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DNA double-strand breaks (DSBs) can arise from internal or external sources of damage, 

and the rapid detection, processing, and repair of this damage is important for cell viability. 

Failure to repair DNA damage can result in genomic instability, ultimately increasing the 

frequency of lymphoid disorders, neurodegeneration, and cancer. The Mre11-Rad50-Nbs1 

(Xrs2) complex plays a central and critical role in detection and repair of DSBs and is 

conserved in all kingdoms of life, as Mre11/Rad50 (MR) in prokaryotes and as MRN/X in 

eukaryotes (Lamarche et al., 2010; Stracker and Petrini, 2011). The importance of this 

complex is emphasized by the fact that deletion of any of the three components results in 

embryonic lethality in mice and loss of proliferative activity in embryonic stem cells (Buis 

et al., 2008; Luo et al., 1999; Xiao and Weaver, 1997; Zhu et al., 2001) which is likely 

related to the role of MRN/X in homologous recombination. Repair of DSBs by homologous 

recombination involves replication of the broken region using an undamaged template, 

usually a sister chromatid. Deletions of other genes important for homologous forms of 

repair also exhibit early embryonic lethality, including Rad51, BRCA1, BRCA2, and CtBP-

interacting protein (CtIP)(Chen et al., 2005b; Gowen et al., 1996; Lim and Hasty, 1996; 

Sharan et al., 1997). Hypomorphic mutations in MRN components result into developmental 

and neurodegenerative disorders in humans, including Ataxia-Telangiectasia-Like Disorder 

(ATLD), Nijmegen Breakage Syndrome (NBS), and NBS-like syndrome (Matsumoto et al., 

2011; Stewart et al., 1999; Varon et al., 1998; Waltes et al., 2009), which are related, at least 

in part, to the role of MRN/X in the activation of cell-cycle checkpoints through the Ataxia-

Telangiectasia-Mutated (ATM) protein kinase (Lee and Paull, 2007; Shiloh and Ziv, 2013). 

The roles of MRN/X also extend to the processing of DSBs during meiosis, for which it is 

essential, and to telomere maintenance (Borde, 2007; Lamarche et al., 2010).
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Repair of DSBs is achieved through two broadly-defined groups of pathways: 

nonhomologous end joining (NHEJ) and homologous recombination (HR) (Krogh and 

Symington, 2004). The choice between these pathways primarily depends on the cell-cycle 

phase and the complexity of the damage generated at the break site (Chapman et al., 2012; 

Schipler and Iliakis, 2013). In the classical NHEJ pathway, ends are bound by the Ku70–

Ku80 heterodimer/DNA-dependent protein kinase catalytic subunit (DNA-PKcs) complex 

which recruits additional factors involved in end modifications and gap filling. DNA ends 

are ultimately ligated by the NHEJ-specific DNA ligase IV complex (Deriano and Roth, 

2013). In mammalian cells, the C-NHEJ pathway is not dependent on the MRN complex, 

although in budding yeast MRX contributes to NHEJ pathway through interactions with 

Ku70-Ku80 and DNA Lig4 complexes (Lewis and Resnick, 2000). The MRN complex, in 

conjunction with CtIP/Sae2, also regulates the alternative NHEJ (A-NHEJ or MMEJ), which 

utilizes short microhomologies and can result in large deletions (Lee and Lee, 2007; Yun 

and Hiom, 2009). In mammalian cells MRN was also shown to interact with DNA 

ligaseIIIα/Xrcc1, the ligase complex implicated in alternative NHEJ, stimulating 

intermolecular ligation (Della-Maria et al., 2011).

In contrast to NHEJ, HR requires the 5′–3′ resection of dsDNA to generate single-stranded 

DNA tails, a process that is initiated by the MRN complex and CtIP (You and Bailis, 2010). 

Extensive resection is perfomed by exonuclease 1 (Exo1), and Dna2 (Symington and 

Gautier, 2011), whose activities are also promoted by MRN (Cejka et al., 2010; Nicolette et 

al., 2010; Niu et al., 2010; Yang et al., 2013; Zhou et al., 2014; Zhou and Paull, 2013). 3′ 

ssDNA tails thus generated are bound by replication protein A (RPA), which activates 

ATM- and Rad3-Related (ATR), promoting replication checkpoint arrest and stabilization of 

replication forks (Zeman and Cimprich, 2014). RPA on these 3′ ssDNA tails is then 

exchanged for Rad51 to create Rad51 filaments that catalyze homology search and strand 

invasion, ultimately priming DNA synthesis and resolution of repair intermediates.

The MRN complex plays important and diverse roles in DNA double-strand break repair 

and signaling. Here we review recent evidence elucidating the structures and regulation of 

the Mre11/Rad50 complex, focusing primarily on the enzymatic activities of MRN and the 

role of ATP-driven conformational changes in Rad50.

Mre11 nuclease activity

The Mre11 protein is related to a family of phosphoesterases that includes lambda 

phosphatase, protein phosphatase-2B, PP2A, PP1, calcineurin, and purple acid phosphatases 

(Koonin, 1994)(Fig. 1). This family of enzymes binds two metal ions in the active site and 

cleaves either phosphomonoester or phosphodiester bonds. Mre11 is conserved in all species 

and exhibits manganese-dependent 3′ to 5′ exonuclease and endonuclease activities on 

double-stranded DNA in vitro (Connelly et al., 1999; Hopkins and Paull, 2008; Paull and 

Gellert, 1998; Trujillo and Sung, 2001; Trujillo et al., 1998). The roles of these activities in 

cells have been widely debated and it is still not entirely clear what the biologically relevant 

activity is, but it is likely that this depends on the structure and context of the DNA ends. 

Experiments in budding yeast have shown that the nuclease activity of Mre11 is dispensable 

for the resection of enzymatically-generated DSBs but is absolutely required for meiosis 
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when DSBs are covalently bound by the Spo11 protein, as well as for the processing of 

cruciform structures in vegetatively growing cells (Lobachev et al., 2002; Moreau et al., 

1999; Rattray et al., 2001). Mre11 nuclease activity also contributes to (but is not essential 

for) the survival of radiation damage and topoisomerase conjugates in budding yeast 

(Moreau et al., 1999), although at least some of its activities are redundant with Dna2 (Budd 

and Campbell, 2009). In vitro experiments show that a nuclease-deficient MRN complex 

can promote Exo1-mediated resection in the presence of Ku and DNA-PKcs equivalently to 

that of a wild-type complex (Yang et al., 2013; Zhou and Paull, 2013), further suggesting 

that Mre11 nuclease activity is not essential for resection of enzymatically generated DSBs. 

Similarly, the nuclease activity of MRN not necessary for compatible end ligation by DNA 

ligaseIIIα/Xrcc1, but is critical for the ligation of incompatible DNA ends that require 

processing (Della-Maria et al., 2011).

The role of Mre11 3′ to 5′ exonuclease activity has been unclear, in part because it requires 

millimolar levels of manganese in vitro (higher than would ever be encountered in vivo) and 

because the polarity of the exonuclease is opposite to the 5′ to 3′ resection required for 

creation of long 3′ ssDNA tails that are ultimately bound by Rad51. Recent support for a 

physiological role of the exonuclease activity came from a study of meiotic DSB repair in 

which breaks are created by and covalently linked to Spo11 on the 5′ strands (Garcia et al., 

2011). Although Mre11 nuclease activity was known to be required for removal of Spo11, 

Neale and colleagues showed in this work that the 3′ to 5′ exonucleolytic activity of Mre11 

is specifically required to resect the Spo11-linked strand after an endonucleolytic break is 

first made, approximately 300 nt from the Spo11 cut; 5′ to 3′ exonucleolytic degradation 

from the nick was found to be dependent on Exo1 (Fig. 2).

A similar model was proposed for HR in mammalian cells, where the roles of Mre11 exo-

and endonuclease activites were assessed through the use of small molecule inhibitors that 

specifically affect each of these activities (Shibata et al., 2014). It was suggested that Mre11 

endonucleolytic activity initiates resection, followed by Mre11-dependent 3′ to 5′ 

exonuclease and Exo1/BLM-dependent bidirectional resection from the site of the nick. The 

catalytic functions of Mre11 appear to be much more important in mammals than they are in 

yeast, as a transgenic mouse model expressing nuclease-deficient Mre11 exhibited early 

embryonic lethality (Buis et al., 2008). In further support of a physiological role of Mre11 

exonucleolytic activity in mammalian cells, Mre11 was found to be responsible for the 

degradation of nascent strands at stalled replication forks in the absence of BRCA2 

(Schlacher et al., 2011). Mre11 endonucleolytic activity in manganese has been observed in 

vitro with all Mre11 orthologs studied (Connelly et al., 1998; Herdendorf et al., 2011; Paull 

and Gellert, 1999; Trujillo and Sung, 2001). A weak but detectable endonuclease activity 

was also observed on 5′ strands of DSBs in the presence of magnesium using P. furiosus 

MR (PfMR)(Hopkins and Paull, 2008). The oligonucleotide products of this activity were 

found to be 10 to 50 nt long and were eliminated by mutations that inactivate the 

exonuclease activity, confirming that the activity resides in the same active site. pfMR was 

shown in this work to process DSB ends cooperatively with the helicase nuclease complex 

HerA/NurA that is expressed from the same operon in P. furiosus and other archaea species 

(Constantinesco et al., 2004). Magnesium-dependent nuclease activity has also been 
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observed with gp46/47 (phage T4 Mre11/Rad50) in vitro (Herdendorf et al., 2011). 

Interestingly, with T4 MR, other proteins were found to promote the endonucleolytic 

activity of Mre11 in magnesium, including the recombination mediator protein UvsY and 

the ssDNA binding protein gp32 (Herdendorf et al., 2011).

It is still an open question what metal ions exist in Mre11 proteins in vivo, and thus what 

nuclease activities the proteins possess under physiological conditions. We recently 

performed partial proteolysis experiments with human Mre11 in vitro and found that 

oxidative cleavage of the protein occurred in the presence of ascorbic acid and hydrogen 

peroxide but without any added metal (Makharashvili et al., 2014). We furthermore mapped 

the sites of cleavage within Mre11 to amino acids 131 and 217, both residues directly 

contacting metal ion 2 in the structure of human Mre11 (Park et al., 2011). This evidence 

strongly suggests that there is a stably-bound transition metal ion bound to Mre11 in site 2, 

and is similar to previous experiments showing a high affinity manganese binding site in 

lambda phosphatase at metal position 2 (White et al., 2001). It will be informative to 

identify what metals are bound to sites 1 and 2 and to determine the functional consequences 

of these different states.

Rad50 ATP binding

Rad50 contains Walker A and Walker B ATP-binding motifs and is similar in domain 

configuration to the Structural Maintenance of Chromosomes family of ATPases that 

regulate the activities and topology of chromosomal DNA (Williams et al., 2007)(Fig. 1). 

Two Rad50 catalytic domains come together to form the ATP-bound structure, with the 

coiled-coils of each protein extending away from the globular domains (Fig. 3). The ATP-

related activities of the Rad50 protein are essential for all of its roles in DNA repair and 

signaling, as mutations in the Walker A or signature motifs exhibit phenotypes equivalent to 

a rad50 deletion in vivo (Alani et al., 1990; Bhaskara et al., 2007; Chen et al., 2005a; 

Moncalian et al., 2004). Even though Rad50 ATPase activity has long been known to be 

essential for MRN function, the exact role of this activity has not been very clear. In recent 

years, significant advances were made in understanding the structure of the Rad50 catalytic 

domain in the absence and presence of ATP, which showed that the protein undergoes a 

dramatic conformational change between these states (Lammens et al., 2011; Lim et al., 

2011; Mockel et al., 2011; Williams et al., 2011). The catalytic head of Mre11-Rad50 

complexes is composed of Mre11 nuclease domains and Rad50 ATPase domains. A crystal 

structure of the catalytic domains of bacterial MR in the absence of ATP shows that Mre11 

holds the Rad50 ATPase domains near the base of the coiled coils (Lammens et al., 2011)

(Fig. 3). In this configuration, the ATPase domains are separated and facing away from each 

other, forming an “open” structure. In contrast, the ATP-bound form of MR shows the 

ATPase domains together, where two ATP molecules are bound within the Rad50 dimer, 

occluding the Mre11 nuclease active sites and forming a “closed” conformation (Lim et al., 

2011; Mockel et al., 2011). A large cavity within the Rad50 domain in the unbound, “open” 

configuration is important for the large conformational change to the “closed” state and 

mutations made in this cavity have effects on the relative stability of each state (Deshpande 

et al., 2014).
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The importance of the ATP-bound “closed state”

We have known for many years that the ATPase activity of Rad50 is quite slow. Estimates 

of the ATPase activity of Rad50 from bacteria, yeast, and humans have yielded rates of 0.03 

to 14 moles ATP hydrolyzed per mole of protein per minute, with the eukaryotic complexes 

generally showing much slower rates of hydrolysis (0.03 to 0.1) (Bhaskara et al., 2007; de 

Jager et al., 2002) compared to the phage, bacterial, and archaea complexes for which most 

measurements yield estimates of 1 to 4 moles per minute (Deshpande et al., 2014; 

Herdendorf et al., 2011; Lammens et al., 2011; Majka et al., 2012). These observations 

suggest that the complex may occupy the closed state for relatively long periods of time in 

vivo. Recent evidence shows that many important functions of Rad50 take place with the 

complex in the ATP-bound but unhydrolyzed state, however, perhaps explaining this long 

occupancy. We showed several years ago that stable binding of DNA fragments by human 

MRN is supported by non-hydrolyzable analogs of ATP (Lee et al 2003), and recent 

evidence suggests that ATP binding but not hydrolysis also promotes DNA end tethering by 

the pfMR complex (Deshpande et al, 2014). Using single-molecule FRET, ATP-bound 

human MRN was shown to bind to DSBs in a manner that stably unwinds 15-20 base pairs 

at the end of duplex, holding the branched structure open for minutes at a time at room 

temperature (Cannon et al., 2013). This unwound form of DNA present in the closed 

conformation of Rad50 was predicted from earlier ensemble experiments (Lee and Paull, 

2005; Paull and Gellert, 1999) and is required for ATM activation as well as DSB resection 

in human cells (Cannon et al., 2013; Lee et al., 2013). It is still unclear what stimulates ATP 

hydrolysis by Rad50, although DNA as well as other DNA-binding proteins were reported 

to have a marked effect on the ATPase activity of T4 Rad50 (Herdendorf et al., 2011).

Release from the closed state with ATP hydrolysis

An important aspect of the Rad50 closed state is the fact that the Mre11 nuclease active sites 

are completely occluded by the Rad50 catalytic domains in this conformation (Lim et al., 

2011; Mockel et al., 2011). Consistent with the structural predictions, we have found that 

stabilization of the closed state (either by mutation or by crosslinking) results in loss of 

Mre11 nuclease activity (Deshpande et al., 2014). These observations are also consistent 

with early data from analysis of E. coli SbcCD (E. coli MR) and pfMR showing that ATP 

hydrolysis is essential for the exonuclease activity of Mre11 when bound to Rad50 

(Connelly et al., 1997; Hopfner et al., 2000). More recent studies with T4 MR have provided 

further detail for this model, showing that ATP hydrolysis is required for repetitive 

nucleotide removal but not required for removal of first nucleotide by nuclease activity, 

suggesting that ATP hydrolysis is likely involved in translocation of the complex 

(Herdendorf et al., 2011). Human Mre11 can act independently from Rad50 as a 3′ to 5′ 

exonuclease (Paull and Gellert, 1998), unlike the prokaryotic enzymes, again confirming 

that Rad50 ATP hydrolysis is not essential for Mre11 nuclease activity per se but serves to 

restrain and regulate the nuclease functions of Mre11.

Although a structure of PfMre11 bound to two DNA molecules has been published in which 

the Mre11 dimer interface adopts at least two different states during the exonuclease 

reaction (Williams et al., 2008), it is not yet clear how the closed state of MR transitions to a 
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conformation in which the ends of DNA are accessible to the Mre11 active site. We envision 

that an intermediate state occurs after ATP hydrolysis that positions the Mre11 active sites 

such that they form productive complexes with DNA (Fig. 3). Understanding these details 

will likely require structural analysis of MR intermediates with DNA ends.

The coiled-coil domains of the Rad50 protein

Rad50 has structural features similar to SMC proteins and harbors a long coiled-coil that 

coordinates a Zn atom with its tip (Fig. 1). There is some variation in the length of the 

coiled-coil region across complexes from different species (de Jager et al., 2004). As 

observed with AFM, the average contour length of the complex varies from 39 nm observed 

with the E. coli SbcC/D MR complex (660 amino acids) to 47 nm (960 amino acids) in 

human MR. By primary sequence comparison the coiled-coils of T4 Rad50 are among the 

shortest, consisting of only 330 amino acids. AFM and EM imaging of the complexes shows 

that the arms appear in various conformations from completely splayed to closed and the 

coils can be either straight, bent, or kinked (de Jager et al., 2004; Hopfner et al., 2002). Time 

resolved analysis of single molecules of MR showed joining and separation of the arms at 

the tip, as well as changes in curvature indicating these arms to be highly flexible (Moreno-

Herrero et al., 2005). The coiled-coil domains clearly respond to ATP binding and 

hydrolysis through large changes in their conformation, as visualized by crystal structures 

and AFM. A large swivel of Rad50 coiled coil domains accompanies ATP binding, 

changing the angle between the coiled-coils domains from 120 to 90 degrees (Figure 3)

(Deshpande et al., 2014; Lammens et al., 2011; Lim et al., 2011; Williams et al., 2011).

The mechanistic function of the coils has been elusive, although it is clear that they are 

essential for Rad50 function in vivo. Ablation of Zn chelation in yeast Rad50 by mutation of 

the Cys residues in the Zn hook region leads to an increase in IR sensitivity similar to that of 

a null strain (Hopfner et al., 2002). Complete deletion of the Zn hook abolishes telomere 

maintenance and meiotic DSB formation, and severely impairs HR as well as NHEJ (Hohl et 

al., 2011). Similar results were seen for coiled coil truncation mutants, stressing the 

importance of the length of Rad50 coiled coils, although shortening the coiled coil region by 

243 amino acids (retaining the zinc hook) was substantially tolerated for homologous 

recombination. Using live cell imaging, the Rad50 zinc hook was shown to be important for 

human MRN localization to the sites of DSBs and for the DNA damage response including 

homologous recombination and both ATM and ATR activation pathways (He et al., 2012). 

In addition, cohesin enrichment at replication forks depends on Rad50, and the zinc hook 

and coiled coils are important for this loading (Tittel-Elmer et al., 2009).

Experiments in vitro have also established the critical role of the coiled-coil domains. 

Removal of the coils impairs the DNA binding ability of MRN as well as DNA end 

tethering and ATPase activity (Deshpande et al., 2014; Lee et al., 2013). In addition, loss of 

the Zn hook-mediated connection between Rad50 molecules results in loss of Nbs1 binding 

and ATM activation (Lee et al., 2013). Why is the coiled-coil region so important for 

activities that take place in the globular domains of Rad50 and Mre11? From our in vitro 

experiments it has become clear that one of the essential roles of the coils and hook structure 

is to physically link the Rad50 catalytic heads together. In the absence of the coils/hook, 
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Rad50 catalytic heads do not stably form a complex together with ATP (Deshpande et al., 

2014). This makes intuitive sense because the Rad50 catalytic heads need to have a low 

affinity for each other in order to release from the closed state with ATP hydrolysis. The 

presence of the zinc hook connection increases the local concentration of the Rad50 catalytic 

heads such that the association between the heads is strongly favored and can even occur in 

the absence of ATP (Deshpande et al., 2014).

More difficult to answer is the question: why are the Rad50 coiled-coils so long? Results 

from coil deletion experiments in which shortened coils have been connected together either 

by the zinc hook itself or a heterologous linkage show that the proper length of the coils is 

essential for normal function (Hohl et al., 2011). One possibility that is often depicted in 

diagrams of MRN is that the coils physically connect two Rad50 molecules that are each 

bound to different DNA ends; however, it is difficult to determine this from the resolution of 

AFM images. MR proteins have been visualized tethering multiple linear DNA molecules 

into large, protein-bound complex, perhaps with the coiled-coil domains mediating these 

interactions (de Jager et al., 2001). These observations are consistent with the known DNA 

tethering activity of the complex and would allow for flexible, multipartite interactions 

between DNA ends. Another theoretical possibility is that the Rad50 coils actually encircle 

multiple DNA molecules, similar to cohesins, although there is currently no data supporting 

such a role.

Roles of Nbs1 in Regulation of MR

The Nbs1/Xrs2 component of MRN in eukaryotic cells does not possess enzymatic activity, 

but regulates the activities of Mre11 and Rad50 (Paull and Gellert, 1999) and is responsible 

for localizing MR to the nucleus in mammalian cells (Desai-Mehta et al., 2001). Recent 

structures of Mre11 from humans and fission yeast revealed parts of the Nbs1 interaction 

region on Mre11 (Park et al., 2011; Schiller et al., 2012), showing that two Nbs1 subunits 

stretch around the outside of nuclease domains of Mre11. We do not have structural 

information about the entire MRN catalytic head domain complex, but it is clear from in 

vitro biochemistry that Nbs1 stabilizes the ATP-bound form of MR and appears to be 

required for the ATP-dependent functions of the complex (Lee et al., 2003; Lee et al., 2013; 

Paull and Gellert, 1999). Nbs1 also contains an ATM-binding region at its C-terminus that is 

critical for ATM activation via MRN and DNA DSBs (Falck et al., 2005). It is not clear 

what the mechanistic role of this peptide is in activating ATM but in vitro studies with 

recombinant ATM also show this requirement for the Nbs1 C-terminus (Lee et al., 2010). 

Interestingly, we also found in this study that the mediator protein 53BP1 can compensate 

for the loss of the Nbs1 C-terminus in vitro in promoting ATM activity, most likely due to 

its ability to bind to both ATM and MRN. MR can also bind to ATM independently of Nbs1 

(Lee and Paull, 2004) through a binding site in the Rad50 protein (JH Lee and T.Paull, 

unpublished observations).

The MRN complex associates with DSB sites through at least two different mechanisms. 

Binding to the chromatin domain containing the break requires phosphorylation of the 

histone variant H2AX by ATM and DNA-PKcs, which is subsequently bound by the 

mediator protein Mdc1 (Stucki et al., 2005). Nbs1 contains N-terminal FHA and BRCT 
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domains that bind to Mdc1 at constitutively phosphorylated CK2 sites, localizing MRN to 

sites of DNA damage (Chapman and Jackson, 2008; Melander et al., 2008; Spycher et al., 

2008). MRN also is thought to localize directly to break sites in a much smaller region of 

chromatin visible by immunofluorescence, independent of Mdc1 (Lukas et al., 2004); this 

localization may be dependent at least in part on the replication checkpoint protein Rad17 

(Wang et al., 2014). The N-terminal FHA domain of Nbs1 in fission yeast also associates 

with the DSB repair factor Ctp1, the ortholog of CtIP, which is required for the efficient 

repair of breaks in S. pombe (Dodson et al., 2010; Williams et al., 2009). Direct binding 

between human MRN and CtIP has been well-documented (Chen et al., 2008; Sartori et al., 

2007; Yuan and Chen, 2009).

Overall, the MRN complex is a multifunctional enzyme assembly with several distinct 

activities in the DNA damage response. Mre11 nuclease activity is tightly regulated by the 

binding and ATP hydrolysis of the Rad50 protein, and these two enzymatic components are 

regulated in turn by Nbs1. The association of MR and Nbs1 with ATM and the regulation of 

ATM by MRN serve to link this central DNA end recognition complex with the primary 

signaling kinase in eukaryotic cells to coordinate DSB repair with checkpoint activation. 

There are many aspects of this relationship that we still do not understand but the recent and 

ongoing structural and biochemical insights into the complex bode well for this goal being 

achieved.
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Figure 1. 
Components of the MRN complex. (A) Linear maps of Mre11, Rad50 and Nbs1 showing 

functional domains, including the conserved phosphoesterase motifs in Mre11, Walker A 

and B ATP-binding motifs in Rad50 and the FHA and BRCT domains in Nbs1. (B) 

Interactions among the components of the MRN dimer. The globular domain is comprised 

of Mre11 phosphoesterase/nuclease domains, Rad50 ATPase domains, and Nbs1. The two 

Rad50 molecules also interact with a Zn hook at the tip of coiled coils. Binding site for Nbs1 

is based on crystallographic data (Park et al., 2011; Schiller et al., 2012).
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Figure 2. 
Model for the role of Mre11 catalytic activities during repair of DSBs in mitotic homology 

directed repair (left) and meiotic recombination (right) based on studies in budding yeast and 

mammalian cells (Garcia et al., 2011; Shibata et al., 2014). An Mre11-dependent 

endonucleolytic cut is made at a distance from DSB. Mre11 exonuclease activity is proposed 

to process the single-strand break in the 3′ to 5′ direction towards the DSB and other 

nucleases (for instance Exo1) would continue resection in the 5′-3′ direction away from the 

DSB.
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Figure 3. 
ATP induced conformational changes in the catalytic head of MRN complex. The globular 

domain comprised of Rad50 ATPase and Mre11 nuclease domains is depicted as revealed 

from crystal structures (Lammens et al., 2011; Lim et al., 2011; Mockel et al., 2011). Mre11 

binds Rad50 at the base of coiled coils. In the ATP unbound form, the structure is “open”, 

with Mre11 nuclease active sites accessible. ATP binding sites are shown as stars. In this 

state, the complex can engage DNA in a non-end specific manner (Deshpande et al., 2014). 

Binding of ATP brings the ATPase domains together forming a “closed” state. This form 

promotes end specific DNA binding and DNA tethering by MR/MRN complex and ATM 

checkpoint activation (Lee et al., 2013). Although this form blocks the nuclease site, ATP 

hydrolysis followed by separation of the ATPase domains is required for nuclease activity of 

Mre11, likely through a transient intermediate, although the structure of this theoretical 

conformation is unknown.
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