glim-
cher, 2007, 2010), all incentive payments were provided through debit
cards to which the funds could be remotely loaded on the appropriate
date.

Screening Task #2 (manipulated range). The second screening task pre-
sented 192 choices between an immediate option of $40 now and a de-
layed option that varied across trials. Trials began with the central display
of the delayed option (with the immediate option not shown; Fig. 1).
Within an RT limit of 4 s, participants could choose the delayed or
immediate option by pressing the 1 or 0 key, with the key-option map-
ping alternating across the four task blocks. A valid response triggered the
feedback display (1 s), which consisted of a filled circle (chose delayed
option), an open circle (chose immediate option), or a question mark
(missed trial). As in the first screening task, feedback was followed by a
blank ITI display of variable duration (ITI, 4 s minus RT). Participants
were informed of the change in task format and completed two prac-
tice trials before starting the task. Additionally, each block was
preceded by instructions and a brief quiz regarding the upcoming
key-option mapping.

The delayed payment options were generated individually for each
participant, and consisted of two 96-option sets that spanned either a
narrow or wide range of SVs (Fig. 2). Identical option generation proce-
dures were used for the second screening task and the fMRI task. Options
were drawn from an initial pool that consisted of all amount– delay com-
binations falling within the bounds of $41–$100 and 1–365 d (integer
values only). This initial pool was reduced in two steps.

In the first step, we identified subpools of amount– delay pairs that
corresponded to prespecified ranges of SV. SV (in units of equivalent
“now” amount, in dollars) was calculated using the participant’s esti-
mated discount rate. For the second screening task, this discount rate was
set equal to the log(k) estimate from the first task; for the fMRI task, we
used the mean of the log(k) estimates from the two screening tasks. We
retained only those amount– delay pairs for which the SV fell into one of
four zones: (1) $24 � SV � $28 (negative wide zone), (2) $32 � SV � $40
(negative narrow zone), (3) $40 � SV � $48 (positive narrow zone), or
(4) $52 � SV � $56 (positive wide zone). In the second step, we deter-
mined the ranges of amounts and delays present among all narrow zone
options, and then eliminated any wide zone options for which the corre-
sponding amount or delay fell outside of these ranges. This step ensured
that the narrow and wide zone options spanned identical ranges of
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amounts and delays, and therefore decoupled our SV range manipula-
tion from changes in the range of either individual attribute.

The final, reduced pool was sampled to create the Narrow and Wide
Range Condition option sets. In preparation for this sampling process,
the pool was divided into bins of $1 width (in SV units). Each Range
Condition contained 64 “Common” options, which were generated by
sampling four option pairs from each of the 16 narrow zone bins ($32 �
SV � $48). Therefore, the two sets of Common options [Common Nar-
row (ComN) and Common Wide (ComW)] contained matching distri-
butions of SVs. The two Range Conditions were distinguished by 32
“Contextual” options. For the Narrow Condition, Contextual options
(CtxtN) were again sampled from the 16 narrow zone bins (two options per
bin, $32 � SV � $48). For the Wide Condition, Contextual options
(CtxtW) were sampled from the eight wide zone bins (four options per
bin, $24 � SV � $28 and $52 � SV � $56). In our primary analyses (see
descriptions below), we tested whether BOLD responses to the Common
options, which spanned identical SV ranges, varied as a function of the
Contextual options, which spanned different SV ranges.

For each Range Condition, the Common and Contextual options were
evenly divided across two 48-trial blocks. Within each block, the first
three trials presented Contextual options to ensure that this range-
specific information was immediately available. The final trial presented
a Common option, and the remaining 44 options were randomly as-
signed to the remaining trials.

During a session, the participant first viewed two blocks of one Range
Condition, followed by the two blocks of the remaining Condition. Since
the key-option mapping alternated from block to block, all possible com-
binations of Range Condition and key-option mapping were present.
The Condition and key mapping sequences were counterbalanced across
participants, and each participant experienced the same sequences across
the screening and fMRI sessions (with the exception of one participant,
due to a procedural error).

At the end of the screening session, the choice data from the second
task were analyzed to determine the participant’s eligibility for the fMRI

session. Choices were evaluated against two criteria. First, due to the
same practicality constraint described above, the participant was re-
quired to maintain a log-transformed discount rate within the �2.7 to
�0.9 range. Second, choices were required to meet a stability criterion,
which was satisfied if the participant accepted �50% of the delayed
options in the positive wide zone, and rejected �50% of the delayed
options in the negative wide zone. Failure to meet this requirement sug-
gests that the discount rate estimated following the first screening task
was not a reliable indicator of the participants’ preferences in the second
screening task, and that the delayed options did not actually span the SV
ranges that they were designed to span.

Four participants were excluded from the fMRI session on the basis of
their second screening task choices (out of range log(k) values for three of
four participants, and stability criteria violation for three of four). For all
participants who completed both screening tasks, compensation in-
cluded the $10 base pay and an added incentive payment (trial drawn
from the combined data from the two screening tasks).

Scan session
fMRI task. The fMRI task stimuli were projected onto a screen behind the
scanner bore and viewed on a mirror affixed to the head coil. Participants
could respond using their left and right thumbs, which were positioned
over the outermost buttons of a four-button respond pad. Instructions
emphasized the general similarity between the fMRI task and the second
screening task, but made no reference to the range manipulation.

During anatomical data acquisition, participants completed 12 prac-
tice trials, which were followed by the functional scans and the main task
trials. Trials retained the same fundamental structure as was used in the
second screening task, with the exception of an additional jitter period
that followed each base adaptive ITI (as determined by the Freesurfer
program optseq2; Dale, 1999; jitter range, 0 –20 s; median, 5 s).

The fMRI task behavioral data were evaluated according the same
eligibility criteria that were used for the second screening task. Three
participants’ data were excluded from subsequent analysis due to
failure to meet these criteria [out-of-range log(k) estimates for three
of three participants, and insufficient choice stability for two of
three]. All fMRI participants received a base $20 payment plus the
incentive payment indicated by a randomly selected fMRI task trial.

MRI data acquisition. Imaging data were acquired using a 3T Siemens
Trio scanner equipped with a 32-channel head coil. Each session began
with the acquisition of a high-resolution T1-weighted anatomical image
(MPRAGE sequence; TR � 1630 ms; TE � 3.11 ms; TI � 1100 ms; flip
angle, 15°; 160 axial slices; voxel size, 0.9375 � 0.9375 � 1.000 mm;
matrix, 192 � 256) and a T2-weighted anatomical image (TR � 7000 ms;
TE � 90.0 ms; flip angle, 180°; 44 axial slices; voxel size, 0.75 � 0.75 � 3.0
mm; matrix, 256 � 256). The anatomical scans were followed by four
T2*-weighted functional scans (EPI sequence; TR � 2.5 s; TE � 25 ms;
flip angle, 75°; 44 axial slices; interleaved ascending acquisition sequence;
voxel size, 3 � 3 � 3 mm; matrix, 64 � 64; total volumes, 200; duration,
8 min 25 s). For each functional run, the first two volumes were discarded
to minimize T1 saturation effects. Following the functional scans, we
acquired a B0 field map (TE 1 � 4.31 ms; TE 2 � 6.77 ms; 44 axial slices;
voxel size, 3 � 3 � 3 mm; matrix, 64 � 64) to support off-line estimation
of geometric distortion in the functional data.

To reduce signal dropout in the orbitofrontal cortex, functional scans
(and the T2-weighted and B0 scans) were acquired at a 30° tilt relative to
the anterior commissure-posterior commissure plane (Deichmann et al.,
2003). The resulting slice prescription provided whole or near-whole
brain coverage across participants.

fMRI data preprocessing
Functional data were preprocessed with a combination of the Analysis of
Functional NeuroImages (AFNI; Cox, 2012) and FMRIB (Functional
Magnetic Resonance Imaging of the Brain) Software Library (FSL; Jen-
kinson et al., 2012) software packages. Image data were interpolated in
time to correct for staggered slice acquisition times and motion-
corrected with six-parameter rigid body transformation to an EPI image
acquired immediately before the first run. Two participants’ data were
discarded due to excessive motion, which was defined as the frequency of

Figure 1. Sample intertemporal choice trial, as presented during the fMRI task and Screen-
ing Task #2. On each trial, participants chose either the displayed, delayed option, which varied
from trial to trial, or the fixed, nondisplayed $40 now option. Responses were made with a left
or right button press (fMRI) or the 1 or 0 key (screening) within an RT limit of 4 s. The response-
option mapping alternated across task blocks. Responses prompted the transition to a feedback
screen that confirmed choice of $40 now (open circle), choice of the delayed option (filled circle),
or a missed trial (a question mark). The feedback screen was followed by a blank ITI screen, with
the ITI set equal to the unused fraction of the RT window plus (in the fMRI task) a variable
jittered duration (median jitter, 5 s).
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sudden large head displacements (i.e., the rate of single TR displacements
�0.5, in units of the six parameter estimates’ Euclidean norm; for dis-
carded participants, rates were 4.8 and 7.0%, vs mean � SD rates of
0.19 � 0.38% in the 20 reported participants).

Motion-corrected functional data were coregistered to the partici-
pant’s anatomy and to the MNI template. The single, complete
functional-to-MNI warp consisted of (1) geometric distortion correc-
tion, (2) alignment to the T2 anatomical image, (3) alignment to the
high-resolution MPRAGE image, (4) nonlinear warping to the MNI tem-
plate, and (5) restoration of the original 64 � 64, 3 mm isotropic resolu-
tion. Warped images were spatially smoothed with a 6.0 FWHM
Gaussian kernel.

The AFNI 3dAutomask program was used to identify the brain voxels
that were common to all participants. In each participant, a mask was
created to label the largest contiguous region of suprathreshold intensity
found within the smoothed functional data. The intersection of the 20
single participant masks was applied to all reported voxelwise fMRI
analyses.

fMRI data analysis. Each participant’s functional data were fit with
four separate general linear models (GLMs) using the AFNI program
3dDeconvolve. Each GLM specified an identical baseline model, which
included the six motion time-series estimates, first-order through
fourth-order polynomial trend terms, and an intercept term. Regressors
of interest were modeled as delta functions, which were time-locked to
trial onset and convolved with a canonical gamma hemodynamic re-
sponse function. Parametric modulator regressors were constructed us-
ing the mean-centered values of the corresponding parameter, and SV
regressors were generated using the discount rates estimated for the fMRI
task specifically. All GLMs included a regressor that indicated the occur-
rence of missed trials (one trial for each of four participants); these trials
were omitted from all regressors of interest.

GLM #1: localization. The first GLM localized regions that reliably
tracked SV within each Range Condition, while remaining sensitive to
the possibility that SV responses might vary across Conditions. For each
Condition, regressors estimated the mean trial response (TrialN, TrialW)
and the modulation of these responses by SV (SVN, SVW). In the group
analysis, coefficient estimates were submitted to a voxelwise joint t test of
the Narrow and Wide Range SV effects [i.e., �(SVN) � �(SVW)]. Clusters
that survived a whole-brain corrected threshold of p � 0.05 (two-tailed)
were identified using FSL randomize (cluster-forming threshold set at
p � 0.0005, two-tailed, uncorrected). The localized clusters served as the
regions-of-interest (ROIs) for all subsequent analyses, each of which
entailed simple contrasts performed upon each ROI (via two-tailed t test,
evaluated against a significance threshold of p � 0.05).

GLM #2: range adaptation. The second GLM provided the most direct
test of range adaptation. Range adaptation predicts that the slope of the
SV effect (i.e., the � estimate) should be greater in the Narrow versus

Wide Range Condition (Fig. 3). Our primary test of this prediction was
restricted to the Common options. As such, the GLM #2 regressors were
created by splitting the GLM #1 regressors according to the option type
(TrialComN, TrialComW, TrialCtxtN, and TrialCtxtW; and SVComN, SVComW,
SVCtxtN, and SVCtxtW). In the group analysis, we tested for range adapta-
tion by comparing the Common Narrow and Common Wide SV effects
[�(SVComN) � �(SVComW)].

In a parallel, less well controlled test, we compared the SV effects
estimated over all stimuli within the Narrow and Wide Conditions [using
the GLM #1 regressors, �(SVN) � �(SVW)]. Note that this contrast is
orthogonal to that which was used to localize the ROIs [�(SVN) �
�(SVW)]. Additional t tests contrasted the Trial effects estimated for the
two Conditions [�(TrialComN) � �(TrialComW), and �(TrialN) �
�(TrialW)] to determine whether SV range influenced general BOLD
sensitivity to task events.

In addition to the tests of range adaptation, GLMs #1 and #2 supported
a test of the alternative model of range expansion. Here, “expansion”
refers the broadening of the activity range that results from suboptimal
adaptation to a broadening value range. Optimal adaptation requires
that the slope of the SV activity function must decrease in proportion to
any increase in value range [formally, slope 	 1/range(V)]. A slope
decrease that falls short of this numerical requirement should be
detectable as an increase in the observed activity range [estimated as
slope � range(V)].

Following this logic, we tested for range expansion by scaling the esti-
mated Wide Condition slopes by the ratio of the Wide and Narrow value
ranges, and comparing the result to the original Narrow Condition slopes
(GLM #1: [�(SVW) � range(V)wide/range(V)narrow] � �(SVN); GLM #2:
[�(SVComW) � range(V)wide/range(V)narrow] � �[SVComN]). Note that,
although the range manipulation was designed to approximate a
range(V) ratio of 2, there was some variability in the actual ratio that was
presented to participants (median range(V)wide/range(V)narrow � 1.96;
minimum-maximum, 1.34 –2.08). This variability was largely attribut-
able to slight shifts in the discount rates estimated for the screening and
fMRI sessions.

Optimal range adaptation predicts that the scaled Wide and unscaled
Narrow slopes should be identical. Adaptation that is suboptimal, and
therefore associated with range expansion, predicts a greater scaled Wide
versus Narrow Condition slope. Note that, in the event of partial range
adaptation, a region could simultaneously show a significant range ex-
pansion effect [e.g., �(SVComW) � range(V)wide/range(V)narrow �
�(SVComN)] and a significant range adaptation effect [e.g., �(SVComN) �
�(SVComW)].

GLM #3: activity range over ranked SVs. The third GLM supported an
additional, alternative test of range expansion. GLM #3 was identical to
GLM #1, with the exception that the SV regressors were converted to
represent condition-specific SV ranks (SVRs). For each Range Condi-

Figure 2. SV distributions constructed for the Narrow (N) and Wide (W) Range Conditions. A total of 192 delayed options (96 per Condition) were selected to be paired with the fixed $40 now
option. Each Condition included 64 Common options (com), for which the SVs spanned an identical, near-indifference range, and 32 Contextual options (ctxt), which spanned differing ranges.
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tion, SVs were ranked using the Matlab “tiedrank” function, which as-
signs ascending ranks to ascending numerical values, and a mean rank to
any repeating values (e.g., for [40 50 50], rank � [1 2.5 2.5]). Since the
two Range Conditions span identical ranges of SVR (1–96), expansion of
the activity range should be manifested as a steepening of the slope of the
SVR effect within the Wide Condition [in other words, �(SVRW) �
�(SVRN) � 0; Fig. 3f]. Note that this contrast was not restricted to the
Common stimuli, since the unrestricted stimulus sets already span
matching ranges of the predictor variable (SVR).

GLM #4: activity visualization. The fourth GLM enabled visualization
of the ROIs’ activity profiles. For each Range Condition, the 96 trials were
sorted by ascending SVR and split across 12 eight-trial bins. GLM #4
included 24 regressors (two Range Conditions � 12 Bins) that modeled
the mean BOLD response to the trials corresponding to each bin. For
each ROI, the resulting 24 coefficient estimates were plotted against both
the median SVs and median SVRs for each bin.

GLM #4 also supported a test of range expansion. For each Range
Condition, we estimated the activity range by contrasting the estimated
coefficients for the two most extreme bins (12 and 1). Range expansion
predicts that the contrast result should be greater for the Wide versus Narrow
Range Condition [(�(BinW12) � �(BinW1)) � (�(BinN12) � �(BinN1)) � 0].

Behavioral analyses
Cross-range comparisons of choice behavior. Our fMRI analyses assumed
that discount rates remained stable across the two Range Conditions. To
test for possible violation of this assumption, we estimated participants’
discount rates for the two Range Conditions separately. Estimates were
obtained using both the Common options in isolation (allowing for
comparisons across similar value ranges) and the combined Common
and Contextual options (allowing for the derivation of estimates over
larger pools of choice data). In each case, the resulting log(k) estimates
were compared with a paired t test.

The separate regression fits also informed analyses of choice consis-
tency. These analyses asked whether the increased BOLD sensitivity to SV
in the Narrow Range Condition corresponded to improved discrimina-
tion between SVs during the choice process. In an initial test, we com-
pared the two logistic function slopes to determine whether the slope

increased in the Narrow versus Wide Range Condition. Since logistic
slope estimates are sensitive to the range of the predictor variable, we
performed a single t test using the Common stimuli alone, and minor
differences in the SV ranges (created by the minor differences in the
Common Narrow and Common Wide k estimates) were included as a
covariate. Second, using the same t test structure (Common-only restric-
tion, range difference covariate), we compared the percentage of choices
that were successfully predicted by the estimated discount rates, where a
delayed choice is predicted if SV � 40. A greater percentage of choices
predicted in the Narrow Range would be expected in the event of im-
proved SV discrimination during decision making.

Range effects on RT. In keeping with classical distance effects in percep-
tual and cognitive judgments (Festinger, 1943; Moyer and Landauer,
1967), RTs typically increase as choices become more “difficult,” where
difficulty is defined in terms of decreasing distance between two options’
SVs (Soltani et al., 2012; De Martino et al., 2013). A series of RT analyses
asked whether the increased neural SV sensitivity of the Narrow Range
condition was associated with an enhanced distance effect. Under the
assumption of a fixed range of choice RTs, which is fully exploited in
each context, one might anticipate that the relationship between dis-
tance and RT might become more pronounced within the Narrow
Range Condition.

The RT analyses paralleled those that were used to seek range effects in
the fMRI data. First, for each participant and Range Condition, we re-
gressed RT against SV distance [SVD; abs(SV � $40)]. The reliability of
the distance effect was confirmed through a joint t test of the separately
estimated slope coefficients [�(SVDN) � �(SVDW)]. Identical analyses
that substituted SVD with SV did not yield a significant contrast result
[for �(SVN) � �(SVW), p � 0.45].

Second, to test for range effects, we conducted similar Condition-
specific regressions using the Common options alone. Range adaptation
predicts that RT should be more sensitive to SVD in the Narrow versus
Wide Range Condition [i.e., �(SVDComN) � �(SVDComW) � 0]. This
contrast was repeated using the coefficients estimated for the combined
Common and Contextual stimuli [�(SVDN) � �(SVDW)]. As an initial
test for range expansion, we scaled the Wide Condition slopes by the ratio

Figure 3. Predicted activity profiles for a signal that either completely adapts or completely expands in response to increasing SV range. Both models assume a positive, linear SV code. Predicted
SV effects are constrained to pass through a constant mean magnitude (Kobayashi et al., 2010). a–c, When activity is plotted against SV, range adaptation predicts that the slope of the SV effect
should decrease with increasing SV range. The alternative, range expansion model predicts a stable SV effect slope and, consequently, an increase in the spanned activity range. d–f, Different
predictions hold when activity is plotted against SVR. Range adaptation predicts a stable SVR effect slope, and range expansion predicts a slope that increases in proportion to SVR range.
Abbreviations follow the conventions from Figure 2.
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of the Wide and Narrow SVD ranges (again 
2 across participants: median,
1.77; minimum-maximum, 1.25–2.04). Range expansion predicts a steeper
scaled Wide versus Narrow Condition slope [�(SVDComWscaled) �
�(SVDComN) � 0; �(SVDWscaled) � �(SVDN) � 0].

Range expansion was additionally tested by regressing RT against the
Condition-specific SVD ranks (SVDRs). Again, range expansion predicts
a steeper, more negative slope for the Wide versus Narrow Range Con-
dition [i.e., �(SVDRW) � �(SVDRN) � 0].

Finally, the RT effects were visualized by grouping each Condition’s
trials into 12 uniformly sized bins (8 trials/bin; SVDR ascending across
bins). Mean bin RTs were plotted against both the median SVs and SVRs
for each bin. As a final test of range expansion, we estimated Condition-
specific RT ranges by contrasting the most extreme bins (12 and 1);
range expansion predicts a more extreme (i.e., more negative) con-
trast result for the Wide versus Narrow Condition [(mean(BinW12) �
mean(BinW1)) � (mean(BinN12) � mean(BinN1)) � 0].

Results
During fMRI scanning, participants completed 192 unique
choices between a fixed $40 now option and variable delayed
alternatives (e.g., $62 in 15 d; Fig. 1). Individual participant dis-
count rates, which had been estimated during a previous screen-
ing session, were used to construct separate conditions in which
the delayed options spanned either a narrow or wide range of SVs
(Fig. 2). Each Range Condition contained 64 Common options
for which the SVs spanned a matching near-indifference range.
The Conditions were distinguished by 32 Contextual options,
which were drawn from either the same near-indifference range

(in the Narrow Condition) or more extreme SV ranges (in the
Wide Condition).

fMRI analyses
Activity that tracked the delayed options’ SVs was localized to
four regions: the PCC, the vStr, the ACC, and the VMPFC. Lo-
calization entailed the estimation, for each Range Condition, of
the mean BOLD response to all choices, and the parametric mod-
ulation of that response by the delayed option’s SV. A joint anal-
ysis of the two Conditions identified positive SV effects that were
restricted to the PCC, vStr, ACC, and VMPFC (threshold at p �
0.05, corrected; Fig. 4; Table 1). These regions replicate the find-
ings of previous intertemporal choice research (Kable and Glim-
cher, 2007; Peters and Büchel, 2009; Pine et al., 2009; Kable and
Glimcher, 2010; Hare et al., 2014) and overlap with the typical
valuation network that emerges across fMRI studies of diverse
decision-making domains (for review, see Peters and Büchel,
2010; Levy and Glimcher, 2012; Bartra et al., 2013). Our localized
clusters served as the ROIs in which we sought range effects.

We evaluated two opposing models of range responsiveness
(Fig. 3). The first model, range adaptation, predicts a greater
slope of the SV effect in the Narrow Range Condition, and a
consistent SVR effect across Conditions. The second model,
range expansion, predicts a greater slope of the SVR effect in the
Wide Condition, and a consistent SV effect across Conditions.

Figure 4. Regions exhibiting a positive effect of the delayed options’ SV as assessed with a joint t test of the SV effects estimated for the two Range Conditions separately [�(SVN) ��(SVW), p �
0.05, corrected]. Analyses of range effects were performed upon the four localized ROIs: PCC (red; peak MNI coordinates, �6, �69, 27), vStr (orange; peak, �6, 9, �6), ACC (yellow; peak, 0, 36,
15), and the VMPFC (green; peak, �3, 60, 0). Note that no reliable negative SV effects were observed.
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Partial adaptation would predict a combination of these two
models’ effects.

We found reliable range adaptation in two regions, vStr and
PCC, and trends consistent with range adaptation in the ACC and
VMPFC (Fig. 5). These results held across analyses performed on
the Common options alone (ensuring identical analyzed SV
ranges) and on all presented options. Narrow Range SV effects
significantly exceeded Wide Range SV effects in the vStr (Com:
t(19) � 3.04, p � 0.0067; All: t(19) � 3.07, p � 0.0063) and PCC
(Com: t(19) � 2.15, p � 0.044; All: t(19) � 2.74, p � 0.013) and
were numerically greater in the ACC (Com: t(19) � 1.38, p � 0.18;
All: t(19) � 1.76, p � 0.093) and VMPFC (Com: t(19) � 1.71, p �
0.10; All: t(19) � 0.92, p � 0.37). None of the ROIs exhibited
Condition-related differences in the mean trial responses evoked
by either the Common options alone (p’s � 0.58) or all options
(p’s � 0.35). Therefore, the observed range adaptation cannot be
readily explained in terms of a general change in these regions’
sensitivity to task events.

Across multiple tests, we found no evidence of activity range
expansion. In the first test, we scaled the Wide Condition SV
effect by the ratio of the Wide and Narrow SV ranges (
2), and
contrasted the scaled result against the Narrow Condition effect.
A larger scaled slope for the Wide Condition would suggest in-
complete or nonexistent range adaptation, and accompanying
activity range expansion. However, we found no reliable differ-
ences between the scaled Wide and Narrow slopes, either when
restricting the comparison to the Common options (range t’s �
�1.69 to �0.44; p’s � 0.11– 0.66) or when including all stimuli

(range t’s � �1.27 to 0.51; p’s � 0.22– 0.89). In the second test,
we compared the effects that had been estimated using SVR,
rather than SV. Range expansion predicts a greater SVR effect in
the Wide versus Narrow Condition. We observed no reliable
Condition differences in the SVR effects for any of the four ROIs
(Fig. 5; p’s � 0.22).

To illustrate each ROI’s activity profile, we sorted each Con-
dition’s 96 trials by ascending SV, grouped the trials into 12 bins,
and plotted the mean activity for each bin against either SV or
SVR (Fig. 6). Consistent with the predictions for range adapta-
tion, these plots illustrate an increased SV effect slope in the
Narrow Condition, and similar SVR effects across Conditions.
The binned data also permitted a third test of range expansion.
For each Condition, the activity range was estimated by taking the
difference of the activation coefficients that had been obtained
for the maximum-valued and minimum-valued bins. The differ-
ence results were no greater in the Wide versus Narrow Condi-
tion for any of the four ROIs (p’s � 0.26 for vStr, PCC, and ACC;
for VMPFC, p � 0.057).

Behavioral analyses
Cross-range comparisons of discounting behavior
As our fMRI analyses assumed, discount rates did not signifi-
cantly differ across the two Range Conditions. To test this as-
sumption, we compared discount rates that had been estimated
for the Narrow and Wide Range Conditions separately, using
either the Common options alone, or all options. Neither
analysis yielded reliable differences in discount rate across

Table 1. Regions exhibiting SV effects during Narrow and Wide Range choicesa

Region Brodmann Area n voxels Peak t Peak MNI coordinate

Posterior cingulate, cingulate, precuneus, cuneus (left, right) 7, 23, 29, 30, 31 277 6.40 �6, �69, 27
Striatum (caudate, nucleus accumbens), globus pallidus (left, right) Not applicable 238 9.75 �6, 9, �6
Anterior cingulate, medial frontal gyrus (left, right) 9, 10, 24, 32 127 7.34 0, 36, 15
Medial frontal gyrus (VMPFC), anterior cingulate (left, right) 10, 32 37 5.24 �3, 60, 0
ap � 0.05, corrected.

Figure 5. Range-adapting BOLD activity throughout the valuation network. Bars present the mean effects of either SV (top row) or SVR (bottom row), as estimated for the two Range Conditions.
Note that SV effects were estimated using the Common options alone, to ensure that comparisons were made across identical ranges of the predictor variable. In accordance with the predictions of
range adaptation, SV effects generally decreased with widening SV range, and no reliable range differences emerged in the SVR effects. *p � 0.05. Error bars reflect SEM. All abbreviations follow
the conventions from Figure 2.
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Conditions (Com: mean difference � SE � 0.0028 � 0.016;
t(16) � 0.18, p � 0.86; All: mean difference � SE � 0.013 �
0.015; t(18) � 0.86, p � 0.40).

Similarly, using the same set of regression fits, we failed to find
any reliable range effects on choice consistency. In theory, the
greater neural sensitivity to SV in the Narrow Condition might
support more reliable discrimination between SVs, and therefore
more consistent decision making within the Narrow Condition.
However, neither of two different consistency measures bore ev-
idence in line with this possibility. The estimated slope of the
logistic function (which relates the delayed option’s relative SV to
the probability of choosing this option) was no steeper for the
Common Narrow versus Common Wide options (Com: p �
0.89; note no “All” tests were performed, due to the sensitivity of
logistic slope estimates to the range of the predictor variable).
Likewise, we found no Condition differences in the percentage of
choices successfully predicted by the fitted functions (Com: p �
0.66).

Range effects on RT
A final set of analyses did reveal range effects on RT. Decision-
making studies frequently report an RT distance effect, in which
choice RTs decrease as two options’ SVs grow increasingly distant
(Soltani et al., 2012; De Martino et al., 2013). If this distance effect
is range adapting, then a stable range of RTs should be main-
tained across contexts, and RT sensitivity to SV distance should
decrease in response to increasing distance range. If the distance
effect exhibits range expansion, then the RT range should ex-
pand, and RT sensitivity to SV distance should remain stable in
the presence of increasing distance range.

Our data replicated the expected SV distance effect; however,
in contrast to BOLD activity, choice RTs exhibited range expan-
sion, rather than range adaptation. The linear relationship be-
tween SVD and RT was significantly negative, as demonstrated in
a joint test of SVD effects that had been separately estimated for
the two Conditions (t(19) � �6.08, p � 0.001). The SVD effect
did not reliably vary across conditions, regardless of whether

comparisons involved the Common options alone (t(19) � 0.3,
p � 0.77) or all stimuli (t(19) � �1.35, p � 0.19). Instead, across
multiple tests, we found that the RT range expanded as SVD
range increased. After scaling the Wide Condition SVD slope by
the ratio of the two Conditions’ SVD ranges, we found a signifi-
cantly stronger (i.e., more negative) scaled Wide versus Narrow
SVD effect (using either the Common options or all stimuli;
Com: t(19) � �2.38, p � 0.03; All: t(19) � �2.58, p � 0.02).
Similarly, when slopes were estimated using SVDR, we found a
steeper Wide versus Narrow Condition effect (All: t(19) � �3.07,
p � 0.006).

For each Condition, we illustrate the distance effect by plot-
ting the mean RTs estimated for each of 12 equally sized bins
(sorted by ascending SVD; Fig. 7). Consistent with range expan-
sion, these plots illustrate similar effects of SVD within the two
Conditions, and the strongest (i.e., most negative) effect of SVDR
within the Wide Condition. Again taking advantage of the binned
data to perform a third test of range expansion, we confirmed that
the RT range (difference in RTs for the maximum-distance and
minimum-distance bins) was significantly greater in the Wide
Condition (t(19) � �3.46, p � 0.0026).

Discussion
Here we show that BOLD value signals exhibit range adaptation
in a manner that is consistent with the predictions of the efficient
coding hypothesis.

We studied range adaptation as choices were made between
immediate and delayed monetary rewards. As in prior work
(Kable and Glimcher, 2007, 2010), we used participants’ prefer-
ences to estimate the idiosyncratic SV placed on delayed rewards.
For each participant, we constructed two sets of choices, for
which the SVs spanned a narrow or wide range. In our primary
tests of range adaptation, we analyzed matching sets of choice
trials, which were drawn from an overlapping region of the nar-
row and wide SV distributions.

Figure 6. Illustration of BOLD SV sensitivity across the Narrow (N) and Wide (W) Range Conditions. Points mark the mean responses [�(Trial)] to binned trials of ascending SV, and are plotted
against each bin’s estimated median SV (top row) or SVR (bottom row). Linear fits are plotted for illustration purposes, and were derived by regressing the group means against the median SVs/SVRs.
Error bars reflect SEM.
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Following from the efficient coding hypothesis, BOLD sensi-
tivity to SV was predicted to increase as the range of SVs nar-
rowed (Padoa-Schioppa, 2009; Kobayashi et al., 2010). The
alternative, range expansion hypothesis predicted that the range
of BOLD activity would expand as the range of SVs expanded.

Across both Range Conditions, SV reliably modulated activity
in the anticipated network of regions: PCC, vStr, ACC, and
VMPFC. This entire network exhibited trends consistent with the
efficient coding predictions, and statistically significant range ad-
aptation was found in the vStr and PCC. We found no evidence
supporting the alternative, range expansion hypothesis. None of
three different tests detected expansion of the BOLD activity
range in response to expansion of the SV range.

These results leave open the possibility that the observed range
adaptation was either complete or partial. Complete adaptation
requires that the full activity range be used within a given context,
and predicts that, in our design, value sensitivity in the narrow
context should be approximately double that observed in the
wide context. Because our statistical tests only reject the null
hypothesis of no BOLD sensitivity change, we cannot conclu-
sively speak to the issue of whether the observed sensitivity ad-
justment met this precise numerical requirement. At the same

time, because we found no positive evidence of activity range
expansion—and because the mean SV effects for the Common
Narrow stimuli were greater than double those estimated for the
Common Wide stimuli (Fig. 5)—the possibility of complete ad-
aptation merits further study. Parametric variation of the SV
range (Padoa-Schioppa, 2009; Cai and Padoa-Schioppa, 2012)
could yield data that more definitively address this issue.

Our findings strengthen the parallel between the BOLD value
correlates observed in humans and the single-unit value corre-
lates observed in animal models (Padoa-Schioppa, 2009; Ko-
bayashi et al., 2010). That said, further electrophysiological data
are needed to determine the extent to which our vStr and PCC
adaptation effects (and the consistent ACC and VMPFC trends)
are attributable to adaptation in the spiking output of these re-
gions. The BOLD signal is commonly assumed to reflect local
field potentials, which are often correlated with spiking output,
but are more tightly coupled to perisynaptic activity (Logothetis,
2008). Therefore, our adaptation results could reflect adaptive
coding in upstream regions that provide inputs to the valuation
circuitry.

This issue is particularly relevant when considering the vStr.
Midbrain dopaminergic neurons, which send projections to the
vStr (Haber and Knutson, 2010), have also been shown to exhibit
adaptive coding (Tobler et al., 2005). As DA neurons typically
track reward-prediction errors—the difference between actual
and predicted rewards (Schultz, 2000)—DA neurons exhibit
adaptive coding for this variable. In other words, greater ranges of
reward prediction errors are associated with a decreased sensitiv-
ity of spike rates to prediction error magnitude.

Good arguments exist both for and against the speculation
that the observed ventral striatal BOLD adaptation reflected ad-
aptation in DA neuron spiking. On the one hand, it is possible
that ventral striatal BOLD was tracking some form of prediction
error information, since our SV parameter was correlated with
any term that might contrast SV against a constant expectation
(for a detailed treatment of the SV vs prediction-error debate, see
Hare et al., 2008). Additionally, pharmacological manipulations
of DA transmission have been shown to significantly modulate
striatal BOLD activity (Pessiglione et al., 2006; van der Schaaf et
al., 2014). On the other hand, ventral striatal BOLD may have
indeed tracked SV, and the pharmacological evidence alone does
not justify the reverse inference that striatal BOLD always provides a
direct window onto DA neuron activity (Knutson and Gibbs, 2007).
Therefore, the relationship between range-adapting midbrain
spiking and ventral striatal BOLD adaptation remains uncertain.
Future work should seek to clarify the relative contributions of
range-adapting DA neurons, range-adapting ventral striatal neu-
rons, and also range-adapting glutamatergic OFC neurons
(which also project to the vStr and adapt to value range; Padoa-
Schioppa, 2009; Haber and Knutson, 2010; Kobayashi et al.,
2010).

In the ACC and VMPFC, we observed trends that were con-
sistent with range adaptation but did not reach statistical signif-
icance. In comparison, reliable range adaptation has been
reported for single neuron spike rates in monkey ACC (Cai and
Padoa-Schioppa, 2012) and OFC (Padoa-Schioppa, 2009; Ko-
bayashi et al., 2010; note monkey OFC is often assumed to share
functional features with human VMPFC). A possible explanation
for this discrepancy relates to the slightly different variables that
were examined in our study and in the single-unit work. Cai and
Padoa-Schioppa (2012) analyzed ACC spiking as a function of
the value of the option that was chosen on each trial, and ob-
served adaptive coding as a function of chosen value range. Like-

Figure 7. RT sensitivity to SVD [abs(SV � $40)] across the Narrow (N) and Wide (W) Range
Conditions. Points mark the mean RTs recorded for binned trials of ascending SV distance, and
are plotted against each bin’s estimated median SVD (top row) or SVDR (bottom row). Linear fits
are plotted for illustration purposes, and were derived by regressing the group means against
the median SVDs/SVDRs. Error bars reflect SEM.
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wise, Padoa-Schioppa (2009) found that for a subset of OFC
neurons, firing rates were best explained as encoding chosen
value, and also adapted to chosen value range. These findings
raise the question of whether ACC and VMPFC BOLD signals
would also exhibit reliable range adaptation if signals were ana-
lyzed as a function of the chosen option’s SV. Although other
fMRI studies have reported chosen value signals in the ACC and
VMPFC (Gläscher et al., 2009; Wunderlich et al., 2009, 2010), our
study was not optimized to examine adaptation using this alter-
native variable. In a set of secondary analyses, we found that
chosen value elicited only weak responses in the ACC and
VMPFC, perhaps due to this variable’s restricted range, relative to
that of SV.

Although we observed range adaptation of BOLD activity,
similar adjustments were not found in the behavioral responses.
The enhanced BOLD SV sensitivity seen in the Narrow Range
condition was not associated with an enhancement in choice con-
sistency. Likewise, we did not observe range adaptation in choice
RTs. Although, as expected, responses speeded as the SVs of an
option pair grew more distant, this sensitivity to difficulty did not
change across contexts, such that a tighter range of RTs was ob-
served in the Narrow versus Wide Range Condition.

The decoupling of our behavioral and BOLD effects might be
interpreted in multiple ways. Our procedures may have hindered
the detection of corresponding behavioral changes, especially
within the consistency measure. The extensive prescan practice
may have promoted choice consistency, and the stability criterion
may have selected for participants with usually consistent behav-
ior. Either of these factors could have resulted in a ceiling effect
that prevented the emergence of reliably greater consistency for
the Common Narrow choices. Alternatively, our results may in-
dicate a fundamentally limited impact of neural range adaptation
on the choice process, with implications for models that relate the
dynamics of valuation to choice behavior (for the drift diffusion
model, see Ratcliff and McKoon, 2008; Milosavljevic et al., 2010;
for the divisive normalization model, see Louie et al., 2013; for the
biophysical model, see Chau et al., 2014). In addition, nonadapt-
ing decision RTs would provide an interesting contrast to previ-
ous monkey data (Kobayashi et al., 2010) that demonstrated
adaptation in the invigoration effect of anticipated reward mag-
nitude: when subjects performed saccades to earn cued juice
rewards, saccade RTs generally decreased with increasing pro-
spective reward, and this inverse relationship strengthened as the
range of potential cued rewards narrowed.

A final, broad implication of our fMRI results involves the
constraints that range adaptation places upon the use of the
BOLD signal to infer SVs. If value sensitivity varies with value
range, then BOLD effects cannot be used as a proxy measure of
SV that may be generalized beyond the measurement context.
Most immediately, this limitation suggests that studies that train
classifiers to predict values from BOLD activity (Kahnt et al.,
2010; Smith et al., 2014) will be most successful when the training
and test data are drawn from similar contexts. In the long term,
range adaptation raises caution with respect to the prospect that
BOLD measures might enable cross-individual comparisons of
utility that cannot be derived through choice behavior alone
(Glimcher, 2010).
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Peters J, Büchel C (2010) Neural representations of subjective reward value.
Behav Brain Res 213:135–141. CrossRef Medline

Pine A, Seymour B, Roiser JP, Bossaerts P, Friston KJ, Curran HV, Dolan RJ
(2009) Encoding of marginal utility across time in the human brain.
J Neurosci 29:9575–9581. CrossRef Medline

Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data

for two-choice decision tasks. Neural Comput 20:873–922. CrossRef
Medline

Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE (2011)
Frontal cortex and reward-guided learning and decision-making. Neuron
70:1054 –1069. CrossRef Medline

Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci
1:199 –207. CrossRef Medline

Smith A, Bernheim D, Camerer C, Rangel A (2014) Neural activity reveals
preferences without choices. Am Economic J Microeconomics 6:1–36.

Soltani A, De Martino B, Camerer C (2012) A range-normalization model
of context-dependent choice: a new model and evidence. PLoS Comput
Biol 8:e1002607. CrossRef Medline

Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value
by dopamine neurons. Science 307:1642–1645. CrossRef Medline

Valentin VV, Dickinson A, O’Doherty JP (2007) Determining the neural
substrates of goal-directed learning in the human brain. J Neurosci 27:
4019 – 4026. CrossRef Medline

van der Schaaf ME, van Schouwenburg MR, Geurts DE, Schellekens AF,
Buitelaar JK, Verkes RJ, Cools R (2014) Establishing the dopamine de-
pendency of human striatal signals during reward and punishment rever-
sal learning. Cereb Cortex 24:633– 642. CrossRef Medline

Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Curr Opin
Neurobiol 17:423– 429. CrossRef Medline

Wunderlich K, Rangel A, O’Doherty JP (2009) Neural computations under-
lying action-based decision making in the human brain. Proc Natl Acad
Sci U S A 106:17199 –17204. CrossRef Medline

Wunderlich K, Rangel A, O’Doherty JP (2010) Economic choices can be
made using only stimulus values. Proc Natl Acad Sci U S A 107:15005–
15010. CrossRef Medline

Cox and Kable • Range-Adapting Subjective Value Signals J. Neurosci., December 3, 2014 • 34(49):16533–16543 • 16543

http://dx.doi.org/10.1038/2151519a0
http://www.ncbi.nlm.nih.gov/pubmed/6052760
http://dx.doi.org/10.1523/JNEUROSCI.3751-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19890010
http://dx.doi.org/10.1038/nature04676
http://www.ncbi.nlm.nih.gov/pubmed/16633341
http://dx.doi.org/10.1073/pnas.1119969109
http://www.ncbi.nlm.nih.gov/pubmed/22371590
http://dx.doi.org/10.1038/nature05051
http://www.ncbi.nlm.nih.gov/pubmed/16929307
http://dx.doi.org/10.1523/JNEUROSCI.3489-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/20016088
http://dx.doi.org/10.1016/j.bbr.2010.04.031
http://www.ncbi.nlm.nih.gov/pubmed/20420859
http://dx.doi.org/10.1523/JNEUROSCI.1126-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19641120
http://dx.doi.org/10.1162/neco.2008.12-06-420
http://www.ncbi.nlm.nih.gov/pubmed/18085991
http://dx.doi.org/10.1016/j.neuron.2011.05.014
http://www.ncbi.nlm.nih.gov/pubmed/21689594
http://dx.doi.org/10.1038/35044563
http://www.ncbi.nlm.nih.gov/pubmed/11257908
http://dx.doi.org/10.1371/journal.pcbi.1002607
http://www.ncbi.nlm.nih.gov/pubmed/22829761
http://dx.doi.org/10.1126/science.1105370
http://www.ncbi.nlm.nih.gov/pubmed/15761155
http://dx.doi.org/10.1523/JNEUROSCI.0564-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17428979
http://dx.doi.org/10.1093/cercor/bhs344
http://www.ncbi.nlm.nih.gov/pubmed/23183711
http://dx.doi.org/10.1016/j.conb.2007.07.001
http://www.ncbi.nlm.nih.gov/pubmed/17714934
http://dx.doi.org/10.1073/pnas.0901077106
http://www.ncbi.nlm.nih.gov/pubmed/19805082
http://dx.doi.org/10.1073/pnas.1002258107
http://www.ncbi.nlm.nih.gov/pubmed/20696924

	BOLD Subjective Value Signals Exhibit Robust Range Adaptation
	Introduction
	Materials and Methods
	Results
	fMRI analyses
	Behavioral analyses
	Discussion
	References


