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Abstract

CYP51 (sterol 14α-demethylase) is an efficient target for clinical and agricultural antifungals and 

an emerging target for treatment of Chagas disease, the infection that is caused by multiple strains 

of a protozoan pathogen Trypanosoma cruzi. Here, we analyze CYP51A from the Y strain T. 

cruzi. In this protein, proline 355, a residue highly conserved across the CYP51 family, is replaced 

with serine. The purified enzyme retains its catalytic activity, yet has been found less susceptible 

to inhibition. These biochemical data are consistent with cellular experiments, both in insect and 

human stages of the pathogen. Comparative structural analysis of CYP51 complexes with VNI 

and two derivatives suggests that broad-spectrum CYP51 inhibitors are likely to be preferable as 

antichagasic drug candidates.
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1. Introduction

Trypanosoma cruzi is a protozoan parasite that uses blood-sucking triatomine insects 

(kissing bugs) as vectors and a variety of mammals as hosts. In mammals, the pathogen 
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multiplies intracellularly, populating different organs and tissues, though damaging 

predominantly the heart or/and gastrointestinal tract (1). T. cruzi was first reported as the 

causative agent of human infections by Carlos Chagas in 1909 (2), but since then both the 

disease and the pathogen have remained remarkably neglected. Current therapeutic options 

are limited mainly to two nitroderivatives, benznidazole and nifurtimox. Both drugs are 

highly toxic, cause severe side effects, and their efficiency in the chronic phase is still 

debated (1). Chagas disease remains endemic in Latin America (3) and is now becoming an 

emerging global health problem, mainly due to human/vector migration. For example, it has 

been reported that only in the USA there is up to one million infected (4), of them more than 

260,000 patients living in Texas alone (5). Spreading the disease all over the world 

eventually attracted attention, and two antifungal drugs, inhibitors of fungal sterol 14α-

demethylase (CYP51), posaconazole and ravuconazole, that demonstrated promising results 

in animal models of Chagas disease (6–8) have been advanced into clinical trials (9). The 

results, however, appear to be controversial (80% treatment failure (10)), thus calling for 

better, safer, and cost-efficient rationally designed T. cruzi CYP51 inhibitors.

We have recently shown that VNI, the novel, nontoxic and highly potent experimental 

inhibitor of T. cruzi CYP51, can efficiency cure both the acute and chronic models of 

Chagas disease in mice infected with the Tulahuen strain of T. cruzi (11). However, T. cruzi 

is a highly heterogeneous population, known to represent a pool of >70 different strains 

(http://www.dbbm.fiocruz.br/TcruziDB/strain.html). The strains vary significantly in the 

disease progression (the time of parasitemia onset/peak), the severity of the acute stage, 

chronic symptoms (cardiac versus gastrointestinal) and particularly in drug sensitivity (12, 

13). The results of VNI testing in the stringent short-term treatment protocols of mice 

infection with the Y and Colombiana strains of T. cruzi (medium and high resistance to 

benznidazole, respectively) have been inconclusive. Although VNI suppressed parasitemia 

and prevented from mortality, no complete parasitological cure was achieved under these 

conditions based on the RT-PCR analysis after immunosupression (14). Amplification of 

CYP51 from Colombiana revealed the presence of two genes, encoding eight (gene A) and 

seven (gene B) amino acid differences from Tulahuen CYP51 (A-like) (Table 1), though 

none of these residues is located within the enzyme substrate binding cavity (14). In this 

work, we analyzed CYP51 in the Y strain of T. cruzi (Table 1, Figure 1A). Again, two 

CYP51 genes were identified. CYP51A was of particular interest because it carries a 

sequence variation that results in the substitution of a highly conserved across the whole 

CYP51 family proline residue (P355 in the T. cruzi CYP51 sequence numbering). In the 

CYP51-VNI co-structure, this proline forms the surface of interaction with the VNI 

carboxamide fragment (Figure 1B). Replacement of this proline with serine (the variation 

also found in the CYP51A paralogues from some intrinsically drug resistant filamentous 

fungi, such as multiple species of Aspergillus (Figure 2)), was likely to increase flexibility of 

this portion of the CYP51 binding cavity therefore suggesting that its sensitivity to inhibition 

may be altered. The findings of this work support this idea, imply that it might be more 

preferable for CYP51 inhibitors aimed at serving as antichagasic drug candidates to have a 

broad-spectrum activity rather than a high target-selectivity, and outline a promising 

direction for the CYP51 structure-based VNI scaffold development.
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2. Materials and Methods

T. cruzi and mammalian cell cultures

Epithelial cells (Vero cell line) and cardiomyoblasts (H9C2 line) were grown in Dulbecco's 

modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 

antibiotics at 37°C in an atmosphere of 5% CO2. Y strain T. cruzi epimastigotes expressing 

GFP (Y-GFP) (kindly provided by Dr. S. Schenkman, Universidade Federal de Sao Paulo 

(Sao Paulo, Brazil)) were maintained in Diamond medium (0.1 M NaCl, 0.05 M K2HPO4 

pH 7.2, 0.625% tryptose, 0.625% tryptone, 0.625% yeast extract, 12.5 µg/mL Hemin) 

supplemented with 10% inactivated fetal bovine serum (Gibco), at 28 °C. Y-GFP 

trypomastigotes were obtained by in vitro metacyclogenesis of epimastigotes as described 

(15) and maintained in culture of Vero cells in DMEM supplemented with 3% fetal bovine 

serum (FBS) and antibiotics at 37°C in an atmosphere of 5% CO2.

T. cruzi cellular infection assays. Human stage (amastigotes)

The assay was perform using the conditions previously described for testing antiparasitic 

activity of VNI in the Tulahuen strain of T. cruzi (11). Briefly, Y-GFP trypomastigotes were 

used to infect Vero cells or cardiomyoblasts (10 parasites per cell) for 24 h. Unbound 

trypomastigotes were removed by washing with DMEM. Infected mammalian cells were 

incubated with VNI or VFV dissolved in DMSO/DMEM in triplicate and cocultured in 

DMEM + 3% FBS for 48 h to observe parasite multiplication. 72 h post-infection, the cells 

were washed with phosphate-buffered saline, fixed with 10% paraformaldehyde and stained 

with Hoechst to visualize DNA and with TRITC phalloidin (Invitrogen) to visualize 

cardiomyocyte or Vero actin myofibrils. The number of parasites in each cell was quantified 

by confocal microscopy using a FV1000 Confocal Olympus microscope. Insect stage 
(epimastigotes). 1×106 epimastigotes of Y-GFP were cultured in Diamond medium in the 

presence of 1 µM VNI; VFV, or 1% DMSO (Control). Each 48 h the medium was replaced 

by fresh medium at the same conditions. Aliquots were collected every 24 h, and were 

mixed with 2% p-formaldehyde in PBS (dilution 1:10). The parasites were counted in 

Neubauer hemocytometer. The number of dead parasites was determined by the dye 

exclusion method (0.1% of eosin in PBS).

CYP51 gene sequencing

Total DNA was isolated from Y strain T. cruzi epimastigotes as described (16). The CYP51 

gene was then PCR amplified using a FailSafe PCR Premix Selection Kit (Epicentre). The 

upstream primer 5’-CGCCATATGTTCATTGAAGCCATTGTATTGG –3’ contained a 

unique Nde I cloning site (underlined) and was complimentary to the Tulahuen T. cruzi 

CYP51 cDNA (GenBank accession number AY856083 (17) from 1 to 25 bp. The 

downstream primer 5’-

CGCAAGCTTCAGTGATGGTGATGCGAGGGCAATTTCTTCTTGCG - 3’ included a 

unique Hind III cloning site (underlined) followed by a stop codon (bold) and C-terminal 4-

histidine tag (italics), and was complementary to the Tulahuen T. cruzi CYP51 sequence 

from 1443 to 1423 bp. Amplification was carried out as described previously (17). The PCR 

products were subcloned into pGEM-T Easy vector (Promega) and sequenced. The Y-

CYP51A and Y-CYP51B cDNA and protein sequences were deposited into the NCBI 
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GenBank (http://www.ncbi.nih.gov/Genbank), nucleotide accession numbers JQ434483 and 

JQ434484, respectively.

Protein expression, purification and spectral characterization

To obtain the expression construct, the Y-CYP51A gene insert was subcloned into pCW as 

described (17). The protein was coexpressed with GroEL/ES in E. coli DH5α and purified 

using metal affinity chromatography on Ni-NTA Agarose followed by anion-exchange 

chromatography (CM-Sepharose). The absorption spectra were recorded on a dual-beam 

Shimadzu UV-240IPC spectrophotometer. P450 concentration was determined from the 

absolute absorbance (ϵ417 = 117 mm−1 cm−1) and reduced CO difference spectra (Δϵ450–

490 = 91 mm−1 cm−1). Substrate binding parameters were calculated from the difference 

type I spectral response (low-to-high spin transition of the P450 heme iron) at the conditions 

described for Tulahuen T.cruzi CYP51 (17). Binding of VNI and its derivatives VNT and 

VFV was monitored as type 2 spectral response reflecting coordination of the P450 heme 

iron to the azole nitrogen. The apparent Kds were calculated in Prism (GraphPad Software) 

using a quadratic function for tight binding ligands (18).

CYP51 activity assay

Enzymatic activities of Tulahuen CYP51 and Y-CYP51A were reconstituted as described 

previously (17). The reaction products were analyzed using a reverse-phase HPLC system 

(Waters) equipped with β-RAM detector (INUS Systems, Inc.). Potencies of the compounds 

to inhibit CYP51 activity were compared as inhibition of the substrate conversion in a one 

hour enzymatic reaction (18, 19).

X-ray crystallography

Crystallographic analysis was performed using Tulahuen T. cruzi CYP51 structure (PDB ID 

3k10) (20). CYP51 co-structures with VNI (21), VNT and VFV were determined using the 

orthologous enzyme from T. brucei (PDB codes 3gw9, 4g3j, and 4g7g, respectively), 

because these complexes diffract at atomic resolution (<2.0 Å).

3. Results

While in the cells infected by Tulahuen T. cruzi VNI completely eradicates the parasite at 8 

nM concentration (EC50 =1.3 nM) (11), in the Y strain infection its EC50 was found to be >5 

nM, some trace of amastigotes being observed within cardiomyoblasts and Vero cells even 

after the treatment with up to 1 µM VNI (Figure 3). Amplification of CYP51 from the Y 

strain DNA has shown that the effect of VNI may possibly be weakened by the presence of 

two CYP51 genes (higher CYP51 protein abundance, although it remains to be studied 

whether Y T. cruzi expresses both CYP51 paralogues constitutively, or in both replicative 

stages of the life cycle). The former can potentially be tested in the CL strain of T. cruzi, 

which also carries two CYP51 genes (Table 1), CL-CYP51B being 100% identical to Y-

CYP51B, and CL-CYP51A (100% identical to Tulahuen-CYP51) having one amino acid 

difference: P355 vs. S355 in Y-CYP51A.
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In the CYP51 molecule P355 forms the surface of the active site cavity (cytochrome P450 

SRS5 (22)). Its substitution with serine in Y-CYP51A was likely to increase the local 

flexibility in the region. Because it is our belief that high rigidity of the binding cavity 

provides the structural basis for CYP51 druggability and catalytic conservation (23), a more 

detailed analysis of Y-CYP51A was chosen as the subject for this study.

The purified protein did not display any differences from Tulahuen-CYP51 in its absolute 

absorbance or CO-binding spectra (Figure 4A). Titration with the substrate produced a 

characteristic type 1 spectral response (Figure 4B); though both the Kd and the amplitude of 

the low-to-high spin transition in the heme iron were slightly higher (Table 2). Their ratio 

(ΔA/Kd) indicated lower apparent binding efficiency, meaning that the Y-CYP51A ability to 

hold the substrate molecule tightly during the three catalytic steps of its 14α-demethylation 

(24) might be mildly affected. Lower binding efficiency correlated well with the about 3-

fold slower catalytic turnover (Figure 5, Table 2). Regardless of its lower enzymatic activity, 

in the presence of equimolar amounts of VNI or its triazole derivative VNT Y-CYP51A 

retained the ability to metabolize eburicol (26 and 40% conversion per hour, respectively), 

while Tulahuen CYP51 was completely inhibited at these conditions (Figure 6, Table 2). In 

fact, amongst all tested inhibitors that are known to be highly potent against Tulahuen 

CYP51 (18, 20, 25), only VFV maintained essentially the same strength against both CYP51 

orthologs. The apparent binding efficiencies for VNI, VFV and VNT, calculated from the Y-

CYP51A titration curves (9, 87 and 2, respectively, Figure 7), are in good agreement with 

their inhibitory effects on the enzymatic activity. Cellular experiments in insect and human 

stages of Y T. cruzi also reflected higher antiparasitic potency of VFV (Figure 8). 

Collaborative studies on comparative testing of VNI and VFV in animal models of Chagas 

infection with the Y strain T. cruzi are currently underway and strongly support this 

observation (the results will be reported elsewhere).

4. Discussion

VNT and VFV (Figure 9A) were designed with different purposes. Lower basicity of the 

VNT triazole nitrogen weakens the Fe-N coordination bond (Figure 9B) therefore increasing 

the role of van der Waals contacts and topological fit between the inhibitor and apoprotein 

(18) and leading to higher target selectivity. VNT was proven to be as potent as VNI for 

Tulahuen T. cruzi CYP51, yet has weaker inhibitory effect on the enzymes from T. brucei 

and L. infantum (25). The second aromatic ring of the VFV biphenyl fragment was added to 

the molecule in order to fill the deepest segment of the CYP51 binding cavity, which we 

believed should broaden its spectrum of activity. The inhibitor was indeed confirmed as 

equally potent for all three tested protozoan CYP51s (25). P355S substitution in Y-

CYP51A"softening” the surface of interaction around the inhibitor carboxamide fragment 

and its hydrogen bond network with the enzyme I helix (Figure 1), appears to somewhat 

increase the impact of the Fe-N coordination bond in the inhibitor-enzyme interaction. As a 

result VNI shows higher potency than VNT, yet additional contacts with the protein 

provided by the distal ring of the biphenyl moiety of VFV (Figure 9C) are required to 

completely prevent the substrate from being able to replace the inhibitor in the reconstituted 

enzymatic reaction.
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CYP51 is a highly conserved housekeeping gene found in all biological kingdoms. It is 

constitutively expressed in all organisms that produce endogenous sterols (26). Animals 

have one CYP51 gene. Some filamentous ascomycetes (such as Aspegrillus, Figure 2) have 

two or even three CYP51 genes (Fusarium (27)). While gene B is expressed constitutively, 

gene A was reported to be inducible, over-expressed at the conditions when a faster sterol 

flow is required (27, 28). Multiple CYP51 genes are found in some plants (e.g. rice, potato), 

though the reasons for that remain to be understood. While across the kingdoms CYP51s 

have low sequence similarity (26), the identity in closely related species is very high: e.g., 

CYP51s from human and chimpanzee have only three amino acid differences, CYP51s from 

human and dog differ in 9 residues (Supplemental Figure 2). Leishmania and T. brucei 

species have only one CYP51 gene. CYP51s from L. infantum and L. donovani (both 

pathogens cause visceral leishmaniasis) are identical. CYP51s from T. brucei brucei (causes 

nagana in cattle) and T. brucei gambiense (causes sleeping sickness in humans) have one 

amino acid difference (29).

Surprisingly high variability observed in CYP51s of T. cruzi (Table 1, 16 amino acid 

differences between Y-CYP51A and Marinkellei CYP51 (Supplemental Figure 3)) suggests 

that these organisms are likely to represent different species rather than strains (which in 

turn would logically explain the profound differences in the disease progression), and 

CYP51 can potentially serve as one of genetic markers. Sequencing of CYP51 genes from 

multiple T. cruzi organisms should be helpful in estimating the evolutionary distances 

between them and might be used for their more meaningful classification.

Heterogeneity of T. cruzi population may explain both the controversy of the outcomes from 

posaconazole clinical trials and the striking differences in the potencies of pyridine 

derivatives UDO and UDD (highly selective for Tulahuen T. cruzi CYP51 (18)), recently 

observed upon their testing in various T. cruzi strains (30). Although more studies are 

needed for establishing to what extent the genetic variability of T. cruzi correlates with 

response to drugs, it appears that the design of CYP51 inhibitors aimed at serving as 

antichagasic chemotherapies should be more successful if directed toward their broader 

spectrum of action rather than in pursuit of single-target selectivity. Ideally, new drugs 

should be active against all circulating variety of the parasite.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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T. cruzi, 
Trypanosoma cruzi, 
EC50

drug concentration that gives half-maximal response in cellular 

growth reduction

GFP green fluorescent protein

SRS substrate recognition site

VNI ((R)-N-(1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-

phenyl-1,3,4-oxadiazol-2-yl)benzamide)

VNT ((R)-N-(1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethyl)-4-

(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide

VFV ((R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-

yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide
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Highlights

• VNI that cures Tulahuen T. cruzi infection was found less potent against strain 

Y.

• Amplification of CYP51 from the Y strain revealed two genes, A and B.

• Y-CYP51A has a P355S substitution, which decreases its sensitivity to 

inhibition.

• Weaker drug sensitivity of Y-CYP51A may be due to its elevated flexibility.

• CYP51 structure based VNI modification produces a derivative of higher 

efficiency.
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Figure 1. Amino acid differences between CYP51s from Tulahuen and Y strains of T. cruzi
A. Mapping Y-CYP51A amino acid variations on the Tulahuen CYP51 structure [3k1o]. 

Distal view. The protein backbone is rainbow colored, from the N terminus (blue) to the C-

terminus (red). The residues that are different in the Y strain CYP51s are shown as white 

carbon sticks, the variations are labeled. B. Enlarged view of the substrate binding cavity in 

the in the CYP51 co-structure with VNI [3gw9]. P355 (K/β1–4 turn) and its surface of 

interaction with VNI are colored in pink. The C atoms of VNI are grey. The C atoms of the 

heme are yellow. The water molecules are displayed as red spheres. The hydrogen bonds are 

indicated as red dashes. The I and K helices are outlined and marked.
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Figure 2. A fragment of multiple sequence alignment of CYP51 from different biological 
kingdoms in the region of P355 (T. cruzi numbering)
P355 is marked with black arrow. P/S variation is also found in CYP51A in several 

filamentous ascomycetes, whose constitutively expressed CYP51B paralogues always have 

P in this position. More extended alignment can be seen as Supplemental Figure 1.
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Figure 3. Antiparasitic effect of VNI in cardiomyoblasts and Vero cells infected with the Y strain 
of T. cruzi
Fluorescence microscopic observation of GFP-expressing amastigotes multiplying within 

the host cells 72 h after treatment with different concentrations of VNI versus control 

(DMSO). T. cruzi amastigotes are green, H9C2/Vero cells nuclei are blue, and actin 

myofibrils are red.
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Figure 4. Spectral characteristics of Y-CYP51A
A. Absolute absorbance spectrum (270–700 nm; spectrophotometric index A417/A280=1.42; 

ΔA(390–460)/ΔA(417–460)=0.41) and difference reduced carbon monoxide binding spectrum 

(400500 nm). [P450] = 2.19 µM. B. Type 1 spectral response to the binding of eburicol. 

[P450] = 1.6 µM. Upper: absolute absorbance spectra, the Soret band maximum shifts to the 

left. Lower: difference spectra upon titration; titration step 0.5 µM; titration range 0.5–5.0 

µM. Optical path length 1 cm.
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Figure 5. Catalytic activity of Y-CYP51A in comparison with Tulahuen CYP51, time-course
[P450]= 0.5 µM; [eburicol]=50 µM.
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Figure 6. HPLC profiles of eburicol 14α-demethylation by Tulahuen CYP51 and Y-CYP51A
1 h reaction; molar ratio enzyme: inhibitor substrate = 1 : 1 : 100. Triazole posaconazole 

(pos) and a pyridine derivative UDO [3zg2] were used as controls. S-substrate; I, 14α-

carboxyaldehyde intermediate; P-14α-demethylated product.
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Figure 7. Spectral responses of Y-CYP51A to the binding of VNI, VFV and VNT
[P450] = 0.4 µM. Optical path length 5 cm. Upper: absolute absorbance spectra, the Soret 

band maximum shifts to the right. Lower: difference spectra upon titration with the 

inhibitors; titration step 0.2 µM, titration range 0.1–1.3 µM. Compounds were added to the 

sample cuvette from 0.2 mM stock solutions in DMSO. At each step, the corresponding 

volume of DMSO was added to the reference cuvette. Insets: titration curves.
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Figure 8. Comparative effects of VNI and VFV in Y strain epimastigotes (A) and amastigotes (B)
A. 1×106 epimastigotes were cultured in the presence of 1 µM VNI, VFV or 1% DMSO 

(Ctr). Each 48 h medium was replaced by fresh medium at the same conditions. Parasites 

were counted each day in a Neubauer chamber. B. H9C2 cells were infected with 

trypomastigotes (MOI=10). After 24 h the medium was replaced by fresh medium 

containing VNI or VFV. After 48 h of incubation with the compounds the cells were fixed 

and prepared for microscopic analysis.
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Figure 9. CYP51 structure based VNI scaffold development
A. Structural formulas of VNI and its derivatives VNT and VFV. B. Superimposition of 

CYP51 complexes with VNT (grey) and VFV (red). The length of the Fe-N coordination 

bond in each complex is marked respectively. C. Slice through the binding cavity of CYP51 

complexes with VNI (cyan) and VFV (red); surface representation. Left: overall structure, 

distal view. The SRS5 area (the C-terminal portion of helix K – β strand 1–4) is depicted as 

red ribbon. Right: enlarged view of the active site. The heme is shown as orange spheres.
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